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Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through
MAPK/ERK pathway in human prostate tissues: A morphological 
and biomolecular study
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Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor
complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation
of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At
present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of
CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohisto-
chemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of
this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate
and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as
key molecule to maintain the epithelium homeostasis via pERK downregulation by an autocrine mechanism.
Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcino-
genesis. 
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Introduction
Ciliary neurotrophic factor (CNTF) was originally discovered

in intraocular tissue of embryonic chick, having a role in promot-
ing the survival of ciliary ganglion neurons during embryonic
development.1 It was subsequently identified also in mammals
neuronal and non-neuronal cell types, showing trophic actions.2
CNTF is a member of interleukin (IL)-6 type cytokine family
including leukemia inhibitory factor (LIF), interleukin-6 (IL-6),
IL-11, cardiotrophin 1 (CT-1), cardiotrophin-like cytokine (CLC),
interleukin-27 (IL-27), and oncostatin M (OSM).3 All IL-6 type
family cytokines, need additional membrane-bound non-signaling
receptors to activate signal transduction via gp130,4-7 in particular
CNTF acts by using the CNTF receptor α (CNTFRα).6,8,9 The for-
mation of the CNTF receptor complex triggers the activation of
multiple intracellular signaling pathways such as MAPK/ERK10,
AKT/PI3K11 and Jak/STAT12 pathways, which mediate various
biological effects, such as survival and/or differentiation in differ-
ent cell types.13-25 Most of the studies involving CNTF has been
carried out on nervous system and adipose tissues concerning food
intake and the association among obesity, hyperglycemia, hyperin-
sulinemia, and hyperlipidemia.26-29 Recently, Chen et al.30 provided
new insights into the role of CNTF on the migration of corneal
epithelial stem/progenitor cells and on AKT signaling pathway. At
the best of our knowledge, less is known about the role of CNTF
and its receptor CNTFRa in epithelial prostate tissues. The normal
prostatic glandular epithelium consists of three cell types, i.e.,
basal, luminal-secretory and neuroendocrine cells expressing spe-
cific markers and organized in a double layer surrounded by stro-
mal tissue.31-36

The most widely accepted explanation for the balanced rela-
tionship between basal and secretory cells is due to the presence of
non-altered stem cells in the basal cell compartment. The alteration
of these normal stem cells leads to tumorigenesis.37-40 At present,
molecular and biological basis as well as the pathogenesis of
prostate cancer are still a matter of debate although prostate cancer,
i.e., adenocarcinoma, is the second most common malignancy in
males and the fifth leading cause of cancer mortality.41-43

Generally, prostate adenocarcinoma is clinically localized and not
aggressive. For patients with advanced prostate adenocarcinoma,
androgen deprivation therapy is usually used, however, a part of
these patients can have poor clinical outcomes for onset of castra-
tion resistant prostate cancer.44 Thus, it is crucial to investigate the
molecules and factors playing a pivotal role in processes such as
cellular proliferation and migration. So, given the remarkable
effects of CNTF on stem cell30 and its potential on cell migration,

we performed a series of experiments with the aim: i) to identify
the presence of CNTF and its receptor CNTFRa in human prostate
tissues; ii) to characterize the signaling systems modulated by
CNTF treatments using cultured prostate cells. We have investigat-
ed ERK, AKT and STAT3 pathways because they have an impor-
tant role in triggering prostate cancer45-48 and it has been proven
that these three pathways can be involved in CNTF signaling
through its receptor CNTFRa.10-12,30 In addition, these pathways
mediate processes such as cellular proliferation, survival, differen-
tiation, migration that play a pivotal role in tissue homeostasis and
in the cancer onset.13-25

Materials and Methods

Tissue collection
In this study we analyzed a total of 15 normal human prostate

samples: 5 from benign prostatic hyperplasia (BPH), 5 normal-
looking samples from radical prostatectomy (NL-RP) and 5 from
cystoprostatectomy (CYP). A pathologist (RMa) reviewed the
samples stained with hematoxylin and eosin for selecting the sam-
ples used in this study. 

All the samples were obtained from pathological files from the
Pathology Services of the Polytechnic University of the Marche
Region-United Hospitals. The procedures followed for the collec-
tion of samples were in accordance with the Helsinki Declaration
of 1975, as revised in 2013. 

Immunohistochemistry
All prostate samples were fixed in 10% neutral buffered for-

malin and routinely processed for paraffin embedding.
Immunohistochemical staining was performed as previously
described.49 Briefly, after dewaxing, paraffin sections were rinsed
in phosphate buffered saline (PBS), incubated with 3% hydrogen
peroxide for 40 min to block endogenous peroxidase. Pre-treat-
ment by heat in 10 mM citrate buffer, pH 6.0 for 5 min was used
for CNTF and p63 while pre-treatment by 100 ng/mL Proteinase K
(Sigma-Aldrich, St. Louis, MO, USA) 5 min at 37°C was used for
CNTFRα. After pre-treatment, sections were rinsed with PBS and
incubated with normal horse serum (Vector Laboratories,
Burlingame, CA, USA) diluted 1:75 in PBS for 1 h at room tem-
perature (RT). Sections were then incubated with anti-CNTFRa,
anti-CNTF and anti-p63 (Table 1) primary antibodies diluted in
PBS, overnight at 4°C. After a thorough rinse in PBS, sections
were incubated with the appropriate biotinylated secondary anti-

Table 1. Primary antibodies used in this study.

Antibody                                                                       IHC                  WB                      IF                                           Company

pAb Rabbit anti-human CNTF (#ab190985)                                  1:500                          //                             1:100                                          Abcam, Cambridge, UK
pAb Rabbit anti-human CNTFRa(#PA5-45053)                          //                          1:400                             //                              Thermo Fisher Scientific, Waltham, USA
mAb Mouse anti-human CNTFRa (#ab89333)                            1:150                          //                             1:100                                          Abcam, Cambridge, UK
mAb Rabbit anti-human pAKT (#4060)                                             //                        1: 1000                           //                              Cell Signaling Technology, Danvers, USA
pAb Rabbit anti-human AKT (#9272)                                                 //                        1: 1000                           //                              Cell Signaling Technology, Danvers, USA
mAb Rabbit anti-human pERK1/2 (#4377)                                       //                          1:800                             //                              Cell Signaling Technology, Danvers, USA
mAb Rabbit anti-human ERK1/2 (#4695)                                          //                         1:1000                            //                              Cell Signaling Technology, Danvers, USA
mAb Mouse anti-human pSTAT3 (#4113)                                         //                         1: 800                            //                              Cell Signaling Technology, Danvers, USA
mAb Rabbit anti-human STAT3 (#4904)                                            //                        1: 1000                           //                              Cell Signaling Technology, Danvers, USA
mAb Mouse anti-human p63 (#M7317)                                          1:50                           //                                 //                                          DAKO, Glostrup, Denmark

mAb, monoclonal antibody; pAb, polyclonal antibody; IHC, immunohistochemistry; WB, Western blotting; IF, immunofluorescence.
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body (Vector Laboratories) diluted 1:200 v/v solution for 30 min at
RT. Vectastain ABC Kit (Vector Laboratories) for 1h at RT and
3′,3′- diaminobenzidine hydrochloride (Sigma-Aldrich) were used
to develop the immunohistochemistry reaction. Sections were
counterstained with Mayer’s hematoxylin, dehydrated and mount-
ed using Eukitt solution (Kindler GmbH and Co., Freiburg,
Germany). Negative controls were performed by omitting the first
or secondary antibody for all the immunohistochemical reactions
performed in this study. p63 was used as nuclear marker of basal
prostate cells. Nervous tissues (fibers and ganglions) are used as
positive internal control for CNTF and CNTFRa.50-52

Cell culture 
Normal human prostate epithelial cells PWR-1E (ATCC/LGC

Standards, Manassas, VA, USA) were cultured in serum-free ker-
atinocyte cell culture media (K-SFM) supplemented with human
EGF (5 ng/mL), bovine pituitary extract (25 mg/mL), 100 U/mL
penicillin and streptomycin (Gibco, Thermo Fisher Scientific, MA,
USA) at 37°C, 95% humidity and 5% CO2. The medium was
changed 3 times a week and cells were split 1:4 every 3/4 days.

Immunofluorescence 
PWR-1E cells were washed in Dulbecco’s PBS

(Lifetechnology, Monza, Italy), fixed in 4% paraformaldehyde in
PBS for 10 min at RT, and permeabilized in PBS 0.1 M added with
0.1% Triton X-100 (Sigma, Milan, Italy) for 5 min. After washing

in PBS at RT, cells were blocked with 10% Normal Donkey Serum
(Jackson ImmunoResearch, West Grove, PA, USA) in PBS 0.1 M
and incubated overnight at 4° C with the anti-human CNTF
(1:100) and CNTFRα (1:150) antibodies(Table 1). Cells were
then washed three times in PBS and incubated with the FITC-con-
jugated donkey anti-rabbit (for CNTF) and TRITC-conjugated
anti-mouse (for CNTFRα) IgG secondary antibodies (both from
Jackson ImmunoResearch) for 30 min at RT. TOTO3 probe was
used for nuclear staining. Finally, the slides were cover-slipped
with propyl gallate and evaluated with a Leica TCS-SL spectral
confocal microscope.  

CNTFRa detection in cell lines by Western blotting
Once PWR-1E cells reached 80% confluence, cells were lysed

by using the following lysis buffer: 0.1M PBS, 0.1% (w/v) SDS,
1% (w/w) NONIDET-P40, 1mM (w/v) Na orthovanadate, 1mM
(w/w) PMSF (phenyl methane sulfonyl fluoride), 12 mM (w/v) Na
deoxycholate, 1.7 μg/mL Aprotinin, pH 7.5. Cell lysates were cen-
trifuged at 20,000 g for 20 min at 4°C and the supernatants were
aliquoted and stored at −80°C. Viable counts using the Trypan blue
dye exclusion test were routinely performed. All experiments were
performed in duplicate and were repeated at least three times. The
proteins concentrations were determined by a Bradford protein
assay (Bio-Rad Laboratories, Milan, Italy). All protein samples
were analyzed by Western blotting technique. They were fraction-
ated on 10% SDS-polyacrylamide gels (SDS-PAGE) and elec-

Figure 1. Immunohistochemistry localization of CNTF and CNTFRa  in prostate samples. CNTF is highly expressed in basal layer
(arrows) of BPH (a), CYP (b) and NL-RP (c) while the secretory layer (arrowheads) is mainly negative. The stromal tissues are weakly
stained for CNTF in all samples analysed. CNTFRa is highly expressed in basal layer (arrows) of BPH (d), CYP (e) and NL-RP (f )
while the other tissues are mainly negative. The basal layer of glandular epithelium is identified by p63 marker (arrow, g). Pictures in
h) and i) show a ganglion (arrow) positive for CNTF (h) and for CNTFR  (i) used as positive internal controls. The insets show higher
magnification of the area indicated by asterisk, scale bars: 30 μm. Scale bars: a,b,c,d,f,g) 100 µm; e,h,i) 200 µm.
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trophoretically transferred (Trans-Blot® Turbo™ Transfer System;
Bio-Rad Laboratories Inc., Richmond, CA, USA) to nitrocellulose
membranes, and subjected to Western blot analysis. Non-specific
protein binding was blocked with 5% (w/v) non-fat-dried milk
(Bio-Rad Laboratories) in Tris-buffered saline (TBS/0.05% Tween
20 (TBS-T) for 1 h. Blots were incubated with 1:400 anti-
CNTFRa (Thermo Fisher Scientific, Waltham, MA, USA) primary
antibody overnight at 4°C. After washing, blots were incubated
with anti-rabbit secondary antibody conjugated with horseradish
peroxidase (Amersham Italia Srl, Milan, Italy) diluted 1:5000 in
TBS-T. Detection of bound antibodies was performed with the
Clarity Western ECL Substrate (Bio-Rad Laboratories) and images
were acquired with Chemidoc (Bio-Rad Laboratories). Bands were
analyzed using the ImageJ software (https://imagej.nih.gov/ij/
download.html) for quantification, and normalization was com-
pleted using β-actin band intensities. 

CNTF signaling pathway in PWR-1E cell line 
After verified the presence of the CNTFRa in PWR-1E cells,

a dose/responsive curve was performed to test the best CNTF con-
centration showing a significant response for cellular treatments.
These cells were treated with 0, 2, 10 and 20 ng/ml by recombinant
human CNTF (rhCNTF) for 15 min, to detect which of the follow-
ing signaling pathway was trigged: pERK/ERK, pAKT/AKT and
pSTAT3/STAT3. These signaling pathways were analyzed by
Western blotting as above described using the primary antibodies
shown in Table 1.

Results were calculated in arbitrary units (AU) and reported as

bars of a histogram. pERK1/2, pAKT and pSTAT3 quantities were
normalized using total ERK1/2, AKT and STAT3 respectively.

Statistical analysis 
Data represent the mean ± SD, and were analyzed for statistical

significance (p<0.05) using Student’s t-test by Graphpad Prism
ver. 8 program.

Results

CNTF and CNTFRa localization in human prostate tis-
sue by immunohistochemistry

CNTF and CNTFRa were localized mainly in the basal layer
of the prostate epithelium in BPH (Figure 1 a,d), CYP (Figure 1
b,e) and NL-RP (Figure 1 c,f), while the secretory luminal layer
was mainly negative or very weakly positive for the two molecules
in all samples analyzed (Figure 1 a-f). Stromal components of
prostate tissue were weakly positive for CNTF (Figure 1 a-c) and
mainly negative for CNTFRa (Figure 1 d-f). 

CNTF and CNTFRa localization in PWR-1E cell line
by immunofluorescence

In Figure 2 the immunopositivity for CNTF is mainly nuclear
(on chromatin, the nucleoli are negative; inset in panel c), while the
cytoplasm is weakly stained (panels b and c). The green signal for

Figure 2. Immunofluorescence of CNTF and CNTFRa in PWR-1E cell line. In (a) and (d) are stained the nuclei in blue. CNTF (b, red
staining) is localized mainly in nuclei while the cytoplasm is weakly stained for CNTF (b,c). In (c), the nucleoli are negative as depicted
in the inset (c, Merge). CNTFRa(e, green staining) is localized in the cytoplasm of the cells as shown in (f ) and it is especially intense
in the perinuclear region (see inset in f, Merge). Scale bars: a,b,c,d,e,f ) 50 µm;  Insets in c,f ) 17 µm.
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CNTFRa is cytoplasmic (panels e and f) and especially intense in
the perinuclear region (inset in panel f). 

CNTF signaling pathways analyzed by Western blotting 
rhCNTF induced pERK de-phosphorylation at 10 ng/mL and

20 ng/mL, whereas 2 ng/mL of rhCNTF was insufficient to induce
de-phosphorylation of pERK (Figure 3a, see the representative
Western blotting image). The expression level of pERK was very
weakly or negative detected performing Western blotting analyses.
The quantitative analysis of pERK expression levels normalized
on ERK expression levels was represented by the histogram on the
right side of the Western blotting (Figure 3a). The statistical analy-
sis showed a significant pERK decrease after rhCNTF treatments
at 10 ng/mL (p=0.008) and 20 ng/mL (p=0.006) (Figure 3a).
RhcNTF did not have any effect on phosphorylation/de-phospho-
rylation of pAKT/AKT (Figure 3b) and pSTAT3/STAT3 (Figure
3c). The histograms representing the quantitative analysis of
pAKT expression levels normalized by AKT (Figure 3b) and
pSTAT3 expression levels normalized by STAT3 (Figure 3c) did
not show any statistical differences (p>0.05) among treatments at
the different rhCNTF concentrations (see pAKT/AKT and
pSTAT3/STAT3 histograms in Figure 3b c, respectively). 

Discussion
This is the first study that describes the localization of CNTF

and its receptor CNTFRa in human prostate tissues, and investigates
the activation pathways of CNTF in human normal prostate cell line. 

In order to characterize the location of CNTF and its receptor
CNTFRα we have used prostate tissues obtained from different
zones of the prostate, i.e. transitional and peripherical zones. In
particular, we analyzed benign prostatic hyperplasia (BPH) from
transitional zone and normal-looking samples, from both radical
prostatectomy (NL-RP) and cystoprostatectomy (CYP), from
peripheral zone where at least 75% of cancers originate.53 The nor-
mal glandular epithelium of prostate is highly organized contain-
ing, basal cells, which account for ~40% of total epithelial cell
numbers, and a layer of luminal-secretory cells that make up the
rest of the epithelium.54 We have demonstrated by immunohisto-
chemistry the presence of  CNTF and CNTFRα in the basal cell
layer in the prostatic normal glandular epithelium, in which reside
stem cells.55 Under normal conditions the basal cells through dif-
ferentiation replace the terminally differentiated luminal cells that
regularly shed in the lumen of the gland, while an impaired differ-
entiation of the normal epithelial lineage is present in prostate can-
cer.55,56 It has been supposed that the genesis of prostate cancers
takes into account both genetic and epigenetic changes, such as
DNA methylation, chromatin remodeling and transcriptional regu-
lation, involving a single cell or a cancerous progenitor cell which
sources a dysregulated differentiation program to form the
tumor.54,57,58 Although the prostate cancer presents a dominant
luminal phenotype, recently, a progenitor cell on the basal layer
seems to be an increasingly supported alternative for the origin of
prostate cancer and basal to luminal cellular differentiation appears
a critical event.54,57

Multiple signaling pathways normally involved in prostate dif-
ferentiation can be also linked to prostate cancer development,

Figure 3. Dose-dependent response of PWR-1E normal prostate cell line to rhCNTF. Densitometrical analysis of the bands show a sig-
nificant downregulation of pERK1/2 (a) while pAKT (b) and pSTAT3 (c) do not show any significant modulation. Results were calcu-
lated in arbitrary units (AU) and reported in the histograms. Note the significant decrease (**) of pERK1/2 in PWR-1E cell lines treated
with 10 and 20 ng/mL rhCNTF compared to the untreated control (mean ± SD; **p<0.01).
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including the MAPK/ERK, AKT/PI3K, and Jak/STAT pathways.45-

48 In addition, it has been reported that alteration of the axis
PTEN/AKT/PI3K together with activation of RAS/MAPK/ERK
signaling are correlated with prostate cancer progression and
metastasis and that RAS/MAPK/ERK pathway alone is signifi-
cantly elevated in both primary and metastatic lesion.59,60

Moreover, it is known that the activation of Jak/ STAT3 pathway
by IL-6 is crucial for maintenance of tumor progenitor cell pheno-
type and that CNTF binding to its receptor CNTFRα can active the
three pathways described above.10-12,29,30

Our in vitro results showed that AKT and STAT3 phosphoryla-
tion were not modified under rhCNTF treatments while rhCNTF
selectively inhibits ERK pathway, in fact we have detected a
decrease of ERK activation, i.e. the decrease of pERK under
rhCNTF stimulation, in normal prostate cellular model. Our data
are in line with that of Nickols and colleagues61 showing a correla-
tion of prostate cancer recurrence with the increase of pERK
expression levels. Moreover, the same authors demonstrated that
the activation of ERK is characteristic of castration resistant
prostate cancer while others found a correlation between increased
ERK phosphorylation with both stage T and Gleason grade of
prostate cancer.61,62 So, we can hypothesize that inhibition of ERK
phosphorylation can decrease migration and invasion processes
downstream of this pathway. As a result, we can speculate that
CNTF promotes epithelium homeostasis via pERK downregula-
tion by an autocrine mechanism in normal prostate glandular basal
compartment and that dysregulation of this mechanism could con-
tribute to the onset of prostate cancer. All these findings suggest
that further CNTF studies in prostate cancer are needed to verify
the potential role of this cytokine in carcinogenesis.
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