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A growing array of experimental techniques allows us to characterize the

three-dimensional structure of large biological assemblies at increasingly higher

resolution. In addition to X-ray crystallography and nuclear magnetic resonance

in solution, new structure determination methods such cryo-electron microscopy

(cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often

it is not sufficient to use a single experimental method, but complementary data

need to be collected by using multiple techniques. The integration of all datasets can

only be achieved by computational means. This article describes Inferential structure

determination, a Bayesian approach to integrative modeling of biomolecular complexes

with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and

outline Markov chain Monte Carlo algorithms for sampling model structures from the

posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and

discuss some of the computational challenges of Bayesian inference in the context of

biomolecular modeling.
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1. INTRODUCTION

Thanks to groundbreaking advances in experimental techniques it has become possible to study
the structure of large biological assemblies at increasingly higher resolution. Traditionally, high-
resolution biomolecular structure determination was only possible by X-ray crystallography or
nuclear magnetic resonance (NMR) in solution (Berman et al., 2000). The application of NMR
and X-ray crystallography to larger systems remained challenging due to the sheer size of the
system and/or because it was difficult to find suitable crystallization conditions. More recently,
emerging methods such as cryo-electron microscopy (cryo-EM) (Frank, 2002; Orlova and Saibil,
2004; Chiu et al., 2005), crosslinking/mass spectrometry (Gingras et al., 2007; Rappsilber, 2011)
and solid-state NMR (Yan et al., 2013) have started to provide exciting insights into the structure
of large macromolecular assemblies that was previously very difficult, if not impossible to obtain.
In particular, cryo-EM has reached near-atomic and in some cases even atomic resolution over
the last 5 years (Bai et al., 2015; Fischer et al., 2015; Khatter et al., 2015). The EM databank
(EMDB) (Lawson et al., 2011) stores an increasing number of high-resolution EM reconstructions.
Several biologically essential assemblies that resisted high-resolution studies have recently been
characterized by cryo-EM including spliceosomal complexes (Yan et al., 2015; Agafonov et al., 2016;
Galej et al., 2016; Rauhut et al., 2016; Wan et al., 2016), eukaryotic ribosomes (Anger et al., 2013;
Khatter et al., 2015), and transcription initiation complexes (Plaschka et al., 2015).

Although several powerful experimental techniques are available that allow us to study the
structure of large biomolecular systems, we need computational methods that assist us in
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integrative modeling with diverse structural data (Sali et al.,
2003; Robinson et al., 2007; Ward et al., 2013). The reasons for
developing new computational methods are both of a principled
and practical nature.

Structural models built from hybrid data should be as
objective as possible and ideally not be biased by a human
modeler, therefore automated computational modeling tools are
indispensable (Karaca and Bonvin, 2013; Villa and Lasker, 2014;
Schröder, 2015). The models should be compatible with all of
the available data, whichmight come from different experimental
sources. The modeling software should also be able to integrate
data-independent prior information about the system.

Most existing refinement and modeling software focuses on
structural data of a particular type. For example, a number of
software packages for X-ray structure refinement or modeling
with NMR restraints exist. To use these packages for modeling
with hybrid data is often difficult and involves some sort
of tweaking. We therefore need a versatile software that can
integrate diverse types of structural information (Russel et al.,
2012).

Every software for integrative modeling with hybrid data has
to address the following questions: How much weight should
the various pieces of information be given? How to deal with
datasets that (partially) contradict some of the other datasets?
Obviously, the weights can have a strong impact on the final
structure (Brünger, 1992; Habeck et al., 2006), and it would be
desirable to choose the weights in a data-driven, self-adaptive
fashion. Because the individual datasets themselves typically
provide only ambiguous structural information, we have to fit
the model against all data simultaneously to obtain the least
ambiguous result.What is a good representation of the remaining
uncertainty about the structure? We need to represent the
ambiguity of the structural model adequately.

The software should also be able to integrate data of
varying resolution. A common scenario is that high-resolution
information about the subunits in isolation is available (Esquivel-
Rodríguez and Kihara, 2013), such that modeling the complex
appears to be simple: we just need to put the pieces together.
However, even in this seemingly simple situation several issues
need to be considered.

The formation of the complex is often accompanied by a
conformational change in the subunits (Gerstein et al., 1994).
How much should we deviate from the known structures of
the free subunits in order to fit the data of the complex? If the
data is sparse (e.g., crosslinking or NMR data) or of a medium
resolution, there is the risk of overfitting the data.

Another practical problem is the enormous size of the systems
that can comprise tens of thousands up to millions of atoms. Is
there enough information to determine the position of all atoms?
Or should we rather lower our goal and aim for a coarse-grained,
intermediate resolution model?

At the source of many of these issues is the question of how
to deal with uncertainty in the data and about our model. We
need a mathematical framework to quantitatively represent any
uncertainty in the process that takes us from the input data to
the final model. The framework should allow us to follow the
propagation of the uncertainty about a biomolecular structure as

we combine data from diverse sources and to compute structural
error bars that reflect the degree of uncertainty.

Bayesian probability theory is a unique and objective
mathematical framework for quantitative inference from limited,
diverse and uncertain information (Cox, 1946; Jaynes, 2003;
MacKay, 2003). The essence of the Bayesian approach is that
any probability should be interpreted as incomplete information
about a quantity rather than a frequency of occurrence. Highly
ambiguous and uncertain information results in multi-modal
distributions that are spread out over many parameter values.
Markov chain Monte Carlo (MCMC) methods (Liu, 2001) allow
us to apply the Bayesian formalism in practice even to highly
complex data and models.

More than a decade ago, Bayesian methods have been
introduced for protein structure determination from solution
NMR data (Rieping et al., 2005; Habeck, 2012). In this article,
I will describe recent developments in Bayesian integrative
modeling with hybrid data.

2. METHODS

2.1. Inferential Structure Determination
Inferential structure determination (ISD) is the first strictly
statistical approach to biomolecular modeling (Habeck et al.,
2005a; Rieping et al., 2005). Originally ISD was developed for
solution NMR data on small protein domains (Rieping et al.,
2008; Habeck, 2012). But the basic principle can be applied to
large systems and diverse structural data (Bayrhuber et al., 2008;
Shahid et al., 2012; Habenstein et al., 2015).

At the core of the ISD approach is a probabilistic formulation
of the structure determination problem. We have to distinguish
two principal types of information that guide us in the modeling
of a biomolecular structure: the experimental data D and data-
independent prior information I about biomolecular structures.
All the information is encoded statistically through conditional
probabilities. The probability:

Pr(D|θ , I)

quantifies how probable it is to observe data D if the actual
configuration of the system is θ . Pr(D|θ , I) is called the likelihood
function. The prior probability:

Pr(θ |I)

expresses what we know about reasonable system configurations
θ without observing any data.

Probability calculus allows us to combine both types of
information and to derive a posterior distribution over all
conformational degrees of freedom by invoking Bayes’ theorem
(Jaynes, 2003):

Pr(θ |D, I) =
1

Pr(D|I)
Pr(D|θ , I) Pr(θ |I) .

The posterior Pr(θ |D, I) expresses what we know about the
unknown structure given the experimental data D and our
prior knowledge I. The probability Pr(D|I) (the so-called model
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evidence) can be ignored if we are only interested in estimating
θ , because Pr(D|I) does not depend on θ . However, if we aim
to compare different prior or modeling assumptions, it will be
important to calculate Pr(D|I) (Habeck, 2011; Mechelke and
Habeck, 2012, 2014; Knuth et al., 2015).

Often, we need to introduce additional unknown parameters
to express our prior information or to model the experimental
data. Let’s denote these parameters by ξ ; in statistical parlance, ξ
are nuisance parameters. It is straightforward to infer both θ and
ξ from the experimental data. All we need to do is to introduce a
prior probability for the model parameters ξ and to invoke Bayes’
theorem on the joint parameter space:

Pr(θ , ξ |D, I) =
1

Pr(D|I)
Pr(D|θ , ξ , I) Pr(θ |I) Pr(ξ |I) .

where we assumed that θ and ξ are independent a priori:
Pr(θ , ξ |I) = Pr(θ |I) Pr(ξ |I). It is straightforward to relax this
assumption if necessary.

The posterior probability Pr(θ , ξ |D, I) encodes all available
information about the unknown parameters. In biomolecular
structure determination, the posterior is typically too complex to
do any further analytical calculations. By drawing Monte Carlo
samples from Pr(θ , ξ |D, I) we generate a finite approximation of
the posterior (Liu, 2001). These samples can be used to compute
expectations and variances over the unknown parameters and
thereby estimate the parameters and compute error bars.

2.2. Probabilistic Models for Hybrid Data
Before we can launch an ISD calculation, we need to
choose a likelihood Pr(D|θ , ξ , I) and the priors Pr(θ |I) and
Pr(ξ |I). The application of ISD to multiple datasets Di is
straightforward: Pr(D|θ , ξ , I) =

∏

i Pr(Di|θ , ξ ). Each dataset
is described independently with an appropriate probabilistic
model; all datasets are integrated by simply multiplying all
factors representing the various datasets. Because probabilities
for different datasets are calibrated (they all normalize to one),
there is no issue of weighing the different datasets relative to each
other.

We use a Boltzmann distribution as a prior over the
conformational degrees of freedom:

Pr(θ |I) =
1

Z
exp{−E(θ)} (1)

where E(θ) is a force field. ISD currently supports two force fields:
a quartic repulsion term that lacks any attractive interaction,
and a linearly ramped Lennard-Jones potential (see Habeck,
2011; Mechelke and Habeck, 2012 for more details). The prior
distribution Pr(θ |I) allows us to restrict the conformational
degrees of freedom such that reasonable model structures are
preferred (for example, structures that are free of atom-atom
clashes and have well-packed interfaces). The prior distribution
over the model parameters Pr(ξ |I) is typically of a standard form
and chosen such that sampling with MCMC is straightforward.

2.2.1. Probabilistic Model for EM Maps
The result of a cryo-EM study is a 3D reconstruction of the
structure, which typically comes in the form of a regular cubic

grid with equal grid spacing in all three spatial directions.
To construct a probabilistic model for 3D reconstructions, we
first need a mathematical relation that allows us to compute a
theoretical density map from a given structure θ . ISD’s current
model for density maps is quite simple. The theoretical map is
obtained from an atomic model by placing spherical Gaussians
of the same size and weight at each atom. The theoretical density
at 3D position x is:

ρ(x; θ , σ ) =
∑

k

1

(2πσ 2)3/2
exp

{

−
1

2σ 2 ‖x− xk(θ)‖
2
}

(2)

where the index k runs over all atoms that contribute to the
density and xk(θ) is the 3D position of the k-th atom in
the structure parameterized by the conformational degrees of
freedom θ . The theoretical density map can be interpreted as a
blurred version of an atomic map with infinite resolution:

ρ(x; θ , σ ) = gσ ∗ρ(x; θ , 0) with ρ(x; θ , 0) =
∑

k

δ[x−xk(θ)]

where δ is the Dirac delta function, gσ is a Gaussian blur kernel
with bandwidth σ and ∗ denotes a 3D convolution. Model (2)
is admittedly simplistic and valid only for modeling protein
complexes at intermediate to low resolutions. For high-resolution
maps and/or the modeling of protein/nucleic acid complexes the
model should also incorporate atom-wise weights (proportional
to atom mass) as well as scattering and temperature factors.

Let us assume that experimental values ρn are available at
positions xn (n = 1, . . . ,N) which are typically the centers of
voxels that make up a cubic grid. The discrepancy between the
experimental map ρn and the theoretical map ρ(xn; θ , σ ) can be
assessed with a Gaussian distribution. Alternative error models
for density maps have been proposed (Vasishtan and Topf, 2011),
but the Gaussian model is still the most widely used model.

The likelihood function resulting from a Gaussian model is:

Pr(ρ|θ , ξ , I) =
N

∏

n= 1

(

λ

2π

)1/2

exp

{

−
λ

2
[ ρn − αρ(xn; θ , σ ) ]

2
}

=

(

λ

2π

)N/2

exp

{

−
λ

2

∑

n

[ ρn − αρ(xn; θ , σ ) ]
2
}

(3)

where the calibration factor α was introduced. There are three
nuisance parameters ξ = (σ ,α, λ). Typically, the bandwidth
of the blur kernel σ is set to a constant value which depends
on the resolution of the map. For example, the default value
in Chimera (Pettersen et al., 2004) is σ = 0.225× resolution.
For this fixed choice of the bandwidth, σ can be absorbed into
the background information I. However, it is also possible to
estimate σ along with the other nuisance parameters and the
conformational degrees of freedom.
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To estimate the scaling parameter, we have to look at the
conditional posterior distribution:

Pr(α | λ, θ ,D, I) ∝ Pr(α|I)× exp

{

−
λ‖ρ(θ , σ )‖2

2
(

α −

∑

n ρnρ(xn; θ , σ )

‖ρ(θ , σ )‖2

)2}

where ‖ρ‖ =
√

∑

n ρ2
n . The second factor is a Gaussian centered

about the estimator:

α̂(θ , σ ) =

∑

n ρnρ(xn; θ , σ )

‖ρ(θ , σ )‖2
(4)

which is the slope of a straight line relating the calculated volume
ρ(xn; θ , σ ) to the observed density ρn.

The Gaussian model is directly related to the cross-correlation
coefficient, which is often used to compare EMmaps. To see this,
let’s integrate out the unknown scaling factor α. If we ignore the
fact that α should be positive and choose a uniform (improper)
prior over α (i.e., Pr(α|I) = const), we can analytically integrate
out α to obtain a new likelihood that no longer depends on α (this
procedure is also called marginalization in Bayesian statistics,
Habeck et al., 2005a):

Pr(ρ|θ , λ, I) =
∫

dα Pr(ρ|θ ,α, λ, I) Pr(α|I) ∝ λ(N− 1)/2

exp

{

−
λ ‖ρ‖2

2
[1− C2(θ)]

}

(5)

where

C(θ) =

∑

n ρn ρ(xn; θ , σ )

‖ρ‖ ‖ρ(θ , σ )‖

is the cross-correlation between the experimental and the
theoretical map. The effective likelihood function (Equation 5)
attains its maximum when the cross-correlation coefficient is
one. Whenever we assess the goodness of fit between the model
and the experimental map by means of the cross-correlation
coefficient, we implicitly assume that the error of the EM map
follows a Gaussian distribution.

The parameter λ is the inverse variance of the Gaussian
likelihood (Equation 3) and called the precision of the model
(Bernardo and Smith, 2009). It is also possible to estimate
the precision λ of the fit between the experimental and the
theoretical density map. The parameter λ assesses how well the
experimental and theoretical map agree on average. For large
λ, the experimental map is very reliable and imposes a strong
force on the model to adapt itself such that the calculated map
reproduces the observed map as closely as possible. Assuming
Jeffreys’s prior for the precision, i.e., Pr(λ|I) = 1/λ, the
conditional posterior of the precision is a Gamma distribution
(Habeck et al., 2006):

Pr(λ|θ ,α, ρ, I) ∝ λN/2− 1 exp{−λEmap(θ ,α)} (6)

where the least-squares residual

Emap(θ ,α) =
1

2

∑

n

[ ρn − αρ(xn; θ , σ ) ]
2

is the restraint energy resulting from the Gaussian model of
the experimental EM map. The expected value of the precision
given the experimental map ρ and all unknown parameters is the
inverse mean-squared error:

λ̂(θ ,α) ≈
N

2Emap(θ ,α)
. (7)

Estimator (Equation 7) tells us that the precision of the map
increases when the fit between the observed map and the
calculated map improves. This seems reasonable, but there is a
problem.

Typically, EMmaps are surrounded by bordering layers of low
density voxels (ρn ≈ 0). If we classify all voxels into N1 voxels
that contain density of the biomolecular assembly and N0 voxels
that carry only noise or zero density, we have N = N0 + N1. By
increasingN0 (e.g., by zero padding) the goodness of fit Emap does
not change or changes only very little, such that we can artificially
increase the apparent precision of the density map simply by
increasing N0:

λ̂(θ ,α) ≈
N0 + N1

2Emap(θ ,α)
≥

N1

2Emap(θ ,α)
.

To obtain a realistic estimate of λ, we should only fit those voxels
that carry real density.

In principle, the task of classifying voxels into noise and non-
noise voxels is an inference problem in itself: we would have to
introduce a mask that tells us whether a voxel carries true signal
or not. For the sake of simplicity we do not introduce an adaptive
mask that we estimate along with with the model parameters, but
restrict the fitting to voxels that are likely to carry the true signal.
These voxels are identified in a couple of preparatory steps, which
I will outline in the next section.

If we look at the conditional posterior of the conformational
degrees of freedom θ , we find that:

Pr(θ |ξ , ρ, I) ∝ exp{−E(θ)− λEmap(θ ,α)} . (8)

By taking the negative logarithm of the posterior probability, we
obtain a hybrid energy function (Jack and Levitt, 1978; Brünger
and Nilges, 1993; Habeck et al., 2005a):

Ehybrid(θ) = E(θ)+ λEmap(θ ,α) . (9)

The precision acts as a weighting factor for the EMmap (Habeck
et al., 2006). If λ is too large, the forces from the EM term can
bias the final structure (overfitting). Therefore, it is important to
obtain a realistic estimate of λ.
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2.2.2. Preparation of EM Maps
ISD carries out several preparatory steps before modeling
with EM maps starts: thresholding, cropping, decimation, and
masking. These steps improve the speed of fitting and are
necessary to obtain a meaningful estimate of the precision of the
density map.

Typically the user provides a threshold ρmin above which the
density shows the particle. ISD clips the density at ρmin, i.e., all
values greater than the threshold are set to the threshold. After
clipping, the density is shifted by subtracting the threshold such
that the smallest experimental density is zero:

ρn ←

{

ρn − ρmin ; ρn ≥ ρmin

0 ; ρn < ρmin
(10)

After thresholding all ρn ≥ 0. To reduce the map to those
voxels that carry the real signal, a cropping operation is
applied to reduce the 3D grid to a minimum size. Cropping
removes bordering layers which only contain zero-density voxels
analogous to an auto crop in image processing programs.

To represent the assumption that the structure is entirely
covered by the thresholded density map, ISD introduces a box
prior, which confines the system to lie inside the interior of a
cubic box that coincides with the boundary of the 3D map. The
box is parameterized by its lower left and upper right corner
where the lower left corner is located at the origin of the 3D grid
on which the thresholded EM map is evaluated. The box has a
soft boundary which is implemented as a logistic function with
finite steepness γ:

sγ(x) =
1

1+ e−γx
(11)

where typically γ = 1Å−1. The complete prior over the
conformational degrees of freedom is:

Pr(θ |I) ∝ exp{−E(θ)}
∏

k

3
∏

d= 1

sγ(xkd(θ)− ld) sγ(ud − xkd(θ))

(12)
where ld, ud are the spatial coordinates of the lower left / upper
right corner of the bounding box of the EM map and xkd(θ) are
the spatial coordinates of the k-th atom.

The Gaussian likelihood (Equation 3) is only valid for voxels
that carry signal. Let us introduce a binary mask mn ∈ {0, 1}
which indicates for each voxel, if it carries signal (mn = 1) or
noise (mn = 0). The modified Gaussian likelihood is:

Pr(ρ|θ , ξ , I) =

(

λ

2π

)

∑

n mn/2

exp

{

−
λ

2

∑

n

mn[ ρn − α ρ(xn; θ , σ ) ]
2
}

. (13)

As mentioned above, the mask mn should in principle be also
considered an unknown parameter and therefore be estimated
along with the other unknown quantities. However, this is
currently not implemented in ISD and therefore m is part of the
background information I.

Another parameter that we have to consider is the spacing
of the EM map. The Gaussian likelihood assumes that the
discrepancy between the experimental and calculated map
is independent from voxel to voxel and shows no spatial
correlations. However, this assumption is violated when the size
of the voxels becomes too small. By resampling the experimental
map on a finer grid, we could artificially increase the number of
data points, which would result in an increase of the estimated
weight λ. Therefore, EM maps are typically downsampled in ISD
such that the spacing is roughly 2×σ . A more rigorous treatment
that accounts for spatial correlations between neighboring voxels
is currently under development.

2.2.3. Conformational Degrees of Freedom
ISD supports multiple parameterizations for biomolecular
systems. ISD typically decouples internal degrees of freedom
from rigid external degrees of freedom, although modeling based
on Cartesian coordinates is also supported. In case we want to
model the internal flexibility of the subunits of a biomolecular
assembly, ISD uses dihedral angles to parameterize the atom
positions. The external degrees of freedom are three translational
and three rotational degrees of freedom. To parameterize the
rotation matrices, ISD uses a Lie group representation (Gallego
and Yezzi, 2015). It is also possible to model symmetric
assemblies by using virtual copies of the symmetry mates. ISD
supports cyclic, dihedral and helical symmetry. The parameters
of a helical symmetry can be estimated along with the
conformational degrees of freedom.

To sample the conformational degrees of freedom θ , ISD uses
the gradient of the log posterior probability (i.e., the gradient of
the hybrid energy). Typically it is straightforward to compute the
gradient with respect to the Cartesian coordinates. The Cartesian
gradient is mapped onto the conformational degrees of freedom
by virtue of the chain rule. This requires us to evaluate the
Jacobian of the parameterization. In case of dihedral angles, there
is an efficient recursive algorithm that avoids building up the full
Jacobian matrix by traversing the tree of covalent bonds.

2.3. Markov Chain Monte Carlo for
Biomolecular Modeling
The posterior probability Pr(θ , ξ |D, I) encodes everything that
can be said about the conformational degrees of freedom θ

and the nuisance parameters ξ in the light of the experimental
data D and our modeling assumptions I. Because Pr(θ , ξ |D, I)
is a high-dimensional probability distribution that is not suited
for analytical computations, we explore Pr(θ , ξ |D, I) by drawing
random samples from it. Sampling from Pr(θ , ξ |D, I) is based
on Markov chain Monte Carlo (MCMC) (Liu, 2001). An
MCMC algorithm simulates a Markov chain over (θ , ξ ) space
whose stationary distribution is the posterior Pr(θ , ξ |D, I).
After convergence of the Markov chain, the generated θ , ξ are
valid samples from Pr(θ , ξ |D, I). The samples can be used to
compute expected values, variances and other statistics that
characterize the posterior distribution. If we were to construct
a multi-dimensional histogram from the θ , ξ samples, it would
approximate the posterior distribution. The longer we run the
Markov chain, the closer we get to the posterior distribution.
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2.3.1. Gibbs Sampling
Gibbs sampling (Geman andGeman, 1984) is an iterativeMCMC
algorithm that decomposes sampling from Pr(θ , ξ |D, I) into two
successive steps, which are repeated:

θ (t+ 1) ∼ Pr(θ | ξ (t),D, I)

ξ (t+ 1) ∼ Pr(ξ | θ (t+ 1),D, I)
(14)

where t is an iteration index (pseudo time) and the superindex
(t) marks samples generated in the t-th iteration; the notation ∼
means “sampled from.” It can be shown that the Gibbs sampler
(Equation 14) generates valid samples from the joint distribution
Pr(θ , ξ |D, I).

To implement a Gibbs sampler, we need to compute
the conditional posterior distributions Pr(θ | ξ ,D, I) and
Pr(ξ | θ ,D, I). The conditional posterior over the conformational
degrees of freedom involves the hybrid energy (Equation 9):

Pr(θ | ξ ,D, I) ∝ exp
{

−λEmap(θ ,α)− E(θ)
}

. (15)

Sampling of the nuisance parameters is most easily done by
applying a Gibbs sampling strategy to Pr(ξ | θ ,D, I) itself. We
break down the second step in scheme (14) into the generation
of α and λ samples according to:

α(t+ 1) ∼ Pr(α | λ(t), θ (t+ 1),D, I)

λ(t+ 1) ∼ Pr(λ |α(t+ 1), θ (t+ 1),D, I)
(16)

The conditional posteriors for the individual nuisance
parameters, e.g., Pr(λ |α, θ ,D, I), have been discussed in the
previous section. Often these distributions are of a standard form
and can be sampled directly using random number generators.
For example, the conditional posterior of the precision λ is
a Gamma distribution (Equation 6). Efficient algorithms for
generating variates from a Gamma distribution exist (Devroye,
1986).

2.3.2. Hamiltonian Monte Carlo
Sampling the conformational degrees of freedom θ from the
conditional posterior (Equation 9) is the most challenging step
in an ISD calculation. Typically, the conformational degrees of
freedom are highly coupled, and Pr(θ |ξ ,D, I) exhibits multiple
peaks. A powerful variant ofMetropolisMonte Carlo (Metropolis
et al., 1957) is the Hybrid Monte Carlo method, also known
as Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal,
2010). The improvement over the simple Metropolis sampler is
achieved by using a more efficient proposal step. In the standard
version of Metroplis Monte Carlo, new candidate structures
are proposed by randomly perturbing a conformational degree
of freedom. The perturbation is either accepted or rejected
depending on whether it produced an acceptable change in
the hybrid energy or not. This kind of proposal results in a
random walk in conformational space, which explores the space
very inefficiently, because typically we can only apply small
perturbations to the structure without increasing the hybrid
energy by an unacceptable amount.

HMC proposes the candidate structure by running a short
molecular dynamics trajectory where the hybrid energy plays
the role of a force field. This has the advantage that the moves
in structure space are adapted to the shape of the posterior
distribution and that the conformational degrees of freedom
change conjointly rather than one by one. HMC is several orders
of magnitudemore efficient than randomwalkMetropolisMonte
Carlo, but comes at an additional computational cost. To run
the proposal trajectory, one needs to calculate the gradient of
the hybrid energy with respect to the conformational degrees of
freedom. Since ISD uses non-Cartesian parameterizations, the
gradient can be quite involved. Thanks to the chain rule we can
break the computation of the gradient into two steps: First, the
Cartesian gradient is calculated. In a second step, the Cartesian
gradient is projected into the space of the conformational
degrees of freedom. ISD implements this projection for dihedral
angles and the rotational degrees of freedom of a rigid-body
transformation.

2.3.3. Replica-Exchange Simulation
The posterior distribution arising in an application of ISD,
is quite complex and typically shows multiple modes. As we
will see in Section 3.3, the posterior distribution encountered
in integrative modeling with cryo-EM data is often sharply
peaked and exhibits isolated peaks. It is highly challenging to
draw conformational samples from such a posterior distribution.
ISD uses replica-exchange simulations (also known as parallel
tempering) (Swendsen and Wang, 1986; Geyer, 1991) to address
the sampling problem.

There are two factors that contribute to the posterior, the prior
and the likelihood, and both are difficult to simulate in their
own right. Therefore, ISD controls the complexity of each factor
independently by introducing two “temperatures” (Habeck et al.,
2005b). The first parameter, the inverse temperature β ∈ [0, 1],
scales the likelihood:

[

Pr(D|θ , ξ , I)
]β
;

for β = 1 we obviously recover the original likelihood, for β = 0
we completely switch off the data.

The second parameter controls the shape of the
conformational prior. Because the non-bonded interactions
E(θ) span many orders of magnitude, it is highly inefficient
to work with the standard Boltzmann ensemble which scales
down the non-bonded energy when the temperature is increased.
Instead of the Boltzmann ensemble, ISD uses the Tsallis ensemble
to smooth out non-bonded interaction (Habeck et al., 2005b)
and simulates:

[

1+ (q− 1)(E(θ)− Emin)

]−q/(q− 1)

where q ≥ 1 is the so-called Tsallis q and Emin has to be chosen
such that E(θ) > Emin for all structures. For q = 1, we recover
the standard Boltzmann prior (Equation 1).

The choice of the tempering schedule (i.e., the sequence of β

and q) is difficult and crucial. We have to trade-off efficiency vs.
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ergodicity of sampling. With increasing number of temperatures,
the overlap between the replicas increases which results in an
elevated swapping rate. But with increasing number of replicas
the time for round trips increases quadratically, because states
diffuse across different temperatures (i.e., there is no directed
exchange of states that would aim for rapidmixing of states across
different temperatures) (Earl and Deem, 2005). Therefore, we
would rather choose a minimal number of replicas such that the
smallest swapping rate is maintained.

3. RESULTS

In this section, I will illustrate Bayesian integrative modeling with
hybrid data focusing on EMmaps.

3.1. Flexible Fitting with Hamiltonian Monte
Carlo
ISD can fit known structures and structural models into EM
maps. In flexible fitting, we are trying to change the internal
structure of a biomolecule so as to better fit an experimental
EM map. A couple of software packages for flexible fitting has
been published. Normal mode and elastic network methods
(Delarue and Dumas, 2004; Tama et al., 2004; Hinsen et al., 2005;
Schröder et al., 2007; Jolley et al., 2008; Tan et al., 2008) boost
transitions along the principal directions of structural change.
Molecular dynamics (MD) based methods (Orzechowski and
Tama, 2008; Trabuco et al., 2008) combine a density fitting
score with a full-fledged force field. Real-space refinement in
Cartesian and internal coordinates, originally developed for X-
ray crystallographic data, has been adapted to cryo-EM maps
(Fabiola and Chapman, 2005). Rigid-body modeling with Flex-
EM (Topf et al., 2008) freezes secondary structure elements and
keeps just the linker regions flexible. Fragment-based structure
prediction methods such as Rosetta has been combined with
density map refinement (DiMaio et al., 2009).

ISD uses dihedral angles to parameterize the structures of
the subunits of a macromolecular complex. In addition to
the dihedral angles, each subunit has six external degrees of
freedom that describe a rigid transformation of the subunit
(three translational and three rotational degrees of freedom). The
complete list of dihedral angles as well as the translational and
rotational degrees of freedom from all subunits makes up the
conformational degrees of freedom θ .

To study flexible fitting with ISD, let us first look at a specific
example. Adenylate kinase (AK) is a widely used test system to
predict and simulate conformational changes in proteins (see e.g.,
Orzechowski and Tama, 2008; Beckstein et al., 2009; Whitford
et al., 2009). AK adopts two conformational states: an open
state in which no ligands are bound and a closed state. The
overall difference between both states is an RMSD of ∼ 7 Å.
The conformational change can be understood as a rigid-body
movement of three domains relative to each other: CORE, LID,
and NMP-bind. During the conformational change, these three
domains maintain their internal structure (Müller et al., 1996;
Whitford et al., 2009).

I ran local posterior sampling with HMC starting from the
open state (PDB code 4ake) and fitted it into a simulated EM

map of the closed state (PDB code 1ake) at 10 Å resolution.
Figure 1A shows the evolution of the RMSD to the initial and
target structures during flexible fitting. The simulation starts at
an RMSD of about 7 Å and rapidly improves it by optimizing the
agreement with the experimental and theoretical maps. This is
reflected by the evolution of the cross-correlation coefficient (see
Figure 1B), which increases as the RMSD to the target structure
decreases. After less than 200 steps of HMC sampling the fitted
structure has an RMSD < 1 Å to the target structure and a cross-
correlation of almost 100%. During flexible fitting, the structure
of the three domains remains intact. This is reflected by the fact
that the RMSD restricted to those Cα atoms that belong to the
same domain changes only little compared to the change in the
overall RMSD (see Figure 1C). Thus, theHMC sampler preserves
the integrity of the input structure and introduces larger scale
changes only in a few hinge regions.

3.2. Flexible Fitting Benchmark
To systematically validate local flexible fitting of EM maps with
ISD, I applied HMC sampling of the posterior distribution to a
benchmark proposed by Topf et al. (2008) to test their Flex-EM
method. The Flex-EM benchmark comprises various medium
sized proteins and simulated EM maps at different resolutions
ranging from 4 to 14 Å. For each flexible fitting task of the
single-domain subset, I launched an HMC sampler starting
from the initial structure as provided by the benchmark. The
initial structure was obtained by homology modeling based on
a template structure that shows an alternative conformational
state. The task is to deform the homology model such that it
better agrees with a simulated EM map showing a different
conformational state.

Figure 2 shows the results of a flexible fitting benchmark
from Topf et al. (2008). In all cases, ISD improves the fit
of the initial structure quite significantly and achieves cross-
correlation coefficients above 95%. Moreover, the RMSDs of the
final structures fitted with ISD are systematically better than the
fits obtained with Flex-EM.

Although flexible fitting with HMC performs well in
practice, there are still conceptual problems with this approach.
Sampling with HMC does not explore the full posterior
distribution, but stays in the vicinity of the initial structure. A
truly Bayesian approach, however, aims to explore the entire
posterior distribution by using, for example, a full-blown replica
simulation. However, global sampling of the posterior will result
in many alternative fits of the EM map that will show a
large RMSD to the target structure, because the force fields
implemented in ISD cannot distinguish between the target
structure and other globular structures that fit the density
map. A remedy is to not only use the known structure that
is fitted against the EM map as the initial structure, but also
to develop a probabilistic model that allows for deformations
of the known structure. Such a model is currently under
development.

3.3. Global Fitting of Symmetric
Assemblies
Global sampling of the posterior distribution is currently only
possible in ISD, if the internal structure of the subunits is kept
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FIGURE 1 | Flexible fitting of adenylate kinase into a 10 Å map. (A) Evolution of the RMSD to the initial structure (4ake) shown in dark blue and the target

structure (1ake) shown in light blue. (B) Evolution of the cross-correlation coefficient during flexible fitting. (C) RMSD reduced to Cα atoms that are part of the same

rigid domain.

FIGURE 2 | Flexible fitting benchmark. Shown are the RMSD values for the final results of flexible fitting with ISD (light blue) and Flex-EM (dark blue) in comparison

to the RMSD of the initial structure to the target structure (green). (A) Flexible fitting results for 1uwo, 1g5y, 1ccz, 1jxm. (B) Flexible fitting results for 1ake, 1cll, 1c1x.

fixed. The only degrees of freedom are the six external degrees
of freedom parameterizing a global rotation and translation of
each subunit. The sampling problem arising in global fitting of
EM maps is quite severe. To see this, let us first study sampling
from the prior (Equation 12), which is the Boltzmann ensemble
confined by a soft box containing the experimental density
map. Sampling from this prior is a sort of toy version of the
density fitting problem. Instead of fitting the assembly against the
density map, our aim is to generate non-clashing configurations
that lie inside a box which contains the thresholded map.
This is an instance of a 3D packing problem, which is
NP-hard.

Let us look at a specific example: The symmetric chaperonin
GroEL has been studied extensively by cryo-EM, X-ray
crystallography and NMR. A 3D reconstruction of GroEL at
a resolution of 4.1 Å is available (EMD-6422). The original
map spans 2403 voxels. The EMDB entry suggests a user-
defined threshold of ρmin = 3.5 for visualizing the map. After
thresholding (Equation 10) and cropping, the grid has 135 ×
133 × 133 voxels, i.e., only ∼ 17% of the original volume
carries information that is useful for structural modeling. The
3D cropping operation results in a box that spans a volume
of 144.5 × 142.3 × 142.3 Å3. This example illustrates that
thresholding and cropping can achieve a drastic reduction in the
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FIGURE 3 | Major structural clusters of the GroEL 14-mer generated from the prior distribution confined to a box. Subunits are color coded. The lowest

energy clusters are shown on top (structures 1–3). The second lowest energy structures are clusters 4 and 5. Structure 6 is a rare high energy configuration that is

also generated by replica-exchange Monte Carlo.

number of grid points that have to be evaluated during density
fitting.

GroEL exhibits a seven-fold tetrahedral symmetry (D7).
Therefore, our task is to sample configurations of the 14-mer
that fit inside the box and minimize the overlap between atoms
from different subunits. I used a Tsallis replica simulation to
sample structures of the GroEL 14-mer. There are only six
conformational degrees of freedom: three rotational and three
translational degrees of freedom, which determine the position
and orientation of a single GroEL subunit. The positions and
orientations of the other 13 subunits are generated by the action
of the D7 symmetry operator.

Although this is a low-dimensional sampling problem, it turns
out to be surprisingly hard. I needed 59 replicas in the Tsallis
ensemble to achieve an average swap rate of 38%. If the non-
bonded interactions are fully switched on, there are only few
arrangements that fit into the box without producing significant
clashes between atoms from different subunits. As a consequence,
the box prior exhibits a few isolated peaks. The shape of the prior
distribution is reminiscent of a golf-course energy landscape and
quite different from the funnel-shaped energy landscape imposed
by distance restraints.

Clustering of the sampled rigid-body degrees of freedom
yields six groups of symmetric assemblies that fit into the box

(see Figure 3 and Table 1). Each group is defined very precisely
with an ensemble RMSD ranging between 0.13 and 0.23 Å over
the entire 14-mer. The tightness of the clusters shows that there
is only a discrete set of arrangements that fits into the box.
The first three clusters achieve the lowest non-bonded energies
E(θ). The energy of the next two clusters is elevated by 70 units.
Replica-exchange Monte Carlo occasionally also samples a high-
energy structure (cluster 6). The first five clusters show the same
arrangement of the seven-membered ring formed by chains A–
G. The RMSD of these chains to the arrangement in the crystal
structure is below 0.8 Å; only the last cluster shows a higher
RMSD of 4.7 Å. The major difference between the clusters is in
how the rings are arranged relative to each other. In clusters 1,
2, 3, and 6, the two rings are oriented in the same fashion as in
the crystal structure (with the termini facing each other), whereas
clusters 4 and 5 show an inverted orientation.

Posteriors based on distance data such as those arising
in NMR applications exhibit a continuum of high-probability
structures. The Markov chain is guided to the most likely
structures by a funnel-shaped probability landscape. The
distributions arising in EM fitting problems show a very
different landscape with multiple isolated peaks that carry similar
probability mass and therefore all contribute significantly to the
posterior. Rigid-body modeling with EM maps can be viewed as

Frontiers in Molecular Biosciences | www.frontiersin.org 9 March 2017 | Volume 4 | Article 15

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Habeck Cryo-EM Modeling with ISD

TABLE 1 | Summary of a clustering analysis of the prior ensemble of
GroEL.

Cluster av.
energy

Population
[%]

Ensemble
RMSD

RMSD
(7-mer) [Å]

RMSD
(14-mer) [Å]

1 228.8 22.8 0.2 0.8 7.8

2 234.0 23.1 0.2 0.7 9.0

3 234.1 23.1 0.1 0.7 13.4

4 301.7 19.3 0.2 0.8 71.5

5 301.7 11.5 0.2 0.8 80.2

6 995.5 0.2 0.1 4.7 8.6

Six major clusters have been identified. Listed are their average non-bonded energy, the

RMSD to the average structure within each cluster (precision) and the RMSD (accuracy) to

the crystal structure (PDB code 1oel) for a single ring (chains A–G) and the entire 14-mer

(chains A–N).

a 3D packing problem. In case of GroEL, the packing constraint
from the prior box and the D7 symmetry already determine the
overall structure of the assembly to a large degree without any use
of the density map. But the tests also show that even sampling
from the prior alone can be quite challenging.

The minimum energy assembly sampled from the prior fits
the density map only poorly with a cross-correlation of ∼ 10%.
Refining the assembly in the presence of the map improves the
cross-correlation to 55% and decreases the RMSD of the entire
14-mer to 1.1 Å.

3.4. Multi-Body Modeling of GroEL/ES
In general rigid-body modeling applications, we have to fit
multiple rigid bodies into an EM map. I will use the GroEL/ES
complex to illustrate multi-body fitting with ISD. GroEL/ES is
formed by GroEL and the cochaperonin GroES. GroES interacts
with one of the seven-membered rings formed by GroEL after
a conformational change has been induced in the subunits.
Therefore, the structures of the two GroEL 7-mers are no longer
identical, and we have to fit three rigid bodies: one subunit of
free GroEL (PDB code 1aon, chain A), one subunit of GroEL in
complex with GroES (1aon, chain H), and one subunit of GroES
(1aon, chain O). Each of the three subunits is duplicated by the
action of a 7-fold cyclic symmetry. The symmetry mates are not
represented explicitly, but generated from each of the three rigid
bodies. Forces that act on the symmetry mates are backprojected
onto the subunit. Therefore, we have a total of 18 conformational
degrees of freedom.

I used ISD to fit GroEL/ES into a 23.5 Å map (Ranson et al.,
2001) (EMD-1046). To shortcut the convergence of posterior
sampling, I first ran a replica simulation with a Cα representation
of the subunits and switched off the non-bonded interactions.
With this strategy, the sampler rapidly generates models that
achieve a cross-correlation of 96% (see Figure 4D). Inspection of
the structures shows that there are two clusters which differ only
in the structure of the GroES subunit. The structure of the two
GroEL rings is already very close to the crystal structure (1aon)
with an RMSD of 3.5 ± 0.5 Å over the 14-mer formed by the
GroEL subunits (Figure 4A). The GroES 7-mer arranges in two
versions of the ring: One is the correct structure with an RMSD
of 2.1 ± 0.6 Å to the crystal structure. The second structure
is incorrect with an RMSD of 20.0 ± 0.3 Å. Both structures

are almost equally populated. The correct structure is adopted
by 51.3% of the structures; the population of the incorrect
assembly is 47.7% (see Figure 4B). There is a tiny fraction with a
population of∼1% that shows a third arrangement of the GroES
subunit (RMSD 9.17± 0.51 Å). Figure 4C shows the distribution
of the RMSD over the entire assembly.

In a refinement step, I used a full-atom representation of
the subunits and switched on the non-bonded energy terms.
The RMSD to the crystal structure drops to 1.4 Å without
compromising the fit to the EM map: the cross-correlation
coefficient of the full-atom structure is still 96%.

3.5. Estimation of the Precision of an EM
Map
As outlined in Section 2.2.1, it is challenging to obtain a good
estimate of the precision of an EM map, because an EM map
typically contains many zero-density voxels in addition to the
non-noise voxels, but only voxels carrying a real signal should
contribute to the precision. To identify which voxels carry true
signal, we would have to first solve the fitting problem. Therefore,
both problems, the estimation of a well-fitting structure and
the construction of a good mask, are highly related. Moreover,
the errors (i.e., the discrepancy between the experimental and
calculated maps) are spatially correlated, but the Gaussian
model (3) treats them as completely independent observations,
which also results in an artificial increase in the precision.
The reason for the latter effect is the following: If errors are
correlated, the effective number of data points is smaller than
the number of voxels (Sivia, 2004). According to Equation (7)
the precision of the map is proportional to the number of
voxels for the simple Gaussian model, the precision will therefore
be overestimated, if the errors between neighboring voxels are
correlated.

Let us illustrate the various factors that influence the precision
for a concrete example. Figure 5 shows the distribution of the
discrepancy between the experimental and the calculated density
map for the GroEL/ES map analyzed in the previous section.
The Gaussian likelihood assumes that this distribution has a bell-
shaped curve whose width is determined by the precision λ. The
distribution of the discrepancy ǫn = ρn− ρ(xn; θ , σ ) is shown in
(Figures 5A–D) for various stages of preprocessing. The original
map contains many low-density voxels that lead to a very sharp,
dominating peak at zero in the distribution of ǫn (Figure 5A).
Cropping (Figure 5B) and subsequent decimation (Figure 5C)
chops away many of the zero-density voxels and decreases
the detrimental effect of the low-density voxels. However, the
distribution of ǫn is only captured well by a Gaussian, if we
mask out low-density voxels (see Figure 5D). The effect of the
preprocessing steps on the estimated precision is shown in
Figure 5E. Each of the preparation steps lowers the estimated
precision by orders of magnitude.

4. CONCLUSION

This article discusses how ISD incorporates EM maps into a
structure calculation and demonstrates some aspects of Bayesian
integrative modeling with EM data. The Bayesian framework is
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FIGURE 4 | Multi-body modeling of GroEL/ES. Shown is the RMSD between structural models obtained by posterior sampling with ISD and the crystal structure

(PDB code 1aon). (A) RMSD for GroEL subunits for both 7-membered rings (chains A–G and chains H–N) and for the entire 14-mer (chains A–N). (B) RMSD for

GroES (chains O–U) (C) RMSD for the entire 21-mer. (D) Correlation between the overall RMSD (21-mer) and the cross-correlation coefficient.

FIGURE 5 | Estimation of the precision λ of the GroEL/ES map. (A–D) Show the distribution of the “error” (or discrepancy) between the experimental and

calculated maps ρn − ρ(xn; θ , σ ). Error distribution for the full map (A), full map after cropping (B), the downsampled and cropped map (C), the downsampled,

cropped and masked map (D). (E) Estimated precision for the different input maps used in multi-body fitting.

highly suited to address issues in structural modeling with hybrid
data such as how to weighmultiple datasets relative to each other.
The major bottleneck of an inferential structure determination
is conformational sampling. The posterior distribution arising in
EM fitting poses a challenging sampling problem, which can be
overcome with replica-exchange Monte Carlo.

The article does not cover crosslinking/mass spectrometry
and solid-state NMR, which are complementary methods for
characterizing the structure of large assemblies. ISD has also been
used to model biomolecular assemblies from solid-state NMR
data. For example, we have used ISD to compute the structure
of the membrane domain of the trimeric autotransporter adhesin
YadA (Shahid et al., 2012). We modeled a fully flexible subunit
in the presence of a cyclic trimer symmetry. Although the data
are highly ambiguous due to the imprecision of solid-state NMR
restraints and the trimer symmetry, ISD was able to determine
the correct structure of the YadA membrane anchor domain.
Another example is our recent structure of a type 1 pilus FimA
from E. coli (Habenstein et al., 2015). Here solid-state NMR and
scanning electron microscopy data were combined with solution
NMR data to estimate the internal structure of the subunit as
well as the parameters of the helical symmetry of the FimA
pilus. Also modeling with crosslinking data is possible with
ISD, e.g., Carstens et al. (2016) discuss chromosome structure
modeling. However, the use of crosslinking data for modeling
macromolecular complexes still needs to be benchmarked
thoroughly. A common scenario is to combine cryo-EM with

crosslinking data, which also needs to be tested systematically
with ISD. A Bayesian approach to modeling macromolecular
assemblies with crosslinking data has been proposed recently by
Ferber et al. (2016).

Future work will focus on various aspects of modeling with
hybrid data. One goal is to develop a better model for EM maps
that incorporates the various preprocessing steps discussed in
Section 2.2.2. The model will incorporate a mask that will be
estimated along with the other unknown parameters. Moreover,
we will develop a likelihood function that accounts for spatial
correlations between errors in the density map. Another goal
is to support modeling with coarse-grained representations of
biomolecular systems (Tozzini, 2005; Saunders and Voth, 2013).
Especially, for very large systems it will be critical to work with
a multiscale representation to enable exhaustive conformational
sampling. We are already using highly coarse-grained models for
modeling the 3D structure of chromosomes and genomes from
chromosome conformation capture data (Carstens et al., 2016).
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