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Abstract 

The human cerebral cortex is connected by intricate inter-areal wiring at the macroscale. The 

cortical hierarchy from primary sensorimotor to higher-order association areas is a unifying 

organizational principle across various neurobiological properties; however, previous studies have 

not clarified whether the connections between cortical regions exhibit a similar hierarchical pattern. 

Here, we identify a connectional hierarchy indexed by inter-individual variability of functional 

connectivity edges, which continuously progresses along a hierarchical gradient from within-

network connections to between-network edges connecting sensorimotor and association networks. 

We found that this connectional hierarchy of variability aligns with both hemodynamic and 

electromagnetic connectivity strength and is constrained by structural connectivity strength. 

Moreover, the patterning of connectional hierarchy is related to inter-regional similarity in 

transcriptional and neurotransmitter receptor profiles. Using the Neurosynth cognitive atlas and 

cortical vulnerability maps in 13 brain disorders, we found that the connectional hierarchy of 

variability is associated with similarity networks of cognitive relevance and that of disorder 

vulnerability. Finally, we found that the prominence of this hierarchical gradient of connectivity 

variability declines during youth. Together, our results reveal a novel hierarchal organizational 

principle at the connectional level that links multimodal and multiscale human connectomes to 

individual variability in functional connectivity. 
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Introduction 

Functional brain connectivity exhibits organizational differences between individuals that are 

associated with individual differences in cognition and behavior1-3. Such inter-individual 

variability in regional functional connectivity is heterogeneously distributed across the cerebral 

cortex, exhibiting the lowest variability in primary sensorimotor cortices and maximum variability 

in higher-order association cortices2,4,5. This organizational pattern aligns with a macroscale 

cortical hierarchy arranged from primary sensorimotor to higher-order association cortices, with 

individual variability systematically increasing in a spatially continuous manner along this 

hierarchy2,6. However, existing studies were limited to the examination of hierarchical 

organization in the variability of regional functional connectivity, defined as a summarization of 

connection strength from one region to all other regions, and the organizing principle behind the 

variability of edge-level functional connectivity across the connectome remains unclear.  

The human connectome is comprised of a complex network of inter-areal connections, which 

provide support to the dynamical communication between brain regions; this inter-regional 

communication can be represented as edge-level functional connections7,8. Variability in edge-

level functional connections is correlated with cognition and behavior1,9, and abnormalities in 

edge-level functional connectivity are associated with a wide range of psychiatric and neurological 

disorders10,11. Moreover, recent studies have demonstrated that edge-level functional connectivity 

partially explains the propagation of neurostimulation-induced signals across the brain; 

understanding variability in this connectivity could thus help to identify personalized stimulation 

targets12,13. Accordingly, understanding the spatial patterning of, and organizing principles behind, 

individual variability of edge-level functional connections has cognitive and clinical relevance. 
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Previous studies have identified the presence of individual variability in edge-level functional 

connectivity14,15. However, these studies did not examine the organizing principles for edge-level 

variability. Moreover, the underlying structural and molecular basis of edge-level functional 

variability as well as its implications in cognition, brain disorders and development have not been 

systematically investigated. Recent studies examining organizing principles governing other 

cortical features have demonstrated that many properties, including anatomical, functional, 

evolutionary, metabolic, molecular, and cognitive properties, exhibit concerted spatial variation 

along a unified large-scale cortical hierarchy3,4,6,16-33, which aligned with the cortical distribution 

of individual variability. Here, we hypothesized a convergent hierarchical organization at the 

connectional level encompassing both the connectome of edge-level individual variability and a 

variety of multi-modal and multi-scale neurobiological connectomes in humans. 

In this study, we identified the “connectional hierarchy” of the human connectome by 

analyzing inter-individual variability of functional connectivity at the edge level. We found that 

connectional hierarchy shows a continuous gradient from within-network connections along an 

axis towards between-network edges connecting sensorimotor and association networks. We 

observed that this connectional hierarchy aligns with both the hemodynamic functional network 

and multiple band-specific electromagnetic networks. Moreover, the connectional hierarchy of 

individual variability was constrained by the structural network, correlated gene expression 

network, and the network of neurotransmitter receptor expression. We also found that connectional 

hierarchy is associated with the network of cognitive relevance and that of disorder vulnerability. 

Finally, we demonstrated that connectional hierarchy evolves in youth towards more uniform 

individual variability across the connectome edges. Overall, we identified a novel connectional 
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hierarchy of individual functional variability, which is found to be a convergent organizing 

principle across multi-modal and multi-scale human connectomes.  

 

Results 

We harnessed two independent datasets, namely, the Human Connectome Project (HCP)-

development (HCP-D, n = 415, 179 males, aged 8-21 years)34 and unrelated HCP-young adults 

(HCP-YA, n = 245, 114 males, aged 22-35 years)35 datasets, to estimate inter-subject variability 

of functional connectivity. To this end, we included 45- and 58-min blood oxygen level-dependent 

(BOLD) functional MRI data from the HCP-D and HCP-YA datasets, respectively. For each 

participant, we calculated the functional connectivity between every pair of cortical regions 

defined by an a priori Schaefer cortical parcellation atlas with 400 regions36. Functional 

connectivity was determined by the Pearson correlation coefficients between each pair of regional 

time series, resulting in a 400×400 symmetrical functional connectivity matrix for each participant. 

The matrix included 79,800 unique elements, and we denote each element as an “edge” between 

two cortical regions. We used a linear mixed-effects model to estimate both the inter-individual 

variability and intra-individual variability of each functional connectivity edge across all 

participants39. We scaled the inter-individual variability matrix by dividing by intra-individual 

variability to control for within-subject variation. This scaling also controls for the effect of 

functional connectivity strength over inter-individual variability as connectivity strength has a 

similar impact as the intra-individual variability which was divided by. Finally, a 400×400 

symmetrical inter-individual variability matrix was generated, with each element representing the 

individual variation in the connectivity strength of this edge across all participants. We grouped 

the 400 cortical regions into networks according to the Yeo atlas37, which consists of visual, 
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somatomotor, dorsal attention, ventral attention, frontoparietal, default mode, and limbic networks. 

The limbic network was excluded from subsequent analysis due to substantial signal loss (i.e., low 

signal to noise), especially in the orbitofrontal and ventral temporal cortex3,19,38. As a result, 374 

cortical regions and 69,751 unique edges were finally analyzed in this study. 

 

Individual variability gradually decreases along a connectional hierarchy from within-

network to between-network edges 

We generated individual variability matrices of functional connectivity for both the HCP-D 

(Fig. 1a) and HCP-YA (Fig. 1b) datasets. Visual inspection suggested that individual variability 

was heterogeneously distributed across all connectivity edges in both datasets, with the highest 

variability observed in within-network connections but not between-network connections. 

Specifically, high connectivity variability was prevalent in within-networks connections for the 

association networks, including default mode, frontoparietal, ventral, and dorsal attention 

networks, as well as within visual and somatomotor networks (though to a lesser extent). In 

contrast, we observed lower individual variability at between-network edges bridging association 

and sensorimotor regions. We found a significant correlation (Spearman’s rho = 0.873, Pperm < 

0.001, CI = [0.871, 0.875], two-sided) between individual variability of the HCP-YA and HCP-D 

datasets across all edges (Fig. 1c), indicating a highly stable distribution pattern of edge-wise 

individual variability. Spearman’s rank correlation is applied to evaluate the similarity since the 

individual variability is not normally distributed.    

Next, we summarized the network-level average individual variability, generating 6×6 

matrices of within and between networks variabilities in the HCP-D (Fig. 1d) and HCP-YA (Fig. 

1e) datasets. We observed that individual variability declined along a hierarchical axis from 

within-network connections to between-network connections. Taking the default mode network as 
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an example, individual variability declined along an axis progressing from edges within the default 

mode network to edges between default mode and other association networks, and continued to 

decrease at edges between the default mode and sensorimotor networks. A similar hierarchical 

pattern was observed for other higher-order association networks, including frontoparietal, ventral 

attention and dorsal attention networks. We refer to these hierarchical axes of individual variability 

as a “connectional hierarchy”. These hierarchical axes of variability were highly consistent 

between the two independent datasets at the network level (Spearman’s rho = 0.99, P = 4.49×10-

6, CI = [0.96, 0.99], two-sided; Fig. 1f).  

To explicitly visualize the connectional hierarchy, we ranked all the within-network and 

between-network variabilities for each network separately in both the HCP-D (Fig. 1g) and HCP-

YA (Fig. 1h) datasets. We found that the ranking for each network was almost identical between 

HCP-D and HCP-YA, suggesting the robustness and reproducibility of the connectional hierarchy. 

The ranking indicated that for each network, individual variability declined from within-network 

connections to between-network edges connecting sensorimotor and association networks along a 

continuous gradient. The ranking also confirmed our observation that the variability declined along 

the within-network connections to connections between different association networks, and 

continuous to decline in sensorimotor-association network connections for each association 

network (Fig.1g and Fig.1h).  

Having found a connectional hierarchical axis repeatedly for each association network, we 

examined the hierarchy of edge-level variability at a whole-brain connectome level. To do this, we 

ordered the individual variability of all the 21 network-level connections comprising both within-

network and between-network connections rather than ordering each network separately (Fig. S1). 

The connections within association networks sit at the peak of this hierarchy, while the between-
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network edges connecting sensorimotor and other networks were at the bottom end of the hierarchy. 

The variabilities of the six within-network connections and that of the six connections between 

association networks were higher than the variabilities of the nine connections between 

sensorimotor and other networks for both datasets.  

Next, we assigned all connections to three groups, including within association networks (A-

A), within sensorimotor networks (S-S), and between association and sensorimotor networks (S-

A). A permutation test with 10,000 iterations was performed to test group differences. We found 

that the individual variability of A-A connections was significantly higher than that of S-A 

connections as well as that of S-S connections (Pperm < 0.0001) in both the HCP-D (Fig. 1i) and 

HCP-YA (Fig. 1j) datasets. Furthermore, S-S connections also displayed significantly higher 

variability than S-A connections (Pperm < 0.0001) in both datasets.  

Overall, we found that for each of the six large-scale functional networks, the individual 

variability of within-network connections is generally higher than that of between-network 

connections. Moreover, for each higher-order association network, we observed a connectional 

hierarchical gradient from within-network connections to between-network connections, along 

which the individual variability continuously declines. Finally, we observed a boundary between 

connections within association networks and connections between association and sensorimotor 

networks.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531800doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 1. Individual variability in edge-wise functional connectivity reveals the connectional 
hierarchy in the human brain. a, Inter-individual variability in functional connectivity across all 
participants in the HCP-D dataset. Variability was heterogeneously distributed across the 
connectivity edges. b, Inter-individual variability of functional connectivity in the HCP-YA 
dataset. c, Spearman’s rank correlation coefficient showed that the individual variability was 
highly correlated (Spearman’s rho = 0.873, Pperm < 0.001, CI = [0.871, 0.875], two-sided) between 
the HCP-D and HCP-YA datasets across all edges. d, e, Network-level average individual 
variability indicates that for each association network, the connectivity variability continuously 
declines along a hierarchical axis from within-network edges to between-network edges for both 
the HCP-D (d) and HCP-YA (e) datasets. f, Network-level average individual variability shows a 
high correlation between the HCP-D and HCP-YA datasets (Spearman’s rho = 0.99, P = 4.49×10-
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6, CI = [0.96, 0.99], two-sided). g, h, Bar plots show the connectional hierarchy in the HCP-D (g) 
and HCP-YA (h) datasets. For each network, individual variability declines from within-network 
to between-network edges along a continuous gradient. i, j, Edge-wise individual variability within 
association networks (A-A) was significantly higher than that within sensorimotor networks (S-S) 
and that between sensorimotor and association networks (S-A), in both HCP-D (i) and HCP-YA 
(j) datasets. Additionally, S-S connections also exhibit higher variability than that of S-A in both 
datasets. A permutation test with 10,000 iterations was applied. *** indicates Pperm < 0.0001. FC, 
functional connectivity; VS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; 
FP, frontoparietal; DM, default mode. 
 

Connectional hierarchy aligns with functional connectome characterized by synchronization 

of hemodynamic and band-specific electromagnetic activities 

The functional connectome, as an intrinsic architecture of the brain, is characterized by 

specific spatial patterns and organizational principles. As the connectional hierarchy of individual 

variability defined in this study was derived from functional connectivity, we next examined to 

what degree connectional hierarchy aligns with functional connectivity per se. Thus, we averaged 

the BOLD functional connectivity matrices across participants and sessions within each dataset 

(Fig. 2a) and evaluated the association between functional connectivity and individual variability 

with Spearman’s rank correlation. We found that the connectional hierarchy of individual 

variability was significantly correlated with BOLD functional connectivity in both the HCP-D 

(Spearman’s rho = 0.47, Pperm < 0.001, CI = [0.47, 0.48], two-sided; Fig. 2b) and HCP-YA 

(Spearman’s rho = 0.45, Pperm < 0.001, CI = [0.44, 0.46], two-sided; Fig. 2c). This result suggested 

that the connectional hierarchy in individual variability partially aligned with the pattern of the 

functional connectivity strength, with stronger functional connections being more variable across 

individuals. It should be noted that we already have controlled for the numeric impact of functional 

connectivity strength in inter-individual variability by dividing it using intra-individual variability.   

Having identified that the connectional hierarchy of individual variability aligns with 

functional connectivity strength derived from BOLD fMRI, which measures the functional 
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synchronization at an infralow frequency (0.01-0.08 Hz), we are interested in how the organization 

of connectional hierarchy in individual variability associated with neural oscillation at different 

frequency bands. To do this, we examined the alignment between the connectional hierarchy of 

individual variability and electromagnetic functional connectivity from magnetoencephalography 

(MEG) data. We obtained resting-state MEG data from 36 unrelated healthy young adults (20 

males, aged 22-35 years) in the HCP dataset. We extracted regional MEG time series with the 

Schaefer atlas at six frequency bands: delta (2 to 4 Hz), theta (5 to 7 Hz), alpha (8 to 12 Hz), beta 

(13 to 29 Hz), low-gamma (30 to 59 Hz), and high-gamma (60 to 90 Hz), similar to the approach 

employed in a prior study40. We then assessed the electromagnetic functional connectivity between 

each of the two regional time series using amplitude envelope correlation and averaged the 

functional connectivity matrices across all participants for each frequency band (Fig. 2d).  

Visual examination indicated that MEG functional connectivity was heterogeneously 

distributed across all connectivity edges at each frequency band. We compared the six MEG 

functional connectivity matrices (Fig. 2d) with the individual variability matrices (Fig. 1a and 1b) 

from both the HCP-D and HCP-YA datasets. Connectional hierarchy in individual variability was 

correlated with MEG functional connectivity across all edges at multiple frequency bands in both 

the HCP-D (2-4 Hz: Spearman’s rho = 0.36; 5-7 Hz: rho = 0.19; 8-12 Hz: rho = 0.06; 13-29 Hz: 

rho = 0.32; 30-59 Hz: rho = 0.22; 60-90 Hz: rho = 0.15; all Bonferroni-corrected Pperm < 0.001, 

except for alpha) and HCP-YA (2-4 Hz: rho = 0.33; 5-7 Hz: rho = 0.26; 8-12 Hz: rho = 0.13; 13-

29 Hz: rho = 0.34; 30-59 Hz: rho = 0.14; 60-90 Hz: rho = 0.04; all Bonferroni-corrected, Pperm < 

0.005, except for high-gamma) datasets (Fig. 2e). The correlations were higher at the delta and 

beta frequency bands (rho > 0.3 in both datasets) and relatively lower for theta, alpha, low-gamma, 

and high-gamma frequency bands. These results suggest that the pattern of connectional hierarchy 
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is significantly associated with the synchronization of electrophysiological oscillations at specific 

frequency bands.  

 

Fig. 2. Hemodynamic and electrophysiological functional connectome basis of connectional 
hierarchy. a, The group-averaged functional connectivity matrices from BOLD fMRI data for 
both HCP-D (left half matrix) and HCP-YA (right half matrix) datasets. b, c, Individual variability 
in functional connectivity was positively correlated with BOLD functional connectivity strength 
across all edges in both HCP-D (f, Spearman’s rho = 0.47, Pperm < 0.001, CI = [0.47, 0.48], two-
sided) and HCP-YA (g, Spearman’s rho = 0.45, Pperm < 0.001, CI = [0.44, 0.46], two-sided) 
datasets. d, Group-averaged functional connectivity matrices obtained using MEG data of 36 
unrelated healthy young adult participants from the HCP dataset. MEG connectivity was estimated 
at six bands, including delta (2 to 4 Hz), theta (5 to 7 Hz), alpha (8 to 12 Hz), beta (13 to 29 Hz), 
low-gamma (30 to 59 Hz), and high-gamma (60 to 90 Hz). e, The association between individual 
variability (from Fig. 1a and Fig. 1b) and MEG connectivity across all network edges at six 
frequency bands for both datasets was determined using Spearman’s rank correlation. HCP-D 
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dataset: 2-4 Hz: rho = 0.36; 5-7 Hz: rho = 0.19; 8-12 Hz: rho = 0.06; 13-29 Hz: rho = 0.32; 30-
59 Hz: rho = 0.22; 60-90 Hz: rho = 0.15. HCP-YA dataset: 2-4 Hz: rho = 0.33; 5-7 Hz: rho = 
0.26; 8-12 Hz: rho = 0.13; 13-29 Hz: rho = 0.34; 30-59 Hz: rho = 0.14; 60-90 Hz: rho = 0.04. The 
Spearman’s rank correlation was used, two-sided. *** indicates Pperm < 0.001, ** indicates Pperm 
< 0.005, Bonferroni-corrected. 
 

Connectional hierarchy is constrained by the structural connectome 

Having demonstrated the connectional hierarchy in individual variability aligned with both 

the hemodynamic and multiple band-specific electromagnetic connectivity, we sought to 

understand the structural basis of the connectional hierarchy of individual variability. Previous 

studies have reported that structural connectivity constrains the dynamic communication between 

cortical regions and shapes the pattern of functional connectivity41,42. We hypothesized that the 

pattern of the structural connectome is associated with the organization in individual functional 

variability. Using diffusion MRI datasets, we reconstructed the whole-brain white matter tracts of 

individual participants using a probabilistic fiber tractography with multi-shell multi-tissue 

constrained spherical deconvolution43. The anatomically constrained tractography (ACT)44 and 

spherical-deconvolution informed filtering of tractograms (SIFT)45 were applied to improve the 

biological accuracy of fiber reconstruction (See Methods). We counted the number of streamlines 

between each of the two cortical regions defined by the Schaefer atlas, resulting in a 374×374 

structural network of streamline counts for each participant (Fig. 3a). The connection strength was 

normalized by dividing the average volume of the two regions, and was then log-transformed. 

Next, we averaged structural networks across all participants for the HCP-D and HCP-YA datasets 

(Fig. 3a). 

Structural connectivity is heterogeneously distributed across network edges, with dense 

connections within networks and sparse connections between networks. We showed the upper 

triangle of the structural network and individual variability matrix side-by-side for both the HCP-
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D (Fig. 3b) and HCP-YA (Fig. 3c) datasets, which share a similar pattern, especially in terms of 

the higher connection strength at the edges both within and between association networks. The 

sum of network-level average values indicated an overall similar pattern between structural 

network and individual variability across all edges for both datasets (Fig. 3d and Fig. 3e). We 

observed a similar connectional hierarchical axis for higher-order association networks as 

individual variability. For example, the structural connectivity decline from the connections within 

default mode network to the connections between default mode network and other association 

networks, and continuously declines to the connections between default mode network and 

sensorimotor networks. Finally, we found a significant correlation between individual variability 

and structural connectivity across all edges with non-zero structural connectivity for both the HCP-

D (Spearman’s rho = 0.24, Pperm < 0.001, CI = [0.23, 0.26], two-sided; Fig. 3f) and HCP-YA 

(Spearman’s rho = 0.26, Pperm < 0.001, CI = [0.25, 0.28], two-sided; Fig. 3g) datasets, indicating 

that an edge with a higher structural connection strength also shows higher individual variability 

in functional connectivity. Overall, these results suggest that the structural connectome constrains 

the pattern of connectional hierarchy in individual variability.  
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Fig. 3. Structural connectome basis of connectional hierarchy in FC variability. a, The 
structural network was constructed based on white matter tracts tractography from diffusion MRI 
data and the Schaefer atlas. Edge strengths in the structural network indicate the white matter fiber 
density between pairs of regions. The connection strength was log-transformed. b, c, Side-by-side 
comparison of structural connectivity and individual FC variability matrices in the HCP-D (b) and 
HCP-YA (c) datasets. d, e, Network-level average of structural connectivity and individual FC 
variability in HCP-D (d) and HCP-YA (e) datasets. f, g, Individual FC variability was positively 
correlated with structural connectivity strength across all edges in both HCP-D (f, Spearman’s rho 
= 0.24, Pperm < 0.001, CI = [0.23, 0.26], two-sided) and HCP-YA (g, Spearman’s rho = 0.26, Pperm 
< 0.001, CI = [0.25, 0.28], two-sided) datasets. FC, functional connectivity. 
 

Connectional hierarchy is shaped by a correlated gene expression network as well as a 

network of neurotransmitter receptor expression 
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Having demonstrated that structural connectivity might scaffold the connectional hierarchy 

of individual variability, we investigated the molecular mechanisms supporting connectional 

hierarchy. The correlated gene expression network, defined by the correlation of transcriptional 

profiles between pairs of cortical regions across genes, has been shown to be associated with the 

synchronization of functional activities46-48. Therefore, we hypothesized that the pattern of the 

correlated gene expression network would associate with the connectional hierarchy of individual 

functional variability.  

To test this hypothesis, we acquired gene expression data from the Allen Human Brain Atlas 

(AHBA, http://human.brain-map.org)49, a transcriptional atlas sampled from hundreds of brain 

samples using DNA microarray probes in six human postmortem brains (5 males; age, 24-57 years). 

Using the approach described in previous studies16,22,47,48, we calculated the group-averaged gene 

transcriptional profiles of all 2,256 selected brain-specific genes for each cortical region in the 

Schaefer atlas (Fig. 4a). We then estimated the correlated gene expression network for all genes 

using Pearson correlation coefficients of the transcriptional profiles between every two cortical 

regions. A side-by-side comparison of the correlated gene expression network from the AHBA 

dataset and the individual variability network from BOLD fMRI suggests a similar pattern of 

connectional hierarchy from within-network to between-network connections for both HCP-D 

(Fig. 4b) and HCP-YA (Fig. 4c) datasets. Network-level average values of gene expression and 

FC variability confirmed their similarity across all network edges in both datasets (Fig. 4d and Fig. 

4e). To quantify this observation, we found a significant correlation between the correlated gene 

expression network and the individual variability across all the network edges for both the HCP-

D (Spearman’s rho = 0.29, Pperm < 0.001, CI = [0.28, 0.30], two-sided; Fig. 4f) and HCP-YA 
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(Spearman’s rho = 0.37, Pperm < 0.001, CI = [0.37, 0.38], two-sided; Fig. 4g) datasets. These results 

suggest that the connectional hierarchy is rooted in the transcriptional profiles of gene expression.   

 

Fig. 4. Transcriptional similarity of gene expression underlying connectional hierarchy. a, 
The workflow to construct a correlated gene expression network. Gene expression data were 
acquired from the Allen Human Brain Atlas49, and 2,256 brain-specific genes were selected. The 
group transcriptional profiles across all genes were extracted for each cortical region according to 
the Schaefer atlas, yielding a 374×2,256 region×gene matrix. The correlated gene expression 
network was measured by determining the Pearson correlation coefficients of transcriptional 
profiles between pairs of cortical regions. b, c, Side-by-side comparison between the correlated 
gene expression network and individual variability network in both HCP-D (b) and HCP-YA (c) 
datasets. d, e, Network-level average of transcriptional similarity and individual FC variability in 
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the HCP-D (d) and HCP-YA (e) datasets. f, g, The individual FC variability was positively 
correlated with transcriptional similarity strength across all edges in both HCP-D (f, Spearman’s 
rho = 0.29, Pperm < 0.001, CI = [0.28, 0.30], two-sided) and HCP-YA (g, Spearman’s rho = 0.37, 
Pperm < 0.001, CI = [0.37, 0.38], two-sided) datasets. FC, functional connectivity.    
 

Neurotransmitter receptors and transporters support the propagation of electrical impulses 

and shape the synchronization of neural activity27. We hypothesized an association between the 

expression of neurotransmitter receptors and transporters and the connectional hierarchy in 

individual functional variability. For this assessment, we obtained the neurotransmitter receptor 

data from a prior study by Hansen et al.27, which included the cortical distribution maps of 19 

different neurotransmitter receptors and transporters from PET maps of more than 1200 

participants. These data provide the regional average density of the 400 cortical regions in the 

Schaefer atlas for each of the 19 receptors and transporters. We calculated the Pearson correlation 

coefficients of the density between each of the two cortical regions across the 19 neurotransmitter 

receptors and transporters, resulting in a 374×374 matrix (without limbic network) of between-

region similarity, called the receptor similarity network (Fig. 5a). We found that the receptor 

similarity network aligned with the individual variability map and that receptor similarity also 

declined along the hierarchy axis from within-network to between-network edges for both the 

HCP-D (Fig. 5b) and HCP-YA (Fig. 5c) datasets. Network-level average values of receptor 

similarity and individual variability confirmed their similarity across all network edges for both 

datasets (Fig. 5d and Fig. 5e). Using Spearman’s rank correlations, we found that receptor 

similarity is positively correlated with FC variability across all network edges for both the HCP-

D (Spearman’s rho = 0.35, Pperm < 0.001, CI = [0.34, 0.35], two-sided; Fig. 5f) and the HCP-YA 

(Spearman’s rho = 0.38, Pperm < 0.001, CI = [0.37, 0.38], two-sided; Fig. 5g) datasets. These results 
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suggest that the between-region similarity of the neurotransmitter receptor and transporter profiles 

is associated with the connectional hierarchy of individual variability.  

 

Fig. 5. Network of neurotransmitter receptor and transporter expression shapes 
connectional hierarchy. A, We obtained the distribution of 19 different neurotransmitter 
receptors and transporters in each of the 374 cortical regions defined with the Schaefer atlas from 
a prior study27. We calculated the Pearson correlation coefficients of the receptor and transporter 
densities between each pair of cortical regions, resulting in a 374×374 matrix of between-region 
similarity of neurotransmitter receptor and transporter expression. b, c, Side-by-side comparisons 
between receptor similarity and individual variability matrices in the HCP-D (b) and HCP-YA (c) 
datasets. d, e, Network-level average of receptor similarity and FC variability in the HCP-D (d) 
and HCP-YA (e) datasets. f, g, Individual FC variability was positively correlated with receptor 
similarity strength across all edges in both HCP-D (f, Spearman’s rho = 0.35, Pperm < 0.001, CI = 
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[0.34, 0.35], two-sided) and HCP-YA (g, Spearman’s rho = 0.38, Pperm < 0.001, CI = [0.37, 0.38], 
two-sided) datasets. FC, functional connectivity.    
 

The implications of connectional hierarchy for cognition and brain disorders 

Having demonstrated that the connectional hierarchy from individual variability is a 

convergent organizing principle that aligns with inter-regional functional, structural, and 

molecular networks, we hypothesized that connectional hierarchy could be implicated in human 

cognition and brain disorders. Therefore, we compared the alignment between connectional 

hierarchy and the network of regional cognitive relevance as well as the network of regional 

disorder vulnerability.  

We estimated regional relevance to a variety of cognitive functions based on a prior study22. 

First, we acquired whole-brain activation probability maps of 123 cognitive terms from 

Neurosynth50 and Cognitive Atlas51. Based on these data, we calculated the regional average 

activation probability of each cognitive term, resulting in a matrix with 374 rows (i.e., regions) 

and 123 columns (i.e., term), which reflects the activation probability of each cortical region 

associated with a specific type of cognition. Next, we calculated the Pearson correlation of 

activation probability between each pair of brain regions across all 123 terms, resulting in a 

374×374 similarity matrix of between-region cognitive relevance (Fig. 6a). A side-by-side 

comparison indicated that the correlated network of regional cognitive relevance was highly 

similar to the connectional hierarchy in individual variability for both the HCP-D (Fig. 6b) and 

HCP-YA (Fig. 6c) datasets. Thus, the pairs of regions were initially associated with highly similar 

sets of cognitions and gradually transited to associate with different cognitions along the 

hierarchical axis from within-network to between-network edges. The pattern of network-level 

average values confirmed this similarity between the cognitive relevance network and individual 
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variability network in both datasets (Fig. 6d and Fig. 6e). Finally, we observed a correlation 

between the cognitive network and the individual variability network across all edges for both the 

HCP-D (Spearman’s rho = 0.48, Pperm < 0.001, CI = [0.47, 0.49], two-sided; Fig. 6f) and HCP-YA 

(Spearman’s rho = 0.46, Pperm < 0.001, CI = [0.45, 0.46], two-sided; Fig. 6g) datasets. Overall, 

these results suggest that connectional hierarchy reflects the regional similarity in cognitive 

relevance profiles. 

 

Fig. 6. Implications of connectional hierarchy in cognition. a, With data from Neurosynth50 and 
Cognitive Atlas51, we extracted the activation probability of 123 different cognitive terms in each 
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of the 374 cortical regions defined with the Schaefer atlas. We calculated the Pearson correlation 
of the activation probability profiles between every two cortical regions across 123 terms, resulting 
in a 374×374 matrix of between-region similarity of cognitive relevance. b, c, Side-by-side 
comparisons between the similarity network of cognitive relevance and individual FC variability 
matrices in the HCP-D (b) and HCP-YA (c) datasets. d, e, Network-level average of cognitive 
similarity and individual FC variability in the HCP-D (d) and HCP-YA (e) datasets. f, g, Individual 
FC variability was positively correlated with the similarity network of cognitive relevance across 
all edges in both HCP-D (f, Spearman’s rho = 0.48, Pperm < 0.001, CI = [0.47, 0.49], two-sided) 
and HCP-YA (g, Spearman’s rho = 0.46, Pperm < 0.001, CI = [0.45, 0.46], two-sided) datasets. FC, 
functional connectivity.      
 

Next, we evaluated the implications of connectional hierarchy in brain disorders by 

examining the similarity between the pattern of connectional hierarchy and the network of disorder 

vulnerabilities. Based on literature52, we acquired the cortical thickness abnormality maps of 13 

different brain disorders from the ENIGMA consortium53 by using the ENIGMA toolbox 

(https://enigma-toolbox.readthedocs.io/)54. These disorders included 22q11.2 deletion syndrome, 

attention deficit hyperactivity disorder, autism spectrum disorder, epilepsy (the idiopathic 

generalized, right temporal lobe, and left temporal lobe subtypes), depression, obsessive-

compulsive disorder, schizophrenia, bipolar disorder, obesity, schizotypy, and Parkinson’s 

disorders. The acquired data included the statistical values of cortical thickness abnormalities in 

68 cortical regions, which were defined by the Desikan–Killiany atlas55, for each disorder. We 

calculated the Pearson correlation coefficients for the regional statistical values of thickness 

abnormality between pairs of cortical regions across 123 disorders, resulting in a 68×68 network 

of correlated disorder vulnerability (Fig. 7a). For comparison with this network, we regenerated 

the individual variability of functional connectivity with 68 cortical regions for the HCP-D (Fig. 

7b, left-half matrix) and HCP-YA (Fig. 7b, right-half matrix) datasets using the Desikan–Killany 

atlas. We did not label the Yeo networks on the matrices, since these 68 regions did not match well 

with the Yeo networks. Spearman’s rank correlation analysis revealed that the disorder 
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vulnerability network was significantly correlated with the individual variability network in both 

the HCP-D (Spearman’s rho = 0.30, Pperm < 0.001, CI = [0.26, 0.33], two-sided; Fig. 7c) and HCP-

YA (Spearman’s rho = 0.25, Pperm < 0.001, CI = [0.21, 0.29], two-sided; Fig. 7d) datasets. These 

results suggest that the pattern of connectional hierarchy shapes regional co-vulnerability to a 

variety of brain disorders. 

 

Fig. 7. Implications of connectional hierarchy for brain disorders. a, The cortical thickness 
abnormality maps for 13 neurological, neurodevelopmental, and psychiatric disorders were 
obtained from the ENIGMA consortium53 with ENIGMA toolbox (https://enigma-
toolbox.readthedocs.io/)54. We extracted the regional cortical abnormalities according to the 
Desikan–Killiany atlas with 68 cortical regions, and calculated the Pearson correlation coefficients 
of the disorder abnormality profiles between each pair of regions to construct the similarity 
network of disorder vulnerability. b, The matrices of individual variability in functional 
connectivity using the HCP-D (left half) and HCP-YA (right half) datasets. c, d, Individual FC 
variability was positively correlated with the network of disorder vulnerability across all edges in 
both HCP-D (c, Spearman’s rho = 0.30, Pperm < 0.001, CI = [0.26, 0.33], two-sided) and HCP-YA 
(d, Spearman’s rho = 0.25, Pperm < 0.001, CI = [0.21, 0.29], two-sided) datasets. FC, functional 
connectivity.  22q, 22q11.2 deletion syndrome; ADHD, attention-deficit/hyperactivity disorder; 
ASD, autism spectrum disorder; BP, bipolar disorder; IGE, idiopathic generalized epilepsy; rTLE, 
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right temporal lobe epilepsy; lTLE, left temporal lobe epilepsy; MDD, major depressive disorder; 
OCD, obsessive-compulsive disorder; SZ, schizophrenia; PD, Parkinson’s disease. 
 

Connectional hierarchy evolves in youth towards a more uniform individual variability 

across connectome edges 

Finally, we investigated the maturation of the connectional hierarchy of individual variability 

in youth. Using the HCP-D dataset (8~21 years), we split the data into 14 groups, with each age 

year representing one group. We calculated an inter-individual variability matrix for each age 

group at the network level. According to a prior study56, we quantitively defined the connectional 

hierarchy as the inter-edge heterogeneity of individual variability across the network level edges 

(Fig. 8a). Specifically, we calculated the inter-edge heterogeneity as the median absolute deviation 

(MAD) of the individual variability across the 21 network-level edges, including 6 within-network 

and 15 between-network edges. Using this approach, we calculated the inter-edge heterogeneity 

across network-level edges for each of the 14 groups. As in previous brain development studies3,57-

59, we used a general additive model (GAM)60 to capture linear and nonlinear associations with 

age while controlling for sex and in-scanner motion. The results indicated that inter-edge 

heterogeneity significantly declined with age (Z = -2.34, P = 0.019, and partial r = -0.66, CI = [-

0.88, -0.20], two-sided; Fig. 8b), suggesting the gradient of connectional hierarchy decreased to 

yield a more uniform profile of individual variability across connectome edges at older ages in 

youth. 
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Fig. 8. Development of connectional hierarchy in youth. a, Quantification procedure of the 
connectional hierarchy as inter-edge heterogeneity in individual variability. Participants in the 
HCP-D dataset were split into 14 age groups (from 8 to 21 years) with an interval of one year. The 
individual variability of functional connectivity was computed independently for each group at the 
network level. The unique elements of the variability matrix were extracted as a vector, and the 
median absolute deviation (MAD) was computed as the inter-edge heterogeneity. b, Scatterplot of 
the relationship between age and the inter-edge heterogeneity. After controlling for sex and in-
scanner motion, the general additive model (GAM) identified a significant negative association 
between inter-edge heterogeneity and age. FC, functional connectivity. 
 

Sensitivity analyses 

As prior studies demonstrated both structural and functional connectivity were associated 

with physical distance between regions61,62, we examined the effects of interregional distance on 

our results. Prior studies have reported that cortical regions located nearby are likely to share 

analogous molecular and structural bases, which potentially support similar functions27,61,63. To 

minimize the effect of spatial proximity, we regressed out the Euclidean distance between regions 

from the individual variability matrix as well as other networks. The pattern of individual 

variability remains significantly correlated with all other networks (Fig. S2-S4), including 

hemodynamic connectivity (HCP-D: Spearman’s rho = 0.47; HCP-YA: rho = 0.44), 

electromagnetic connectivity (delta: rho = 0.31; beta: rho = 0.28 for HCP-D; delta: rho = 0.29; 

beta: rho = 0.33 for HCP-YA), structural connectivity (HCP-D: rho = 0.21; HCP-YA: rho = 0.23), 

transcriptional similarity network (HCP-D: rho = 0.24; HCP-YA: rho = 0.34), neurotransmitter 

receptor network (HCP-D: rho = 0.32; HCP-YA: rho = 0.36), similarity network of cognitive 
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relevance (HCP-D: rho = 0.46; HCP-YA: rho = 0.43), and similarity network of disorder 

vulnerability (HCP-D: rho = 0.23; HCP-YA: r = 0.20). These results suggest that the convergent 

pattern of the connectional hierarchy across multiple scales was not driven by spatial proximity. 

Additionally, after controlling the effects of inter-regional distance in each of the fourteen age 

groups, we also observed a significant negative association between age and inter-edge 

heterogeneity (Z = -2.12, P = 0.034, and partial r = -0.61; Fig. S5). 

 
Discussion 

In this study, we identified a connectional hierarchy as a fundamental organizing principle of 

connectome edges by evaluating the inter-individual variability in edge-level functional 

connectivity. We found that this connectional hierarchy of individual variability progresses from 

within-network connections to the edges between sensorimotor and association networks along a 

continuous gradient. The connectional hierarchy aligns with both BOLD functional connectivity 

and multiple band-limited electromagnetic connectivity. We also found that such connectional 

hierarchy is constrained by structural connectivity and associates with the similarity network of 

gene expression as well as that of neurotransmitter receptor expression. Moreover, the 

connectional hierarchy of individual variability exhibits a similar organization as networks of 

cognitive relevance and disorder vulnerability. These results were highly consistent across two 

independent datasets and are robust after controlling for between-region distances. Finally, we 

found that the connectional hierarchy of individual variability evolves in youth towards a more 

uniform pattern. Overall, we reveal a fundamental organizing principle at the connectome edge 

level, which links various neurobiological properties and relates to cognition, brain disorders, and 

human development.   
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Prior studies have found that individual variability of functional connectivity is 

heterogeneously distributed across the cortex with a maximum variability in the association cortex 

and a gradual decrease along an axis towards the sensorimotor cortex2,5. This organization of 

variability follows the pattern of cortical hierarchy, which is a principal axis spatially progressing 

from the primary sensorimotor cortices to higher-order association cortices that support advanced 

mental functions4,6,21. Building on these studies, our findings provided a novel connectional 

hierarchy, which describes the distribution of individual variability of functional connectivity 

across the connectome edges. By examining the edges connected to each network separately, or, 

alternatively, ordering all the network-level edges across the whole connectome, we consistently 

observed the connectional hierarchy as a continuous gradient along which individual variability 

declines from within-network connections to connections between sensorimotor and association 

networks. Such a pattern of connectional hierarchy is highly consistent between the two 

independent datasets.  

Cortical hierarchy that spans from sensorimotor to association cortices has been identified as 

a unifying organizing principle of the human cerebral cortex2-4,6,16-31,33. This pattern has been 

observed in the cortical distribution of a variety of fundamental properties, such as neuron density 

and myelin content16,25,64, functional spatiotemporal variance2,3,18,19,23, metabolism20,58, and gene 

expression16. Similarly, we found that the connectional hierarchy, which progresses from within-

network connections along a continuous gradient towards the edges between sensorimotor and 

association networks, serves as a convergent organizing principle across multi-modal and multi-

scale human connectomes. We observed that this hierarchy is evident in functional, structural, and 

molecular connectomes, as well as in the connectomes for cognitive relevance and disorder 

vulnerability.  
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We found that both the hemodynamic functional connectivity and the electromagnetic 

connectivity40 at the delta and beta frequency bands display higher connection strengths for within-

networks connections, and gradually declines along the connectional hierarchy towards the edges 

between sensorimotor and association networks. Moreover, anatomical white matter tracts are 

denser within networks and become progressively sparse down the axis of the connectional 

hierarchy. This result aligns with conclusions from previous literature that macroscale anatomical 

connectivity supports functional dynamics41,42. This hierarchical axis is also observed in molecular 

networks. Specifically, the between-regional similarities in both transcription and receptor density 

maps continuously decline along the connectional hierarchy from within-network connections to 

sensorimotor-association connections. These results are further confirmed by prior work 

explaining that gene expression profiles46,48 and neurotransmitter receptor profiles27 shape the 

synchronization of brain networks. In summary, we demonstrated that the connectional hierarchy 

of individual variability is a unifying organizing principle across multiple neurobiological 

connectomes in humans. Our conclusions are further supported by a recent preprint suggesting a 

convergent network topological organization across these multi-modal and multi-scale human 

connectomes65. Looking beyond the scope of this prior study65, our work provides a systematic 

characterization of the hierarchical organization across the connectome edges.   

Importantly, we found the axis of connectional hierarchy is relevant to both cognition and 

brain disorders. Prior work has reported that the cortical distribution of cognition and behavior 

aligned with the cortical hierarchy of individual functional variability2. Here, we further 

demonstrated that the connectome of cognitive relevance, quantified as the inter-regional network 

of activation pattern similarity across 123 cognitive terms22,50, is organized along the connectional 

hierarchical gradient. Additionally, while it has been shown that brain regions with similar 
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molecular, structural, or functional profiles are affected similarly across disorders52, here we posit 

a possible underlying mechanism by establishing that the connectome of disorder vulnerability 

across brain disorders also organizes in accordance with connectional hierarchical gradients like 

other neurobiological networks. Overall, our results indicate that pairs of within-network regions 

share a higher relevance for similar cognitive functions and disorders, whereas between-network 

regions are increasingly implicated in different functions and disorders along the axis of 

connectional hierarchy.   

We also found that the degree of connectional hierarchy, characterized by inter-edge 

heterogeneity of individual variability, declines with development throughout childhood, 

adolescence, and adulthood, suggesting that the individual variability becomes more uniform 

across the connectome edges with development. As previous studies demonstrated that the cortical 

functional hierarchy evolved in youth66,67, our results add to the understanding of functional 

hierarchy development at the connectional level. In line with our finding, a previous study reported 

that anatomical and functional hierarchies in the cerebellum decline during youth using a similar 

approach (i.e., heterogeneity)56.  

Several methodological considerations are concerned with interpreting our findings. First, we 

used a relatively small sample (n < 1,000)68 to estimate inter-individual variability and 

connectional hierarchy. To ensure the robustness of our results, we used two independent and well-

known high-quality datasets, HCP-D34 and unrelated HCP-YA35, which cover different age ranges. 

Our results showed high similarity in the pattern of individual variability and connectional 

hierarchy between the two datasets, validating the reliability and reproducibility of our results. 

Second, the various data modalities of data in our study were acquired from different populations, 

which potentially magnifies the variance in the connectional hierarchy between these modalities. 
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However, even when distinct populations are used to define multiscale connectomes, the resulting 

connectional hierarchy still showed a high correlation, indicating the generalizability of this 

hierarchical axis to diverse fundamental properties. Finally, our analyses focused on the 

connections between cortical regions. Future studies should further evaluate connectional 

hierarchy in subcortical and cerebellar structures.  

Notwithstanding these considerations, we identified a novel connectional hierarchy of 

individual variability across the connectome edges, progressing along a continuous gradient from 

within-network connections to the edge between sensorimotor and association networks. This 

hierarchy aligned with a variety of edge-level structural, functional, molecular, cognitive and 

cross-disorder connectomes, which were shown to progress gradually along a unified axis. Overall, 

our data revealed a convergent hierarchal organizational principle at the connectional level, 

bridging multiscale fundamental properties of the human connectome. Our results also revealed 

that the connectional hierarchy of individual variability was refined during development in youth, 

providing a novel insight into understanding the neurodevelopmental substrate of the diverse 

psychiatric disorders, which have been increasingly conceptualized as disorders of brain 

development69. 

 

Methods 

HCP young adult (HCP-YA) dataset 

The present study utilized multi-modal neuroimaging data from 339 unrelated participants 

(156 males, aged 22-37) in the HCP young adult (HCP-YA) dataset (release S900)35, including 

T1-weighted structural MRI, resting-state functional MRI (fMRI), and diffusion MRI. All imaging 

data were acquired using a multiband sequence on a Siemens 3T Skyra scanner. Structural MRI 
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data were scanned with a resolution of 0.7mm isotropic. Two resting-state fMRI sessions, with 

two runs in each session (left-right and right-left phase-encoding), were acquired for each 

participant with a resolution of 3mm isotropic. Each resting-state run included 1,200 frames and 

was approximately 15min in length. Diffusion MRI data were acquired in two runs with opposite 

phase-encoding directions for each participant. Each run included 270 non-collinear directions 

with 3 non-zero shells (b = 1000, 2000, 3000 s/mm2). Further details regarding the HCP-YA 

dataset and MRI acquisition parameters have been described in prior study35.  

 
HCP development dataset (HCP-D) 

In addition to HCP-YA, this study included 633 participants (294 males, aged 8-21) obtained 

from the HCP-Development (HCP-D) dataset (Release 2.0)34. All data were collected using a 

multiband EPI sequence on a 3T Siemens Prisma scanner. The resolution for structural MRI data 

was 0.8 mm isotropic. Two resting-state fMRI sessions were acquired for each participant, with 

two runs in each session, using anterior-posterior (AP) and posterior-anterior (PA) phase-encoding, 

respectively. Each resting-state run was approximately 6.5min with 488 frames. Considering the 

shorter scanning length in HCP-D compared to HCP-YA, we added three task-fMRI runs from 

HCP-D to our analysis. The selected tasks were reward (“guessing”), inhibitory control (“CARIT”), 

and emotion tasks. Both guessing and CARIT contain two 5min runs, while the emotion task 

contains one run of 2.5min. All task-fMRI runs were collected with a resolution of 2mm isotropic. 

Diffusion MRI data included two sessions, each with two shells (b = 1500, 3000 s/mm2) and 185 

diffusion-weighted directions. Further details about the HCP-D dataset have been described in a 

previous study70. 
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The WU-Minn HCP Consortium obtained full informed consent from all participants, and 

research procedures and ethical guidelines were followed in accordance with the Washington 

University Institutional Review Boards. 

 
Structural and functional MRI data processing 

Minimally preprocessed T1-weighted structural and functional MRI data were acquired from 

HCP-D and HCP-YA datasets71. Structural data were corrected for intensity non-uniformity, skull-

stripped, and then used for reconstruction of the cortical surface. Volume-based structural images 

were segmented into cerebrospinal fluid (CSF), white matter, and gray matter, then spatially 

normalized to the standard MNI space. Functional MRI data were preprocessed with slice-timing 

correction, motion correction, distortion correction, co-registration to structural data, 

normalization to MNI space, and projection to cortical surface. Functional timeseries were 

resampled to FreeSurfer’s fsaverage space, and grayordinates files containing 91k samples were 

generated. 

Pre-processed fMRI data were then post-processed using the eXtensible Connectivity 

Pipelines (XCP-D)72. Volumes with framewise-displacement (FD) greater than 0.3 were flagged 

as outliers and excluded 73-75. A total of 36 nuisance regressors were regressed out from the BOLD 

data, including six motion parameters, global signal, mean white matter signal, and mean CSF 

signal, along with their temporal derivatives, quadratic terms, and quadratic derivatives76. Residual 

timeseries were then band-pass filtered (0.01-0.08 Hz) and spatially smoothed with a kernel size 

of FWHM = 6 mm. For the HCP-D dataset, task-evoked activations from selected task-fMRI runs 

were regressed out by XCP-D, resulting in “pseudo-resting state” timeseries77 which were then 

concatenated with the real resting-state functional timeseries for further analysis.    
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To minimize the potential effects of head motion, we further excluded subjects using two 

criteria78. First, an fMRI run was ruled out if more than 25% of the frames have FD > 0.2 mm. 

Second, for each fMRI run, we calculated the mean FD distribution by pooling frames from all 

participants and derived the third quartile (Q3) and interquartile range (IQR) of this distribution. 

Runs with mean FD greater than ‘Q3+1.5×IQR’ were excluded. We only included participants 

whose fMRI runs all fit the above criteria in both HCP-D (4 resting-state and 5 “pseudo-resting 

state” fMRI runs) and HCP-YA (4 resting-state fMRI runs) datasets. A total of 218 participants 

from HCP-D and 91 participants from HCP-YA were excluded based on the two criteria. In 

addition, 3 participants from HCP-YA were further excluded due to incomplete resting-state fMRI 

runs (less than 1,200 frames). Consequently, 415 participants (179 males, aged 8-21) from HCP-

D and 245 participants (114 males, aged 22-35) from HCP-YA datasets were kept for the 

subsequent analyses. 

 
Diffusion MRI data processing 

Diffusion MRI data from HCP-D were preprocessed using QSIPrep 

(https://qsiprep.readthedocs.io/), an integrative platform for preprocessing and reconstruction of 

diffusion MRI data79, which included tools from MRtrix3 (https://www.mrtrix.org/)80. Prior to pre-

processing, we concatenated the two AP runs and the two PA runs, respectively, and extracted the 

frames where b-value < 100 s/mm2 as the b0 image. Next, we applied MP-PCA denoising, Gibbs 

unringing, and B1 field inhomogeneity correction through MRtrix3’s dwidenoise81, mrdegibbs82, 

and dwibiascorrect83 functions. FSL’s eddy was then used for head motion correction and Eddy 

current correction84. Finally, the preprocessed DWI timeseries was resampled to ACPC space at a 

resolution of 1.5mm isotropic. 
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We used minimally preprocessed diffusion MRI data from the HCP-YA dataset. The minimal 

preprocessing pipeline included b0 image intensity normalization across runs, EPI distortion 

correction, eddy current and motion correction, gradient nonlinearity correction, and registration 

to the native structural space (1.25 mm). The processed diffusion MRI data were further corrected 

for B1 field inhomogeneity using MRtrix3. 

 
Functional connectivity measured by BOLD fMRI 

We estimated the functional connectivity with fMRI data from both HCP-YA and HCP-D 

datasets. First, regional BOLD timeseries were extracted using a priori Schaefer parcellation with 

400 parcels36. Functional connectivity (FC) was calculated as the Pearson correlation coefficient 

between each pair of regional timeseries, resulting in a 400×400 symmetrical FC matrix for each 

participant. A Fisher z-transformation was then applied to each FC value in the matrix. 

Subsequently, the parcels were mapped onto the seven canonical large-scale functional networks 

from Yeo atlas37. We excluded the limbic network in the following analyses as previous studies 

consistently reported a substantial signal loss in this network19,38, especially in the orbitofrontal 

and ventral temporal cortex. As a result, our analysis contains 374 parcels from six functional 

networks, including visual (VS), somatomotor (SM), dorsal attention (DA), ventral attention (VA), 

frontoparietal (FP), and default mode (DM). Finally, a 374×374 symmetrical functional 

connectivity matrix was obtained for each participant. The Schafer atlas with 374 cortical regions 

were also utilized to construct connectomes from other modalities of data. 

 
Inter-individual variability of functional connectivity and the connectional hierarchy 

We estimated the inter-individual variability in functional connectivity and evaluated its 

organizing principle at the connectional level. Due to the limited number of scans per participant, 
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a split-session approach85 was adopted to estimate intra-individual variability. For the HCP-YA 

dataset, we split each of the four resting-state fMRI runs into three sessions with equal-length 

timeseries, producing 12 sessions per participant, and acquired 12 functional connectivity matrices 

for each subject. For the HCP-D dataset, we concatenated 4 resting-state and 5 ‘pseudo-resting’ 

fMRI runs and split it into 8 sessions. We then acquired eight functional connectivity matrices for 

each participant in the HCP-D dataset. Inter-individual variability and intra-individual variability 

of each FC edge (69,751 unique edges in total) were calculated using a linear mixed-effects (LME) 

model for both HCP-YA and HCP-D datasets39. The LME model was implemented with a R 

package Rex (https://github.com/TingsterX/Reliability_Explorer). This model captures both fixed 

and random effects, assuming that both the observed response variable and the residual term follow 

a normal distribution with zero mean and a specific variance. This approach has been used to 

measure inter-individual and intra-individual variability in previous studies15,86. Specifically, for 

each FC edge, the LME model can be written as follows: 

𝐹𝐶௜௧ = 𝜇଴ + 𝜆௜ + 𝛼௧ + 𝜖௜௧ , where 𝜆௜  ~ 𝑁(0, 𝜎ఒ
ଶ), 𝜖௧  ~ 𝑁(0, 𝜎ఢ

ଶ).                   (1) 

Here, i identifies the subject, t indicates the session, 𝜆௜ and 𝛼௧ measures random effect and 

fixed effect, respectively, and 𝜖௜௧  is the residual term. The observed individual variation 𝜎ி஼
ଶ  

between 𝐹𝐶௜௧ can be decomposed into real inter-individual variation 𝜎௕
ଶ across participants and the 

intra-individual variations 𝜎௪
ଶ  across sessions (captured by the residual variation 𝜎ఢ

ଶ). 𝜎௕
ଶ  and 𝜎௪

ଶ  

represent inter- and intra-individual variabilities for one specific FC edge, which were used in our 

following analyses. 

For each of our two datasets, we obtained two 374×374 variability matrices for inter-

individual and intra-individual variability, respectively. We then scaled the inter-individual 

variability matrix by dividing the corresponding intra-individual variability with  (
ఙ್

మ

ఙೢ
మ ) to correct 
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for intra-individual variations. Furthermore, one may imagine that a larger inter-individual 

variability could lead to a larger functional connectivity strength; therefore, we controlled for this 

confounder by scaling with intra-individual variability since the connectivity strength has a similar 

impact on both variabilities. In this way, we acquired a matrix of inter-individual variability for 

both HCP-D and HCP-YA datasets. We next compared the similarity in connectional hierarchy 

between inter-individual variability matrices from the HCP-D dataset and HCP-YA datasets using 

a Spearman’s rank correlation.  

        We observed a hierarchical gradient in the individual variability matrix along which 

variability changes continuously from within-network to between-network connections. We 

termed this edge-level organizing pattern the “connectional hierarchy”. For a more straightforward 

illustration of this connectional hierarchy, we averaged FC variability within each network and 

between all network pairs, which yielded a 6×6 symmetrical inter-subject FC variability matrix at 

the network level. The connectional hierarchy of this matrix can be uniquely represented by six 

within-network FC variability values (the diagonal elements) and fifteen between-network FC 

variability values (the non-diagonal elements), and these twenty-one unique FC variability values 

are defined as the connectional hierarchy profile. Then, we calculated the Spearman’s rank 

correlation between connectional hierarchy profiles from HCP-D and HCP-YA datasets. To 

demonstrate the progression of connectional hierarchy, we sorted within-network and between-

network FC variability values in descending order for each functional network. Finally, we 

grouped the 69,751 unique edges by connection type (i.e., within-sensorimotor, within-association, 

and between sensorimotor-association) and compared their differences in FC variability using a 

permutation test (10,000 iterations). 

 
Electromagnetic network at multiple frequency bands with MEG 
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Resting-state magnetoencephalography (MEG) data for 36 unrelated subjects (20 males, aged 

22-35) were obtained from the HCP-YA S900 release and processed with Brainstorm87 following 

procedures from a prior study40. Notch filtering of 60, 120, 180, 240 and 300 Hz was applied, 

followed by a high-pass filtering of 0.3 Hz to remove slow-wave and direct current (DC) offset 

artifacts. For each participant, a source estimation on HCPʼs fsLR4k cortex surface was obtained 

using preprocessed sensor-level data, and head models were computed with overlapping spheres. 

The data covariance matrix was estimated from the resting-state MEG recordings, and regularized 

by the median eigenvalue method. Then, we obtained each participant’s source activity using the 

linearly constrained minimum variance (LCMV) beamformers method, and parcellated the source-

level timeseries using the Schaefer atlas. Finally, MEG connectivity was calculated using 

amplitude envelope correlation88 at six electrophysiological frequency bands, delta (2 to 4 Hz), 

theta (5 to 7 Hz), alpha (8 to 12 Hz), beta (13 to 29 Hz), low-gamma (30 to 59 Hz) and high-

gamma (60 to 90 Hz). For each frequency band, the MEG connectivity matrices were averaged 

across all 36 subjects, and limbic-related edges were removed. To evaluate the electromagnetic 

basis of connectional hierarchy, we extracted the 69,751 unique edges from the MEG connectivity 

matrix, and calculated the Spearman’s rank correlation between the pattern of individual variability 

matrix and MEG functional connectivity across all edges for each frequency band. 

 
White matter structural network construction with diffusion MRI  

Based on preprocessed diffusion MRI data, a network of structural connectivity (SC) was 

generated for each participant using reconstructed whole-brain whiter matter tracts. Reconstruction 

was completed using the mrtrix_multishell_msmt_ACT-hsvs method in MRtrix3, which 

implemented a multi-shell, multi-tissue constrained spherical deconvolution (CSD) to estimate the 

fiber orientation distribution (FOD) for each voxel43. We used the anatomically constrained 
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tractography (ACT) framework to improve the biological accuracy of fiber reconstruction44. 

Specifically, the tractography was performed by tckgen, which generates 40 million streamlines 

(length range from 30mm to 250mm, FOD power = 0.33) using an improved probabilistic 

streamlines tractography (iFOD2) based on the second-order integration over FOD. We selectively 

filtered the streamlines from the tractogram based on the spherical deconvolution of the diffusion 

signal and estimated the streamline weights using the command tcksift245. Next, the structural 

connectivity matrix was constructed using tck2connectome with the Schaefer-400 atlas as an a 

priori cortical atlas. The weight of each structural connectivity indicates the number of streamlines 

connecting two regions. The edge weights were normalized by dividing the average volume of the 

two regions89, and then log-transformed. Edges with a weight of 0 in any participant were set to 0 

for all participants90. Then, we averaged the SC matrix across all participants in each dataset, and 

removed limbic-related regions and edges, resulting in a 374×374 SC matrix. To evaluate the 

structural connectivity basis of the connectional hierarchy, we calculated the Spearman’s rank 

correlation of connection strength between SC network and individual variability network across 

all edges with non-zero streamline counts.  

 
Correlated gene expression network 

We obtained gene expression data from the Allen Human Brain Atlas (AHBA, 

https://human.brain-map.org)49, a public transcriptional atlas containing DNA microarrays 

sampled from six postmortem human brains (5 males, aged 24-57). Microarray data were available 

in the left hemisphere for four of the donors, and two donors contributed tissue samples from both 

hemispheres. Using the Schaefer-400 atlas in MNI space, we processed regional microarray 

expression data with the abagen toolbox (version 0.1.3; https://github.com/rmarkello/abagen)91. 
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In this study, we followed the protocol outlined by the toolbox to obtain the desired 

information, noted in italic as follows. First, microarray probes were reannotated using data 

provided by Arnatkevičiūtė et al.92; probes that did not match a valid Entrez ID were discarded. 

Next, probes were filtered based on their expression intensity relative to background noise93, such 

that probes with intensity less than the background in ≥ 50.00% of samples across donors were 

discarded, yielding 31,569 probes. When multiple probes indexed the expression of the same gene, 

we selected and used the probe with the most consistent pattern of regional variation across donors 

(i.e., differential stability94), calculated with: 

Δ
ௌ

(𝑝) =
1

൫ே
ଶ

൯
  ෍ ෍ 𝜌ൣ𝐵௜(𝑝), 𝐵௝(𝑝)൧

ே

௝ୀ௜ାଵ

ேିଵ

௜ୀଵ

                                          (2) 

where ρ is Spearman's rank correlation of the expression of a single probe, p, across regions 

in two donors Bi and Bj, and N is the total number of donors. Here, regions correspond to the 

structural designations provided in the ontology from the AHBA. 

The MNI coordinates of tissue samples were updated to those generated via non-linear 

registration using the Advanced Normalization Tools (ANTs; https://github.com/ANTsX/ANTs). 

To increase spatial coverage, tissue samples were mirrored bilaterally across the left and right 

hemispheres95. Samples were assigned to brain regions in the provided atlas if their MNI 

coordinates were within 2 mm of a given parcel. If a brain region was not assigned a tissue sample 

based on the above procedure, every voxel in the region was mapped to the nearest tissue sample 

from the donor in order to generate a dense, interpolated expression map. The average of these 

expression values was taken across all voxels in the region, weighted by the distance between each 

voxel and the sample mapped to it, in order to obtain an estimate of the parcellated expression 
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values for the missing region. All tissue samples not assigned to a brain region in the provided 

atlas were discarded. 

Inter-subject variation was addressed by normalizing tissue sample expression values across 

genes using a robust sigmoid function96: 

𝑥௡௢௥௠ =  
1

1 +  𝑒𝑥𝑝 ቆ−
൫𝑥௚ − 〈𝑥௚〉൯

𝐼𝑄𝑅௫
ቇ

                                                 (3) 

where ⟨x⟩ is the median and IQRx is the normalized interquartile range of the expression of a 

single tissue sample across genes. Normalized expression values were then rescaled to the unit 

interval: 

𝑥௦௖௔௟௘ௗ =
𝑥௡௢௥௠ − 𝑚𝑖𝑛(𝑥௡௢௥௠)

𝑚𝑎𝑥(𝑥௡௢௥௠) − 𝑚𝑖𝑛(𝑥௡௢௥௠)
                                                (4) 

Gene expression values were then normalized across tissue samples using an identical 

procedure. Samples assigned to the same brain region were averaged separately for each donor 

and then across donors, yielding a regional expression matrix for each donor with 400 rows, 

corresponding to brain regions, and 15,633 columns, corresponding to the retained genes. 

Additionally, we constrained our analysis to 2,256 brain-specific genes according to previous 

studies16,97. 

We then constructed a correlated gene expression network (374×374, without limbic network) 

by computing pairwise Pearson correlation between regional transcriptional profiles (1×2,256). 

Here, higher inter-regional transcriptional similarity indicates modulation by similar genes. We 

excluded limbic network related nodes and edges, and flattened the lower triangle of the correlated 

gene expression network into a vector. Spearman’s rank correlation was performed between the 

two vectors derived from the correlated gene expression matrix and individual variability matrix 

of functional connectivity to quantify the underlying genetic basis of connectional hierarchy. 
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Similarity network of neurotransmitter receptor expression 

The similarity network of neurotransmitter receptor expression was constructed using profiles 

of regional expression provided by previous studies27. The dataset used in this study contains PET 

images of the density of 19 different receptors and transporters acquired from 1,238 healthy 

participants (718 males). These receptors and transporters function in diverse neurotransmitter 

systems, including dopamine, norepinephrine, serotonin, acetylcholine, glutamate, GABA, 

histamine, cannabinoid and opioid systems. Receptors and transporters with more than one image 

of the same tracer were averaged. For each type of PET map, all images were registered to the 

ICBM-152 template (2009c version), and regional receptor density was mapped onto the Schaefer-

400 atlas, resulting in 400 regional average values. Regional density values were z-scored and 

combined across receptor types, resulting in a region×receptor matrix (400×19). We acquired this 

matrix from shared resources from Hansen and colleagues27, which is available at 

(https://github.com/netneurolab/hansen_receptors). We next computed the Pearson correlation of 

the density between each two brain regions across the 19 types of receptors and transporters, 

resulting in a 374×374 network of between-regional similarity in receptor density after excluding 

the limbic network, termed the “receptor similarity network”. We calculated the Spearman’s rank 

correlation between the receptor similarity matrix and functional connectivity variability matrix to 

characterize the neurotransmitter basis of connectional hierarchy. More details regarding the PET 

dataset can be found in the aforementioned study27. 

 
Similarity network of cognitive relevance 

We selected 123 terms related to neurocognitive processes22 using the Cognitive Atlas51, an 

ontology database of cognitive science and neuroscience, for constructing the similarity network 
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of cognitive relevance. These terms ranged from umbrella terms (e.g., “attention”) to specific 

cognitive processes (e.g., “episodic memory”), emotional states (e.g., “fear” and “anxiety”) and 

behaviors (e.g., “sleep”). We generated an activation probability map for each term using 

Neurosynth (https://github.com/neurosynth/neurosynth)50, a meta-analytical toolbox referencing 

cognitive terms to brain voxel positions by searching over 15,000 fMRI studies. For each term of 

interest (e.g., “emotion”), the coordinates of activated voxels were collected and a whole-brain 

activation probability map was generated.  

We projected average regional activation probabilities onto the a priori Schaefer atlas, 

resulting in a region×cognition matrix (374×123) where values represent the activation probability 

of each region for a selected cognitive term. We next generated the network of cognitive relevance 

by computing the Pearson correlation of regional activation probability between each pair of brain 

regions across the 123 cognitive terms. A higher correlation indicates that two brain regions are 

more likely to be activated in similar cognitive processes. We next calculated the Spearman’s rank 

correlation between individual variability in functional connectivity and the cognitive similarity 

network, to evaluate the implications of connectional hierarchy in cognition. 

 
Similarity network of disorder vulnerability 

We estimated the similarity network of disorder vulnerability by computing the correlation 

of regional cortical abnormalities between any two brain regions across multiple brain disorders52. 

We obtained statistical maps of cortical thickness abnormalities for 13 neurological, 

neurodevelopmental and psychiatric disorders from the Enhancing Neuroimaging Genetics 

through Meta-Analysis (ENIGMA) consortium53 and the ENIGMA toolbox 

(https://github.com/MICA-MNI/ENIGMA)54. Specifically, cortical thickness abnormality maps 

for 10 brain disorders were acquired from the ENIGMA toolbox, including 22q11.2 deletion 
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syndrome (patients, n = 474; controls, n = 315)98, attention-deficit/hyperactivity disorder (patients, 

n = 733; controls, n = 539)99, autism spectrum disorder (patients, n = 1,571; controls, n = 1,651)100, 

epilepsy (idiopathic generalized, n = 367; right temporal lobe, n = 339; left temporal lobe, n = 415; 

and 1,727 controls)101, depression (patients, n = 2,148; controls, n = 7,957)102, obsessive-

compulsive disorder (patients, n = 1,905; controls, n = 1,760)103, schizophrenia (patients, n = 4,474; 

controls, n = 5,098)104, and bipolar disorder (patients, n = 1,837; controls, n = 2,582)105. Maps for 

the other three disorders were acquired from supplementary materials of prior studies, including 

obesity (patients, n = 1,223; controls, n = 2,917)106, schizotypy (n = 3,004)107, and Parkinson’s 

disease (patients, n = 2,367; controls, n = 1,183)108.  

The maps of cortical thickness abnormalities were acquired by standardized pipelines in prior 

literature (http://enigma.ini.usc.edu/protocols/; see the above paragraph for a series of related 

studies). Specifically, regional average cortical thickness was calculated based on the Desikan–

Killiany atlas with 68 cortical regions (DK-68)55. Then, the case-control differences in regional 

cortical thickness were statistically compared for each brain disorder and the effect sizes (Cohen’s 

d) were computed based on statistical t-values. As there was only one group for schizotypy, the 

effects size (r) was measured by the Pearson correlation between schizotypy scores and regional 

cortical thickness. Except for autism spectrum disorder, ENIGMA toolbox provided the statistical 

effect size values for several different age ranges and we utilized the data for adults in this study. 

For autism, only one statistical map was provided across all participants (aged 2-64).  

Based on the above analyses, we examined 68 regional statistical effect sizes for each of the 

13 brain disorders. We next generated the disorders similarity network (68×68) by computing 

Pearson correlation between the abnormality profiles (1×13) of any two cortical regions. We re-

estimated the individual variability of functional connectivity using the 68 cortical regions for 
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HCP-D and HCP-YA datasets, respectively. We then compared the disorder similarity network 

and individual variability network across all edges using Spearman’s rank correlation, to evaluate 

the implications of connectional hierarchy in brain disorders. Considering the inaccurate 

assignment from the DK-68 atlas to Yeo’s 7 networks, we did not analyze the network-averaged 

results here. 

 
Null models for between-network correlations 

To evaluate the statistical significance of the correlation between the two networks, we 

generated null models for networks similarly as did in spatial permutation testing for the 

comparison of cortical properties109. Specifically, we generated the null networks by randomly 

rearranging the order of brain regions (nodes) in the matrix. Taking the matrix estimated by 374 

cortical regions from the Schaefer atlas as an example, the original order of node IDs in both 

columns and rows of the matrix is from 1 to 374. We shuffled the order of node IDs of both the 

columns and rows, so that the same node ID could represent different brain regions across different 

randomized networks. This null network preserves the mean and variance of the matrix, it also 

ensures that the regional profile (the column of the matrix, 374×1) includes all the 374 cortical 

regions. With this approach, we constructed the null distribution by generating 50,000 randomized 

individual variability networks and calculated their Spearman’s rank correlation with other 

networks, including hemodynamic and electromagnetic functional connectivity, structural network, 

correlated gene expression network, correlated neurotransmitter receptor expression network, the 

network of cognitive relevance and the network of disorder vulnerability. We compared the 

correlation value obtained by the empirical individual variability network with the ones acquired 

with the null networks to determine the significance level, and The P value of this permutation 

testing (Pperm) was reported. As we have compared the connectional hierarchy of individual 
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variability with multiple connectomes derived from other modalities in two datasets, we performed 

a Bonferroni correction to correct for multiple comparisons. 

       
Development of connectional hierarchy in youth 

To explore the maturation of connectional hierarchy in youth, we re-grouped the HCP-D 

participants (8~21 years old) into 14 age groups with a one-year gap, and calculated the inter-

individual variability matrix for each group. As done in a previous study56, we evaluated 

connectional hierarchy with the inter-edge heterogeneity of individual variability of between-

network edges, to summarize the degree of connectional hierarchy. Specifically, we extracted 6 

within-network and 15 between-network variability values from the network-level inter-individual 

variability matrix (6×6). The degree of connection hierarchy was defined as the inter-edge 

heterogeneity of individual variability, which we quantified as the median absolute deviation 

across these 21 variability values. With this approach, we estimated inter-edge heterogeneity of 

individual variability for each of the 14 age groups and evaluated the developmental changes in 

connectional hierarchy from 8 to 21 years old. To model both linear and nonlinear developmental 

effects, we used a generalized additive model (GAM)60 with penalized splines, which estimates 

nonlinearities using restricted maximum likelihood (REML) and penalizes nonlinearity in order to 

avoid over-fitting the data. The mean age across participants was calculated for each age group 

and used in the GAM. The mean age was modeled using a penalized spline, while including sex 

and in-scanner head motion as model covariates, as follows: 

Inter-edge heterogeneity ~ s(Age, k = 4) + Sex + Motion                           (5) 

where s() is the spline basis function, and k is the basis dimension for smooths. As the analyses 

were performed at the group level, the sex in the GAM is represented by the male/female ratio of 

participants for a particular age group, and the motion was calculated by averaging the mean FD 
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across all individuals and all runs within each age group. To demonstrate the association between 

inter-edge heterogeneity and age more intuitively, the p value of s(Age) was transformed to a Z 

value, and a partial correlation was also performed with sex and motion controlled. 

 
Validation analysis for controlling inter-regional distance 

Prior studies reported that adjacent brain regions are modulated by analogous underlying 

molecular and structural basis and exhibit similar functions27,61,63. To account for the effects of 

inter-regional distance, we calculated the Euclidean distance between every two cortical regions 

in the MNI space for the Schaefer-400 atlas and DK-68 atlas, respectively. We regressed out the 

inter-regional distance from the inter-individual variability matrix as well as all other networks 

and re-estimated their correlations according to the previous analysis. Similarly, we controlled the 

effects of inter-regional distance in the development analysis by regressing out the inter-regional 

distance from the inter-individual variability matrix of each age group, and re-estimated the 

association between age and connectional hierarchy. 

 
Data availability 

Connectional hierarchy measured by individual variability in functional connectivity, and 

additional connectivity matrices (hemodynamic connectivity, MEG connectivity, structural 

connectivity, transcriptional similarity, receptor similarity, cognitive similarity and disorder 

similarity) can be found at https://github.com/CuiLabCIBR/Connectional_Hierarchy. In particular, 

the HCP-YA and HCP-D datasets, including T1-weight MRI, functional MRI, diffusion-weighted 

MRI, and MEG are available at https://db.humanconnectome.org/. Gene expression data can be 

downloaded from the AHBA (http://human.brain-map.org) and processed using the abagen 

toolbox (https://github.com/rmarkello/abagen). The 19 PET maps for neurotransmitter receptors 
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and transporters profiles can be obtained from the neuromaps toolbox 

(https://github.com/netneurolab/neuromaps; ref.29), and the region×receptor matrix is available at 

(https://github.com/netneurolab/hansen_receptors; ref.27). The 123 cognitive terms were selected 

from the Cognitive Atlas (https://www.cognitiveatlas.org/), and corresponding cognitive 

activation probability maps were obtained from the Neurosynth using the neurosynth toolbox 

(https://github.com/neurosynth/neurosynth). Cortical thickness abnormality maps for 13 disorders 

are available through the ENIGMA consortium using the ENIGMA toolbox 

(https://github.com/MICA-MNI/ENIGMA). 

 
Code availability 

All code used to perform the analyses in this study can be found at 

https://github.com/CuiLabCIBR/Connectional_Hierarchy. 
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