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Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of
protein residues limits the possibilities of protein conformations.The de novo prediction of these properties from protein sequence
is important for the study of protein structure and function. Although these two properties are certainly related with each other,
it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent
accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the
CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate
prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between
the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729
monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75
correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64
accuracy, which outperforms existing methods.

1. Introduction

The solvent accessibility of a protein residue is the surface
area of the residue that is accessible to a solvent, which was
first described by Lee and Richards [1] in 1971. During the
process of protein folding, the residue solvent accessibility
plays a very important role as it is related to the spatial
arrangement and packing of the protein [2], which is depicted
as the hydrophobic effect [3]. Specifically, the trends of the
hydrophobic residues to be buried in the interior of the pro-
tein and the hydrophilic residues to be exposed to the solvent
form the hydrophobic effect that functions as the driving
force for the folding of monomeric soluble globular proteins
[4–6].

Solvent accessibility can help protein structure prediction
in two aspects. (1) Since solvent accessibility is calculated on
all-atom protein structure coordinates, it encodes the global

information of the 3D protein structure into a 1D feature,
which makes solvent accessibility as an excellent piece of
complementary information to the other local 1D features
such as secondary structure [7–9], structural alphabet [10–
12], or backbone torsion angles [13–15]. (2) Compared to
the other global information such as the contact map [16,
17] or the distance map [18, 19], solvent accessibility shares
similar property of the other local 1D feature that it could
be predicted into a relatively accurate level [20]. Therefore,
the predicted solvent accessibility has been widely utilized for
detection as well as threading of remote homologous proteins
[21–23] and quality assessment of protein models [24, 25].

The contact number is yet another kind of 1D feature
that encodes the 3D information, which is related to, but
different from, solvent accessibility [26].The contact number
of a protein residue is actually the result of protein folding.
It has been suggested that, given the contact number for
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each residue, the possibilities of protein conformations that
satisfy the contact number constraints are very limited [27].
Thus, the predicted contact numbers of a protein may serve
as useful restraints for de novo structure prediction [26] or
contact map prediction [28].

To predict the protein solvent accessibility, most methods
first discretize it into two- or three-state labels based on
the continuous relative solvent accessibility value [20]. Then
these methods apply a variety of learning approaches for the
prediction, such as neural networks [29–34], SVM (support
vector machine) [35–37], Bayesian statistics [38], and nearest
neighbor [20, 39]. Some other methods also attempt to
directly predict the continuous absolute or relative solvent
accessibility value [14, 34, 40–42].

Comparingwith the solvent accessibility prediction, there
are much fewer methods that deal with the prediction of
contact number. For example, Kinjo et al. [26] employ linear
regression analysis, Pollastri et al. [32] use neural networks,
and Yuan [43] applies SVM.

Since a high dependency between the adjacent labels for
both solvent accessibility and contact number exists [44],
it is hard to utilize this information based on the previ-
ous proposed computational methods. For instance, neural
network methods usually do not take the interdependency
relationship among the labels of adjacent residues into con-
sideration. Similarly, it is also challenging for SVM to deal
with this dependency information [45]. Although hidden
Markov model (HMM) [44] is capable of describing this
dependency, it is challenging forHMM tomodel the complex
nonlinear relationship between input protein features and the
predicted solvent accessibility labels, especially when a large
amount of heterogeneous protein features is available [45].

Recently, ACCpro5 [46] could reach almost perfect pre-
diction of protein solvent accessibility by the aid of structural
similarity in the protein template database. However, such
approach might not perform well on those de novo folds or
the sequences that cannot find any similar proteins in the
database.

Although solvent accessibility and contact number are
two different quantities, they are certainly related with
each other, both reflecting the hydrophobic or hydrophilic
atmosphere of each residue in the protein structure [26].
For example, a residue with a large contact number would
probably be buried inside the core, whereas a residue with
a small contact number would probably be exposed to the
solvent. Therefore, a learning approach that could utilize this
relationship to extract the universal representation of the
features would be beneficial.

Here we present AcconPred (solvent accessibility and
contact number prediction), available at http://ttic.uchicago.
edu/∼majianzhu/AcconPred package v1.00.tar.gz based on a
shared weight multitask learning framework under the CNF
(conditional neural fields) model. As a recently invented
probabilistic graphical model, CNF [47] has been used for a
variety of bioinformatics tasks [21–23, 45, 48–52]. Specifically,
CNF is a perfect integration of CRF (Conditional Random
Fields) [53] and neural networks. Besides modeling the
nonlinear relationship between the input protein features and
the predicted labels as what neural network does, CNF can

also model the interdependency among adjacent labels as
what CRF does.

It has been shown that a unified neural network architec-
ture, trained simultaneously on a collection of related tasks,
provides more accurate labelings than a network trained only
on a single task [54]. A study by Caruana thus demonstrates
the power of multitask learning that could extract the univer-
sal representation of the input features [55]. In AcconPred,
we integrate multitask learning framework under the CNF
model by sharing the weight of the neuron functions between
the two tasks, followed by a stochastic gradient descent for
training the parameters.

Last but not least, AcconPred can provide a probability
distribution over all the possible labels. That is, instead of
predicting a single label at each residue, AcconPred will gen-
erate the label probability distribution for solvent accessibility
and contact number. Our testing data shows that AcconPred
achieves better accuracy on solvent accessibility prediction
andhigher correlation on contact number prediction than the
other methods.

2. Method

2.1. Preliminary Definition

2.1.1. Calculating Solvent Accessibility from Native Protein
Structure. We applied DSSP [7] to calculate the absolute
accessible surface area for each residue in a protein. The
relative solvent accessibility (RSA) of the residue X is cal-
culated through dividing the absolute accessible surface area
by the maximum solvent accessibility which uses Gly-X-Gly
extended tripeptides [56]. In particular, these values are 210
(Phe), 175 (Ile), 170 (Leu), 155 (Val), 145 (Pro), 115 (Ala), 75
(Gly), 185 (Met), 135 (Cys), 255 (Trp), 230 (Tyr), 140 (Thr),
115 (Ser), 180 (Gln), 160 (Asn), 190 (Glu), 150 (Asp), 195 (His),
200 (Lys), and 225 (Arg), in units of Å2.

With the relative solvent accessibility value, the clas-
sification was divided into three states, say, buried (B),
intermediate (I), and exposed (E), as in the literatures [14, 20].
In this work, the usage of 10% for B/I and 40% for I/E in
the 3-state definition is based on the following two facts: (1)
such division is close to the definition of previous method
[20]; (2) at this cutoff, the background distribution for the
three states in our training data is close to 1 : 1 : 1. A more
comprehensive interpretation for this 10%/40% threshold is
described in Results and shown in Figure 2.

2.1.2. Calculating Contact Number from Native Protein Struc-
ture. To calculate the contact number for each residue, we
followed similar definition from previous works [26, 43].
Basically, the contact number (CN) of the 𝑖th residue in a
protein structure is the number of C-beta atoms from the
other residues (excluding 5 nearest-neighbor residues) within
the sphere of the radius 7.5 Å centered at the C-beta atom of
the 𝑖th residue. We also limit the maximal contact number as
14 if the observed contact number is above 14, because such
cases are rare in our training data. So for each residue, there
are 15 states of contact number in total.



BioMed Research International 3

2.2. Datasets

2.2.1. Training and Validation Data. Training and validation
data were extracted from all monomeric, globular, and
nonmembrane protein structures. They were downloaded
from Protein Data Bank (PDB) [57] dated before May 1,
2014. The monomeric proteins were extracted according
to the “Remark 350 Author Determined Biological Unit:
Monomeric” recorded in the PDB file. To exclude those
nonglobular proteins, we calculated the buried residue ratio
(i.e., the percentage of the residues in buried state) for each
protein and removed those proteinswith<10%buried residue
ratio. To exclude those membrane proteins, the PDBTM
database [58] was employed.

The reason for using monomeric protein to predict
solvent accessibility is based on the fact that the patterns
in the surface of the monomeric proteins are different from
those in the interface of the oligomeric proteins [59]. Again,
the reason why we exclude the membrane proteins is that
they have the opposite solvent accessibility pattern to those
monomeric, globular soluble proteins. Furthermore, the 10%
buried residue ratio cutoff was derived from statistics for the
globular protein database [60].

Finally, we excluded proteins with length less than 50,
having chain-breaks in the middle, and the 40% sequence
identity was applied to remove redundancy. So in total we
have 5729 monomeric, globular, and nonmembrane protein
structures as our training and validation dataset (5-cross val-
idation).The 5729 PDB IDs included in the training and vali-
dation datasets could be found in the SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2015/678764.

2.2.2. Testing Data. The testing data were collected from the
CASP11 [61] targets containing 105 domains. Note that all
CASP11 targets were released after May 1, 2014. The PDB
structures for the 105 CASP11 testing datasets could be found
in the Supplementary Files.

In order to compare with the existing programs, we
further included the dataset fromYuan [43] as the testing data
for contact number prediction.The 945 PDB IDs included in
the Yuan dataset could be found in the Supplementary Files.

2.3. Protein Features. A variety of protein features have been
studied by [14, 29–32, 41, 62, 63] to predict the solvent
accessibility or the contact number.They could be categorized
into three classes: evolution related, structure related, and
amino acid related features, which will form our feature
vector 𝐹(𝑖) for residue 𝑖. Furthermore, since the solvent
accessibility or the contact number for a certain residue
could be influenced by its nearby residues in sequence, we
then introduce a windows size 𝑘 to capture this information.
That is, we take the feature vectors from 𝐹(𝑖 − 𝑘), 𝐹(𝑖 − 𝑘 +

1), . . . , 𝐹(𝑖), . . . , 𝐹(𝑖 + 𝑘−1), 𝐹(𝑖 + 𝑘) as the final input features
for residue 𝑖. In this work we set the windows size 𝑘 = 5.

2.3.1. Evolution Related Features. Solvent accessibility as well
as contact number of a residue has a strong relationship
with the residue’s substitution and evolution. Residues in

the buried core and residues on the solvent-exposed sur-
faces were shown to have different substitution patterns due
to different selection pressure [64]. Evolution information
such as PSSM (position specific scoring matrix) and PSFM
(position specific frequencymatrix) generated by PSI-BLAST
[65] has been used and proved to enhance the prediction
performance. Here we use different evolution information
from the HHM file generated by HHpred [66]. In particular,
it first invokes PSI-BLAST with five iterations and 𝐸-value
0.001 and then computes the homology information for
each residue combined with a context-specific background
probability [67]. Overall, for each residue, we have 40 = 20 +
20 evolution related features.

2.3.2. Structure Related Features. Local structural features
are also very useful in predicting solvent accessibility, as
indicated in [41]. Here we use the predicted secondary
structure elements (SSEs) probability as the structure related
features for each residue position. In particular, we use
both 3-class and 8-class SSEs. The 3-class SSE is predicted
by PSIPRED [8] which is more accurate but contains less
information, while the 8-class secondary structure element
is predicted by RaptorX-SS8 [45] which is less accurate but
containsmore information.Overall, for each residue, we have
11 = 8 + 3 structure related features.

2.3.3. Amino Acid Related Features. Besides using position
dependent evolutionary and structural features, we also use
position independent features such as (a) physicochemical
property, (b) specific propensity of being endpoints of an SS
segment, and (c) correlated contact potential, for each amino
acid. Specifically, physicochemical property has 7 values for
each amino acid (shown in Table 1 from [68]); specific
propensity of being endpoints of an SS segment has 11 values
for each amino acid (shown in Table 1 from [69]); correlated
contact potential has 40 values for each amino acid (shown
in Table 3 from [70]). All these features have been studied in
[45] for secondary structure elements prediction and in [21–
23] for homology detection.Overall, for each residue, we have
58 = 7 + 11 + 40 amino acid dependent features.

2.4. Prediction Method

2.4.1. CNF Model. Conditional neural fields (CNF) [47] are
probabilistic graphical models that have been extensively
used in modeling sequential data [45, 49]. Given features on
each residue on a protein sequence, we could compute the
probability of each label for one residue and the transition
probability for neighboring residues. Formally, for a given
protein with length 𝐿, we denote its predicted labels (say,
3-state solvent accessibility or 15-state contact number) as
Y(= (𝑌

1
, . . . , 𝑌

𝐿
)), where𝑌

𝑖
∈ {1, 2, . . . ,𝑀},𝑀 = 3 for solvent

accessibility prediction, and 𝑀 = 15 for contact number
prediction. We also represent the input features of a given
protein by an 𝑛 × 𝐿 matrix X(= (𝐹(1), . . . , 𝐹(𝐿))), where 𝑛
represents the number of hidden neurons and the 𝑖th column
vector 𝐹(𝑖) represents the protein feature vector associated
with the 𝑖th residue, defined in the previous section. Then
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we can formulize the conditional probability of the predicted
labels Y on protein feature matrix X as follows:

𝑃 (Y | X)

∝ exp(
𝐿−1

∑
𝑖=1

𝜓 (𝑌
𝑖
, 𝑌
𝑖+1
)

+

𝐿
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𝑖=1

𝑛

∑
𝑗=1

𝜙 (𝑌
𝑖
, 𝑁
𝑗
(𝐹 (𝑖 − 𝑘) , . . . , 𝐹 (𝑖 + 𝑘)))) ,

(1)

where 𝜓(𝑌
𝑖
, 𝑌
𝑖+1
) is the potential function defined on an edge

connecting two nodes; 𝜙(𝑌
𝑖
, 𝑁
𝑗
(𝐹(𝑖 − 𝑘), . . . , 𝐹(𝑖 + 𝑘))) is the

potential function defined at the position 𝑖; 𝑁
𝑗
() is a hidden

neuron function that does nonlinear transformation of input
protein features; 𝑘 is the window size. Formally, 𝜓() and 𝜙()
are defined as follows:
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(2)

where 𝛿() is an indicator function; 𝑓(𝑖) represents the final
input features 𝐹(𝑖 − 𝑘), . . . , 𝐹(𝑖 + 𝑘) for residue 𝑖;𝑊, 𝑈, and
𝑇 are model parameters to be trained. Specifically,𝑊 is the
parameter from the input features to hidden neuron nodes,𝑈
from neuron to label, and𝑇 from label to label, respectively; 𝑎
and 𝑏 represent predicted labels (see Figure 1). The details for
the training and prediction of the CNFmodel could be found
in [45]. One beneficial result of CNF is the probability output
for each label at a position through a MAP (maximum a
posteriori) procedure.These probabilities, generated by CNF
models trained by different combinations of feature classes,
could be further utilized as features for training a consensus
CNF model.

2.4.2. Multitask Learning Framework. Multitask learning
(MTL) has recently attracted extensive research interest in the
data mining andmachine learning community [71–74]. It has
been observed that learning multiple related tasks simulta-
neously often improves predicted accuracy [54]. Inspired by
[75], a variety of functionally important protein properties,
such as secondary structure and solvent accessibility, can be
encoded as a labeling of amino acids and trained in multitask
simultaneously under a deep neural network framework [75].
Here we propose a similar procedure for learning two tasks,
say solvent accessibility and contact number, under a weight
sharing CNF framework.

Specifically, assumingwe have𝑇 related tasks, the “weight
sharing” strategy implies that the parameters for the 𝑁

𝑗
()

function are shared between tasks. That is to say, the hidden
neuron function that does nonlinear transformation of input
protein features is shared for predicting solvent accessibility
and contact number. The whole CNF framework includes
the parameters 𝜃

𝑡
= {𝑊,𝑈

𝑡
, 𝑇
𝑡
} for each task 𝑡. With this

setup (i.e., only the neuron to label function 𝑈 and the label
to label function 𝑇 are task-specific), the CNF framework

automatically learns an embedding that generalizes across
tasks in the first hidden neuron layers and learns features
specific for the desired tasks in the second layers.

When using stochastic gradient descent to train the
model parameters, we could carry out the following three
steps: (a) select a task at random, (b) select a random training
example for this task, and (c) compute the gradients of the
CNF attributed to this task with respect to this example and
update the parameters. Again, the probabilities generated by
CNF models trained for different task could be utilized as
features for training a consensus CNFmodel for a single task.

3. Results

We evaluate our program AcconPred on two prediction
tasks, say solvent accessibility prediction and contact number
prediction, on our own training data and CASP11 testing
data. For contact number prediction, in order to compare
with the existing programs, we further include the Yuan
[43] dataset as the testing data. Besides using accuracy as
the measurement for both solvent accessibility and contact
number, we also use the following evaluation metrics for
solvent accessibility, which includes precision (defined as
TP/(TP+FN)), recall (defined as TP/(TP+FN)), and F1 score
(defined as 2TP/(2TP + FP + FN)), where TP, TN, FP, and
FN are the numbers of the true positives, true negatives, false
positives, and false negatives for a given dataset, respectively.
To evaluate the performance of contact number, we also
calculate the Pearson correlation between the predicted and
the observed values.

In the following sections, we first give an interpretation
of the 10%/40% threshold that defines the 3-state solvent
accessibility.Thenwe evaluate the performance of AcconPred
on the training data. Followed by briefly describing the
programs to be compared, we show the outperformance of
AcconPred with the existing programs on the testing data,
which includes CASP11 and Yuan dataset.

3.1. Interpretation of the 10%/40% Threshold That Defines the
3-State Solvent Accessibility. Traditionally, predicting solvent
accessibility using machine learning models is regarded as
either 2, 3, or 10 labels of classification problem or a real value
regression problem. There is no widely accepted criterion
on how to classify the real value solvent accessibility into a
finite number of discrete states such as buried, intermediate,
and exposed. The reason is that, in a classification problem,
with fewer labels we could get a more accurate prediction
but at the same time lose lots of information by merging
adjacent classes. This fact still holds between classification
and regression because regression could be recognized as a
kind of infinite labels prediction task with lower accuracy
comparing with classification under the same situation.

Therefore, it is a tradeoff between using fewer labels of less
information and using more labels less accurate. In addition,
even for the same number of labels in the classification
problem, the boundary for each label still needs to be finely
determined. Remember that solvent accessibility represents
the relative buried degree of one residue in the whole 3D
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Figure 2: Log-odds ratio between the pair frequencies in the
structure alignments and the background frequencies, with respect
to the relative solvent accessibility in 1% unit. The thick black line
indicates the boundaries at 10% and 40% to define the 3-label solvent
accessibility, say buried (B), intermediate (I), and exposed (E).

protein so it is possible for two aligned residues on two
structural related proteins to have different real value of
accessibility in some range. To decide the range of each label
is equal to giving a standard to judge if two residues with
different solvent accessibilities can be aligned together.

Table 1: Precision, recall, and 𝐹1 score for different evaluation
dataset of 3-state solvent accessibility prediction.

Evaluation dataset Precision Recall 𝐹1 score
†Buried overall 0.76 0.78 0.77
‡Buried >0.9 0.96 0.31 0.47
Buried >0.8 0.92 0.45 0.60
Buried >0.7 0.88 0.57 0.69
Buried >0.6 0.84 0.66 0.74
Buried >0.5 0.79 0.74 0.76
Buried >0.4 0.75 0.82 0.78
Intermediate overall 0.56 0.50 0.53
Intermediate >0.9 1.00 0.0001 0.002
Intermediate >0.8 0.82 0.006 0.01
Intermediate >0.7 0.74 0.06 0.11
Intermediate >0.6 0.67 0.19 0.30
Intermediate >0.5 0.61 0.38 0.47
Intermediate >0.4 0.55 0.61 0.58
Exposed overall 0.71 0.76 0.73
Exposed >0.9 0.94 0.11 0.20
Exposed >0.8 0.88 0.31 0.46
Exposed >0.7 0.83 0.47 0.60
Exposed >0.6 0.78 0.61 0.68
Exposed >0.5 0.74 0.72 0.73
Exposed >0.4 0.69 0.81 0.75
†Overall indicates the whole set of the predicted labels.
‡
>0.9 indicates that the set of the predicted labels is chosen according to the

predicted probability which is larger than 0.9.
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Table 2: Prediction accuracy of different feature class and learning model for 3-state solvent accessibility.

Features Evolution Structure Amino acid †Combined single ‡Combined MTL
Q3 accuracy 0.64 0.59 0.55 0.66 0.68
†Combined single indicates that all classes of features, including evolution, structure, and amino acid, are used for training a single task model.
‡Combined MTL indicates that all classes of features are used for training a multitask learning model.

Table 3: Prediction accuracy of different feature class and learning models for 15-state contact number (with the same explanation as in
Table 2).

Features Evolution Structure Amino acid Combined single Combined MTL
Q15 accuracy 0.26 0.24 0.19 0.28 0.30

In this work, the three discrete states on relative solvent
accessibility with boundaries at 10% and 40% are used (see
Figure 2). We could give an interpretation for such bound-
aries by all-against-all protein pairwise structure alignments
[76–79] on our training data. Followed by filtering out the
pairs with TM-score [80] lower than 0.65which indicates that
the two proteins have no obvious biological relevance [81],
we calculate the log-odds ratio between the pair frequencies
in the remaining structure alignments and the background
frequencies, with respect to the relative solvent accessibility
in 1% unit. As shown in Figure 2, the area with more red
color means that the corresponding two relative solvent
accessibilities on two aligned proteins have more chance to
coappear in the structure alignments, while the area with
more blue color is vice versa. As a result, it can be concluded
that, under such boundaries, the within-class distance is low
(with more yellow or red points), while the between-class
distance is high (with more cyan or blue area).

3.2. Performance on Training Data

3.2.1. Results for 3-State Solvent Accessibility Prediction

(1) Precision, Recall, and F1 Score for Each Predicted Label.
Table 1 gives detailed results for each label of solvent acces-
sibility prediction, say buried, intermediate, and exposed.
Besides the overall analysis in terms of precision, recall, and
F1 score, we also provide the subset analysis of the predicted
label which is chosen according to the predicted probability.
From this table, we observe that when predicted probability is
above 0.8, both the predicted buried label and exposed label
could reach about 0.9 accuracy. However, the prediction of
the intermediate label is least accurate, which can be probably
expected from the arbitrariness of the threshold between the
three states [20].

(2) Relative Importance of the Three Classes of Features. As
mentioned in the previous section, the features used in the
training process consist of three classes: evolution related,
structure related, and amino acid related, respectively. In
order to estimate the impact of each class on 3-state solvent
accessibility prediction, we apply each of them to train the
model and perform the prediction. Table 2 illustrates the
prediction accuracy of different feature classes and different
learning models, including single task learning model and
multitask learning model. It could be observed that using

Table 4: Prediction accuracy of different tolerance values for 15-
state contact number.

Tolerance 0 1 2 3
Accuracy 0.30 0.63 0.83 0.93

amino acid related feature alone could reach 0.55 Q3 accu-
racy, and this accuracy could be largely increased by using the
evolution related feature alone. It is interesting that although
the structure related features are actually derived from the
evolutionary information, the combination of all these three
classes of features could reach 0.66 Q3 accuracy. Finally, we
show that the performance improvement could be gained by
performing multitask learning for 2% accuracy.

3.2.2. Results for 15-State Contact Number Prediction. Table 3
illustrates the prediction accuracy of different feature classes
and different learning models for 15-state contact number,
with the same trend in Table 2 in 3-state solvent accessibility
perdition. It should be noted that if the difference between
the predicted contact number and the observed value is only
1 or 2, we still could tolerate the result. Table 4 shows the
prediction accuracy of different tolerance values, ranging
from 0 to 3. If 1, 2, or 3 differences between the predicted
contact number and the observed value are tolerated, the
accuracy could reach 0.63, 0.83, and 0.93, respectively. The
Pearson correlation score of AcconPred on the training data
is 0.75.

3.3. Performance on Testing Data

3.3.1. The Existing Programs to Be Compared. We compare
AcconPredwith three popular solvent accessibility prediction
programs, say SPINE-X [14], SANN [20], and ACCpro5 [46],
as well as two contact number prediction programs, say
Kinjo’s method [26] and Yuan’s method [43]. For solvent
accessibility prediction, SPINE-X is a neural network based
method, whereas SANN is based on nearest neighbor. In
contrast to these two methods that rely on protein sequence
information alone, ACCpro5 exploits the additional struc-
tural information derived from PDB. For contact number
prediction, both Kinjo’s and Yuan’s methods extract features
fromprotein sequence information.However, Kinjo’smethod
applies linear regression for the prediction, while Yuan’s
method employs SVMmethod.
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Table 5: Comparison results of the prediction accuracy of AcconPred with existing programs for 3-state solvent accessibility on the CASP11
dataset.

Method SPINE-X SANN ACCpro5 AcconPred
Q3 accuracy 0.57 0.61 0.58 0.64

Table 6: Comparison results of the Pearson correlation score of
AcconPred with existing programs for contact number prediction
on the Yuan dataset.

Method Kinjo Yuan AcconPred
Correlation 0.63 0.64 0.72

3.3.2. Results onCASP11Data. Table 5 summarizes the results
of three existing and well-known methods (say, SPINE-X,
SANN, and ACCpro5, resp.) for predicting the 3-state solvent
accessibility on the CASP11 105 domain cases. It should be
noted that the original 3-state output of SPINE-X is based
on the 25%/75% threshold, while SANN is 9%/36%.However,
besides the discretized output, both SPINE-X and SANN also
output predicted continuous relative solvent accessibility that
ranges from0 to 100%. Soweuse the same 10%/40% threshold
asAcconPred to relabel the output fromSPINE-X and SANN.
Furthermore, the original output of ACCpro5 is 2-state which
cut at 25%. Nonetheless, ACCpro5 also generates 20-state
relative solvent accessibility at all thresholds between 0%
and 95% at 5% increments. So in this case we could also
easily transform the output of ACCpro5 into the 3-state at
10%/40% threshold. We observe that AcconPred could reach
0.65 Q3 accuracy, which is higher than SPINE-X, SANN,
and ACCpro5 whose Q3 accuracies are 0.57, 0.61, and 0.58,
respectively. All detailed results from SPINE-X, SANN, and
ACCpro5 could be found in Supplementary Files.

We also calculate the Q15 prediction accuracy and corre-
lation of AcconPred for 15-state contact number on CASP11
data. The results are 0.28 for Q15 and 0.71 for correlation,
which is quite consistent with the results from the training
data (0.3 for Q15 and 0.74 for correlation) and the Yuan data
(0.28 for Q15 and 0.72 for correlation).

3.3.3. Results on YuanData. Since the software of bothKinjo’s
method and Yuan’s method is not available, we perform
AcconPred on the training set from Yuan. It should be noted
that the Yuan data (containing 945 PDB chains) were also
the training data for Kinjo’s method [26]. Because the same
dataset is used for contact number prediction, we could
directly extract the results of Kinjo’s method and Yuan’s
method from their paper for the comparison analysis. Table 6
summarizes the correlation results for Kinjo’s method, Yuan’s
method, and AcconPred. We observe that our proposed
method AcconPred outperforms the other methods signif-
icantly. The correlation score of AcconPred is 0.72, which
is better than Kinjo’s method (correlation score is 0.63) and
Yuan’s method (correlation score is 0.64).

4. Discussion and Future Work

In this work, we have presented AcconPred for predicting
the 3-state solvent accessibility as well as the 15-state contact

number for a given protein sequence. The method is based
on a shared weight multitask learning framework under
the CNF model. The overall performance of AcconPred for
both solvent accessibility and contact number prediction is
significantly better than the state-of-the-art methods.

There are two reasons why AcconPred could achieve
this performance. (1)The CNF model not only captures the
complex nonlinear relationship between the input protein
features and the predicted labels, but also exploits interde-
pendence among adjacent labels [45, 47]. (2) The shared
weight multitask learning framework could incorporate the
information of both solvent accessibility and contact number
simultaneously during training [75].

Furthermore, the CNF model defines a probability dis-
tribution over the label space. The probability distribution,
generated by CNF models trained on different combinations
of feature classes (shown in Tables 2 and 3) for both solvent
accessibility and contact number, could be further applied as
the input feature to train a regression neural network model
for predicting the continuous relative solvent accessibility.
Meanwhile, the predicted contact number probability alone
could be applied as topology constraints for the contact
map prediction. It is suggested that the same framework
of AcconPred could be applied to predict 10-state relative
solvent accessibility, with 10% at each interval. Similar as in
Table 4, we could also measure the prediction accuracy of
different tolerance values for 10-state solvent accessibility.

Another uniqueness of our work is the training data,
which excludes those “outlier” cases for solvent accessibility
training, such as oligomer, membrane, and nonglobular pro-
teins.This is because of the fact that these proteins have quite
different solvent accessibility patterns with the monomeric
soluble globular proteins. Recently, [82] pointed out that
there were preferred chemical patterns of closely packed
residues at the protein-protein interface. It implies that our
training data that contains monomeric soluble globular pro-
teins could serve as a control set for protein-protein interface
prediction.
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