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Background
Cancer is a complex disease arising in many cases from the effects of multiple genetic 
changes that give rise to pathway dysregulation through alterations in copy number, 
DNA methylation, gene expression, and molecular function [1, 2]. Recent cancer genom-
ics projects such as The Cancer Genome Atlas (TCGA) have created a comprehensive 
catalog of somatic mutations across all major cancer types. A key current challenge in 
cancer genomics is to distinguish driver mutations that are causal for cancer progression 
from passenger mutations that do not confer any selective advantage. Consequently, sev-
eral computational methods have been proposed for the identification of cancer driver 
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genes or driver modules of genes by integrating mutations data with various other types 
of genetic data [3–10]; see [11–14] for recent comprehensive evaluations and surveys on 
the topic.

Rather than outputting a set of candidate driver genes or modules, a subclass of cancer 
driver identification methods output a prioritized list of genes ranked by their cancer 
driving potential. Early approaches in this group have utilized the mutation frequency of 
each gene by comparing with background mutation rates [15–17]. However, with a care-
ful review of the existing cancer catalogues it is easy to observe that most tumors share 
only a small portion of the set of all mutated genes, giving rise to the so called tumor het-
erogeneity problem; methods solely based on mutation rates suffer from low sensitivity 
due to the existence of long-tail of infrequently mutated genes [4, 18].

One strategy that aims to tackle the long-tail phenomenon is to move from a muta-
tion-centric point of view to a guilt by association viewpoint where a correlation 
between differentially expressed genes and mutated genes are sought. This strategy 
assumes that even though different sets of genes are mutated in different patients, 
each of the candidate driver mutations tends to affect a large number of differen-
tially expressed genes. Masica and Karchin present one of the early models based 
on such a strategy by employing statistical methods for setting up the correlation 
between mutated genes and the differentially expressed genes to identify candidate 
drivers [1]. Many different models follow a similar trail by further incorporating bio-
logical pathway/network information for setting up such a correlation   [6, 19–23]. 
DriverNet is among the notable approaches employing mutations data in addition 
to gene expression and biological network data  [19]. It prioritizes mutated genes 
based on their degrees of network connectivity to dysregulated genes in tumor sam-
ples where dysregulation is determined via differential gene expression. Many subse-
quent approaches are inspired by DriverNet  [20–23]. Among them DawnRank  [20], 
the algorithm by Shi et al.  [21], and Subdyquency [23] employ, on top of the overall 
DriverNet model, versions of heat diffusion on the networks integrating data in the 
form of biological interactions, mutations, and gene expression. Heat diffusion is a 
technique employed commonly in many cancer driver gene or gene module discovery 
algorithms  [9, 24–28]. It generally serves two purposes simultaneously. On the one 
hand, since the employed interactions data is usually erroneous, diffusing any type 
of information through the network of interactions, fixes any potential issues arising 
from missing links in the network. On the other hand, via the diffusion process, it is 
possible to observe the extent of an effect such as mutation frequency of a gene, at 
various distant loci in the network. LNDriver extends the DriverNet concept by tak-
ing into account gene lengths of the mutated genes to filter out genes that are mutated 
with high probability due to their lengths [22]. It should be noted that DawnRank and 
Subdyquency differ slightly from other approaches; the former can identify patient-
specific candidate drivers and the latter employs subcellular localization information 
in addition to the data made of use in the other methods. There are other driver gene 
prioritization methods that deviate from the overall guilt by association framework, 
but nevertheless employ different types of genetic data together with the mutations 
data. IntDriver utilizes an interaction network and gene ontology data within a matrix 
factorization framework  [29]. Dopazo and Erten employ paired data to generate 
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tumor and normal interaction networks filtered with mutations and gene expression 
data, and measure the efficacy of various graph-theoretical measures in prioritizing 
breast cancer genes [6]. Note that among the discussed methods DawnRank also uti-
lizes paired data, both from the tumor and the normal samples.

We propose BetweenNet algorithm for cancer driver gene prioritization. Similar 
to the methods proposed in  [20–23], BetweenNet is also inspired by the DriverNet 
framework in that it relates the mutated genes and the so-called outlier genes cor-
responding to the dysregulated genes in each patient through a bipartite influence 
graph. However different from DriverNet and the previous other methods based on 
it, BetweenNet determines outlier genes based on the betweenness centrality values 
of the genes in personalized networks. A second contribution of BetweenNet is the 
employment of a random-walk process on the resulting influence bipartite graph. 
Random-walks have been utilized in this context previously  [21, 23]. However, our 
application of random walk with restart on the whole influence graph is quite dif-
ferent from the two-step or three-step employment of the diffusion process on a per 
patient basis described in these methods. Through extensive evaluations we demon-
strate that BetweenNet outperforms the alternative methods in recovering known 
reference genes and in providing functionally coherent rankings when compared to 
the enriched GO terms or the enriched known functional pathways.

Methods
We describe the details of the main steps of the BetweenNet algorithm in this section. 
Figure 1 provides an overview of the algorithm.

Input data sets and data preparation

In order to construct the pan-cancer cohort, we first identify the cancer types that have 
more than 10 paired measurements from normal and tumor samples in the TCGA 

Fig. 1  Main steps of the BetweenNet algorithm
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cohort [30] (Additional file 1: Table 1). We then take the union of all the samples from 
these cancer types to form the cohort. In addition to the pan-cancer data, we perform 
separate evaluations on two cancer types. These are breast cancer (BRCA) with 110 sam-
ples, lung cancer (LUSC + LUAD) with 61 samples. We download the gene expression 
(RSEM normalized values [31]) and somatic mutation data for these patients from the 
Firebrowse database (http://firebrowse.org; version 2016_01_28). We exclude the silent 
mutations in the calculation of mutation frequencies. In addition to the gene expression 
and mutations data, we also employ protein-protein interactions data which we gather 
from the H. Sapiens PPI network of the IntAct database  [32] on 18th June, 2020. We 
preprocess the IntAct network so that both interactors are proteins and both are from 
the human genome to avoid human-virus interactions. Also, we only include the interac-
tions where the type is “physical association” or one of its descendants. Next, we convert 
UniProt ids to gene symbols where we merge multiple UniProt ids for the same protein 
to a single id. The resulting network contains 15,345 nodes and 113,524 edges.

Construction of personalized networks

Let G = (V ,E) represent the reference H. Sapiens PPI network where each vertex ui ∈ V  
denotes a gene i whose expression gives rise to the corresponding protein in the net-
work. Each undirected edge (ui,uj) ∈ E denotes the interaction among the proteins cor-
responding to the genes i, j. Let P represent the set of patient samples. For each patient 
p ∈ P , we define two graphs Np and Tp that represent the PPI networks of the normal 
and tumor samples, respectively. To construct Np , we start with the reference PPI net-
work G and remove the nodes that correspond to the genes that are not expressed in the 
normal sample of the patient p. We deem genes with normalized count value less than 5 
as not expressed. To construct Tp , we remove two sets of genes: (i) genes with normal-
ized count value less than 5 in the tumor sample; (ii) genes that contain non-silent muta-
tions in the tumor sample.

Calculation of betweenness centrality values

The standard definition of the betweenness centrality ignores the length of a short-
est path. Since considering very long paths as functional relations may not be biologi-
cally meaningful, we use a variant of the betweenness centrality called k-betweenness, 
where only shortest paths of length ≤ k are included in the calculations [33]. Given an 
unweighted graph G = (V ,E) , k-betweenness value of a node that corresponds to gene i 
is defined as follows:

where σst is the number of shortest paths of length ≤ k between genes s and t, and σst(i) 
is the number of such paths that pass through gene i. We utilize the algorithm presented 
in Brandes et al. to efficiently calculate the k-betweenness values [34]. Let BN

p,i and BT
p,i 

denote the k-betweenness centrality values of the gene i in the Np and Tp graphs of the 
patient p, respectively. We define Bdiff

p,i  as |BN
p,i − BT

p,i|.

(1)
∑

∀s,t∈V ,s �=i �=t

σst(i)

σst
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Selection of outlier genes

For each gene i which exist in both normal and tumor networks, we plot the Bdiff
p,i  val-

ues across all the patients. We observe that the distribution can be approximated with a 
truncated normal distribution (Additional file 1: Figure 1). We use the truncnorm func-
tion in Python to estimate the mean and standard deviation of the distribution. A gene i 
is defined as an outlier in patient p, if Bdiff

p,i  is greater than t standard deviations from the 
mean. We repeat this process for each gene and construct a set of outlier genes for each 
patient.

Construction of the bipartite graph

Similar to DriverNet, we construct a bipartite graph B that models the relationship 
between the set of mutated genes and the outliers. The mutations partition of the bipar-
tite graph consists of the genes that have a mutation in at least one patient and the out-
liers partition consists of the outlier genes of all the patients in the cohort. Note that a 
gene j can be an outlier for multiple patients. In such a case, each occurrence of a gene 
is represented with a distinct node in the outliers partition of B. Assuming j is an outlier 
gene for patient p, let upj  be the node corresponding to it in the outliers partition. For a 
node ui in the mutations partition, edge (ui,u

p
j ) is inserted in B, if gene i is mutated in p 

and (ui,uj) is an edge in G.

Random walk on the bipartite graph

We apply a random walk on the bipartite graph B. The mutation frequencies of the genes 
are assigned as initial heat values to be diffused throughout the network during random 
walk. Let MF(i) denote the mutation frequency of gene i, that is, the number of patients 
where i has a non-silent mutation divided by the total number of patients. Note that heat 
values are assigned to genes on both sides of the bipartite graph. The random walk starts 
at a node ui in B and at each time step moves to one of ui ’s neighbors with probability 
1− β (0 ≤ β ≤ 1). The walk can also restart from ui with probability β , called the restart 
probability. This process can be defined by a transition matrix T which is constructed by 
setting Tij =

1

deg(uj)
 if (ui,uj) ∈ E , and Tij = 0 otherwise. Here, deg(uj) corresponds to 

the degree of the node uj . Thus Tij can be interpreted as the probability that a simple ran-
dom walk will transition from uj to ui . The random walk process can also be considered 
as a network propagation process by the equation, Ft+1 = (1− β)TFt + βF0 , where Ft is 
the distribution of walkers after t steps and F0 is the diagonal matrix with initial heat val-
ues, that is F0[i, i] = MF(i) . We compute the final distribution of the walk by calculating 
the F matrix iteratively until convergence.

Ranking genes

Genes in the mutations partition of the bipartite graph B are prioritized by a score that 
combines both degree information and the edge weights that are inferred with random 
walk. Assuming that win(ui) indicates the sum of incoming edge weights for gene i after 
random walk, the combined score for gene i can be defined as follows:
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Note that the win(ui) for gene i corresponds to summing the corresponding row of F for 
gene i after convergence. Once a gene is selected, we remove the corresponding node 
and its neighbors in B. After each such update of the B graph, the maximum degree 
value and the degrees of all the genes are computed again, whereas the win values are 
pre-computed and remain fixed throughout the ranking procedure.

Compiling reference gene sets

We compile known cancer genes from the databases Cancer Gene Census (CGC) [35], 
Network of Cancer Genes (NCG) [36] and CancerMine [37]. From CGC, we obtain the 
list of 723 genes that are found to be associated with cancer. We further identify the 
genes with mutation frequencies ≤ 2% , namely the rare drivers. Since the number of 
paired samples for breast and lung cancer is small, we use all available samples in breast 
and lung cohorts to compute the mutation frequencies of genes for defining rare drivers. 
For pan-cancer dataset, the number of paired samples is much larger. Therefore, we cal-
culate mutation frequencies with paired samples only. Furthermore, we filter the genes 
according to the Tumour Types column to define cancer type specific gene sets for breast 
and lung cancer. We also compile cancer type specific genes from NCG by filtering the 
primary site column. Because these cancer type specific reference gene sets are small we 
take the union of CGC and NCG cancer type specific reference genes. The third reposi-
tory, CancerMine, uses text-mining to catalogue cancer associated genes where it also 
extracts information about the type of the cancer. We compile two lists of genes that 
have at least 3 and 5 citations, respectively. Hereafter, these two reference gene sets are 
named CancerMine3 and CancerMine5. The number of genes in each reference set for 
each cancer type (i.e., lung, breast) and for pan-cancer cohort are available in the Addi-
tional file 1: Tables 2-4. For lung cancer, we are unable to use CancerMine5 as a reference 
due to its small size.

Enrichment analysis with gene ontology and pathway databases

For Gene Ontology (GO) [38] term analysis, we use goatools. We download go-basic.
obo file from http://geneontology.org/docs/download-ontology/ on June 26th of 2019. 
We restrict the gene annotations to level 5 by ignoring the higher-level annotations and 
replacing the deeper-level category annotations with their ancestors at the restricted 
level.

For the pathway analysis, we use the AllEnricher tool with Reactome and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [39] pathways. Both goatools and AllEn-
richer use Fisher’s exact test to calculate p-values and False Discovery Rate (FDR) for 
multiple testing correction. We use 0.05 as the p-value cutoff to determine significant 
enrichments.

(2)Si = α
deg(ui)

max∀uj∈mutations deg(uj)
+ (1− α)

win(ui)

max∀uj∈mutationswin(uj)
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Results
We implemented the betweenness centrality measurement algorithm in C++ using the 
LEDA (Library of Efficient Data types and Algorithms) library. The remaining steps are 
implemented in Python using NetworkX library. All the code and necessary datasets 
are available at https://github.com/abu-compbio/BetweenNET. We compare Between-
Net results against those of five other existing cancer driver prioritization methods: 
DriverNet, Subdyquency, DawnRank, IntDriver, and Dopazo and Erten’s prioritization 
method based on betweenness centrality values, hereafter named only Betweenness. 
Note that for the Betweenness method, although the original method ranks all genes, 
here we only rank mutated genes using the same method for a fair comparison, since all 
the other methods under consideration are designed to rank mutated genes only. Driv-
erNet is chosen due to its close connection to our work. DawnRank and Subdyquency 
are included as they extend and improve over DriverNet. Betweenness is included as a 
baseline since our method utilizes a variation of betweenness differences in identifying 
outlier genes. Finally, IntDriver is included to represent the performance of a distinct 
strategy that is based on matrix factorization. We evaluate the methods with three data-
sets: lung cancer, breast cancer, and pan-cancer samples.

Sensitivity of BetweenNet to its parameter settings

We assess the sensitivity of BetweenNet to its parameterization by varying the param-
eters t, β , α and k for lung, breast and pan-cancer samples (Additional file 1: Figures 5 to 
18). Among them, the largest change is observed when the outlier detection threshold 
t is increased from 0.5 to larger values. Varying the other parameters results in mini-
mal changes where the changes can only be discerned at the 5th decimal point and 
beyond. We choose the following setting as it leads to the best performance: t = 0.5 , 
β = 0.4 , α = 0.5 , k = 3 . Overall, these tests show that BetweenNet is robust to a variety 
of parameter settings.

Evaluations with respect to reference cancer gene sets

We first compare the methods based on their ability to recover the sets of known cancer 
genes. For this, we compute true positive and false positive rates for the top 1000 genes 
and calculate the area under the ROC (AUROC). Figure  2 shows the ROCs obtained 
from lung cancer data. In Fig. 2a all CGC genes are used as reference, whereas in Fig. 2b 
genes with mutation frequencies ≤ 2% , namely the rare drivers, are included. Figure 2c is 
obtained with CancerMine3 as the reference set. BetweenNet achieves a higher AUROC 
value than all the alternatives for CGC and CancerMine3 reference sets and it has the 
same AUROC value with DawnRank for CGC-rare reference sets. For CGC and Can-
cerMine3, the ranking of the other methods is the same. Namely, the second ranked 
method is DawnRank which is followed by Subdyquency and DriverNet with simi-
lar performance with respect to each other. Finally, Betweenness and IntDriver are the 
worst ranking methods. On the other hand, for the CGC-rare reference set, BetweenNet 
and DawnRank both perform the best whereas the second ranking method is Between-
ness. This is followed by DriverNet and IntDriver which have the same AUROC value. 
Subdyquency performs significantly worse than all the other methods for the CGC-
rare reference set. The fact that Betweenness performs much better than DriverNet, 
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Subdyquency and IntDriver is interesting and suggests that most existing methods per-
form much better in retrieving drivers with larger mutation frequencies. Comparisons 
using the union of CGC-Lung and NCG-Lung reference sets show that BetweenNet has 
a significantly better performance than all the other models in retrieving lung cancer 
specific reference gene sets (Additional file 1: Figure 2). Here, Subdyquency ranks sec-
ond, which is followed by DawnRank, DriverNet, Betweenness and IntDriver. Overall, 
these results illustrate the superiority of BetweenNet as it can find both rare and com-
mon drivers in lung cancer accurately.

Figure 3 depicts analogous results for the breast cancer data. BetweenNet achieves the 
top performance with CGC and CGC-rare reference sets. For both reference sets, the 
ranking of the other methods from best to worst is the same and as follows: DawnRank, 

Fig. 2  The fraction of recovered reference genes is shown with a ROC curve for lung cancer data a CGC​ 
genes are used as reference. b CGC​ rare genes are used as reference. c CancerMine3 genes are used as 
reference

Fig. 3  The fraction of recovered reference genes is shown with a ROC curve for breast cancer data a CGC​ 
genes are used as reference. b CGC​ rare genes are used as reference. c CancerMine3 genes are used as 
reference
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Subdyquency, Betweenness, DriverNet and IntDriver. For CancerMine3, DawnRanks 
shows the best performance. BetweenNet’s AUROC value is slightly worse than Dawn-
Rank. This is followed by BetweenNess and Subdyquency. As in the other results of 
breast cancer, DriverNet and IntDriver are the worst performing methods. Subdyquency 
ranks the best in retrieving breast cancer specific reference gene sets (union of CGC-
Breast and NCG-Breast)(Additional file  1: Figure  3a). BetweenNet’s performance is 
slightly worse than Subdyquency. The other methods rank as follows: DawnRank, Driv-
erNet, Betweenness, IntDriver. Results with respect to the CancerMine5 reference set 
are similar to those obtained with CancerMine3 reference set and are available in the 
Additional file 1: Figure 3b.

Lastly, Fig. 4 shows the results with respect to the pan-cancer dataset. For the CGC 
reference gene set, Subdyquency performs the best. BetweenNet ranks the second, 
which is followed by DawnRank, DriverNet and IntDriver, respectively. Interestingly, 
Betweenness performs the worst in this evaluation. The employed methods rank dif-
ferently when the reference set is changed to CGC-rare. BetweenNet and DawnRank 
have a similar performance and perform the best. DriverNet and Betweenness rank 
the second and third, respectively. Subdyquency ranks the fourth which is surprising 
given its top performance with the full CGC reference set. For the CancerMine3 refer-
ence set, Subdyquency’s AUROC is the highest. BetweenNet’s performance is slightly 
worse than Subdyquency. DawnRank and DriverNet give the same performance and 
rank third. Betweenness and IntDriver are the worst performing methods. Results 
with CancerMine5 are similar to those of CGC and CancerMine3, respectively. These 
are available in the Additional file 1: Figure 4.

Evaluations based on functional and pathway analysis

Reference cancer driver gene sets might be incomplete and biased. As such, rather than 
only finding exact matches between the output gene sets and the reference gene sets, we 
also define other metrics that measure how well the associated functions of the genes 

Fig. 4  The fraction of recovered reference genes is shown with a ROC plot for pan-cancer data a CGC​ genes 
are used as reference. b CGC​ rare genes are used as reference. c CancerMine3 genes are used as reference
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of the two sets match. One such metric is based on GO consistency (GOC) and the 
other is based on pathway information. For the former, we find the GO terms enriched 
in the output gene sets and in the reference gene sets, and check whether the corre-
sponding GO terms overlap. The underlying assumption is that the reference cancer 
genes and the predicted cancer genes should have similar biological functions. We find 
the enriched GO terms in the ranked gene sets of varying total sizes from 100 to 500 in 
the increments of 100 for each method under consideration. We repeat the same GO 
term enrichment analysis with the reference gene set. We then compute the GOC value 
between the enriched GO terms of the ranked gene set and those of the reference set, 
which is defined as the ratio between the size of the intersection of the two sets and 
the size of the union  [40]. Figure  5 shows the GOC values calculated for each cancer 
type and pan-cancer cohort. We observe that BetweenNet ranked genes for lung cancer 
perform the best for almost all total size values. Here, Subdyquency’s low performance 
is notable since it performs similar to DriverNet and Betweenness in retrieving CGC 
genes for lung cancer. For breast cancer, DawnRank ranks the best in four out of five 
total size values, whereas BetweenNet is the second best. This is followed by Between-
ness, Subdyquency and DriverNet, respectively. Finally, IntDriver performs significantly 
worse than the other methods. For pan-cancer data, there is no clear winner. Between-
Net, DriverNet and DawnRank perform close to each other whereas Subdyquency’s per-
formance is the best for total sizes of 400 and 500. Similar to the results obtained from 
breast cancer data, IntDriver’s performance is notably worse than all the other methods.

We repeat the same type of analysis with pathways as well, this time replacing GO 
term enrichment with pathway enrichment. Namely, we identify the pathways enriched 
in the reference set of genes and the set of genes output by a ranking method. We 
then compute the number of pathways common in both of these sets. Figure 6 shows 
the results with Reactome reference pathways for all cancer types. For lung cancer, the 
best method varies for each total size value, where BetweenNet outperforms the other 
models with a large margin for total sizes 100 and 300. On the other hand, DawnRank 
results in the top consistency values for total sizes 200 and 400. Finally for total size 400, 

Fig. 5  GO consistency values for a lung cancer b breast cancer c pan-cancer cohort



Page 11 of 16Erten et al. BMC Bioinformatics           (2021) 22:62 	

these two methods share the same performance. For breast cancer, we observe a similar 
results where BetweenNet and DawnRank perform the top. Here, DriverNet’s perfor-
mance is notably worse than the other methods. For pan-cancer, BetweenNet gives the 
top consistency value in four out of five cases. Interestingly, Subdyquency ranks lower 
than BetweenNet, DawnRank and DriverNet in contrary to its top performance in eval-
uations with respect to CGC on pan-cancer data. It is less difficult to identify the top 
performing method when KEGG pathways are used as reference Fig. 6. For lung cancer, 
BetweenNet gives the best performance for four out five cases, whereas for breast cancer 
and pan-cancer data BetweenNet ranks top for all total size values. Subdyquency’s low 
performance is again notable in these evaluations.

Analysis of BetweenNet ranked genes
We further explore BetweenNet’s top 30 ranking genes for each dataset (Additional 
file 1: Table 5-7). Among the CGC genes that appear in our top 30 genes for breast can-
cer, EWSR1 can be found by BetweenNet only whereas ERBB2 and HSP90AB1 can be 
found by BetweenNet and Betweenness only. We observe that these three genes have 

Fig. 6  Reactome pathway consistency values for a lung cancer b breast cancer c pan-cancer cohort
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lower mutation frequencies than the other CGC genes that appear in our top 30 genes. 
Namely, HSP90AB1 is mutated in a single patient and the other two genes are mutated 
in two patients. Similarly, for lung cancer CGC genes SMAD2 and REL can only be 
detected by BetweenNet and Betweenness within the top 30 ranking genes. Again, these 
genes have the lowest mutation frequencies among the CGC genes in our top 30 rank-
ing genes. In order for BetweenNet to rank these genes higher than other genes with 
larger mutation frequencies, many connections must exist between these genes and the 
outlier sets of the patients that they are mutated in. The fact that these genes cannot 
be recovered by DriverNet or Subdyquency suggests that defining outlier genes based 
on betweenness centrality provides an advantage over defining them based on gene 
expression.

We also check the top 30 ranking genes that do not appear in CGC. Among these, 
LRRK2 consistently ranks within our top 30 genes for lung cancer, breast cancer and 
pan-cancer datasets. LRRK2 is also ranked within the top 30 genes by DawnRank, 
DriverNet and Betweenness for breast cancer dataset; and by all the other methods 
except IntDriver for lung cancer and pan-cancer datasets. Indeed, multiple studies have 
reported that individuals with LRRK2 mutations have an increased risk of developing 
cancers [41–43]. Another gene which is ranked among our top 30 genes for all three 
datasets is RIF1. RIF1 is also identified by DriverNet and DawnRank in all three datasets. 
Supporting this finding, RIF1 is recently shown to promote tumor growth and cancer 
stem cell-like traits in non-small-cell lung carcinoma by activating the Wnt/β-catenin 
signaling pathway. On the other extreme, there are also genes which are only identified 
by BetweenNet. MAGED1 is one such example for breast cancer. Tian et al have shown 
that BRCA2 suppresses cell proliferation via stabilizing its downstream target MAGED1 
[44]. As such, MAGED1 is strongly associated with cancer development by mediating 
the growth-suppressing function of BRCA2 [45].

Discussion
Having shown that BetweenNet performs better than existing methods in most of the 
evaluations, we also investigate the added value of defining outliers based on between-
ness centrality. To this end, we replace the outliers of BetweenNet with the outliers 
found by DriverNet for the same data sets. We observe that BetweenNet performs sig-
nificantly better than its modified version and DriverNet for all cancer types and for all 
reference gene sets (Additional file 1: Figures 16-18). These results show that the outlier 
detection strategy of BetweenNet is critical to its performance.

Lastly, we analyze the running time requirements of the main steps of the BetweenNet 
algorithm. Computing the betweenness values of all the nodes in an unweighted graph 
of n nodes and m edges requires O(nm) time, since starting from each node a breadth-
first search (BFS) is executed until completion to find the shortest path distances nec-
essary for the betweenness values. However since we only consider the shortest paths 
within a diameter of k, the number of edges traversed at each BFS is bounded by δ2k+2 , 
where δ denotes the maximum degree of all the nodes in the graph G representing the 
input PPI network. Thus the running time of the betweenness step of BetweenNet is 
O(|P||V |δ2k+2) . Let a denote the average number of outliers per patient and µ denote 
the number of genes mutated at least once in the set of samples P. The running time of 
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the random-walk step is bounded by O((|P|a+ µ)3r) , where r denotes the number of 
times the F matrix is calculated iteratively until convergence. We observe the a and µ 
values of 870 and 4,335 for lung cancer; 390 and 4,096 for breast cancer; 627 and 11,105 
for pan-cancer datasets respectively. We observe that the random walk converges after 
3 iterations for all three datasets. For the actual ranking step, the main operations are 
those of iteratively selecting and removing the maximum rank mutated gene and updat-
ing the current ranks of the remaining mutated genes that are also connected to the out-
liers of the removed gene. Although a more efficient structure such as a priority queue 
could be employed, since this is not the dominantly time-consuming step of the algo-
rithm we opt for simple node deletions from B followed by a linear search for maximum 
ranking mutated gene. A removed mutated gene is on average incident to O(δa) edges 
in B. Thus a single removal of a mutated gene and its neighbors in B and the following 
degree updates costs O(δ2a+ µ) time and the overall running time of the actual ranking 
step is O(µ(δ2a+ µ)).

Conclusions
We propose BetweenNet, a novel cancer driver gene prioritization approach that integrates 
genomic data with the connectivity within PPI networks. One contribution of Between-
Net is the identification of patient specific dysregulated genes with a measure based on 
betweenness centrality on personalized networks. BetweenNet ranks mutated genes by 
their effects on dysregulated genes. To characterize these effects, a bipartite influence graph 
is formed to represent the relations between the mutated genes and dysregulated genes 
in each patient. Another contribution of BetweenNet is the employment of a random-
walk process on the resulting influence bipartite graph. Through careful comparisons, we 
show that both the use of betweenness centrality metric and the employment of random 
walk have added values in identification of cancer driver genes. We also demonstrate that 
BetweenNet outperforms the alternative methods in recovering known reference genes and 
in providing functionally coherent rankings with three large-scale TCGA datasets: lung 
cancer, breast cancer, and pan-cancer samples. Additionally, we find that many of our top 
ranking genes that do not appear in reference cancer gene sets have roles in cancer devel-
opment based on existing literature. Taken together, our results indicate that BetweenNet 
effectively integrates genomic data and connectivity information to prioritize cancer driver 
genes.
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