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Stochastic modeling of aging cells reveals
how damage accumulation, repair, and cell-
division asymmetry affect clonal
senescence and population fitness
Ruijie Song1,2 and Murat Acar1,2,3,4*

Abstract

Background: Asymmetry during cellular division, both in the uneven partitioning of damaged cellular components
and of cell volume, is a cell biological phenomenon experienced by many unicellular organisms. Previous work based on
a deterministic model claimed that such asymmetry in the partitioning of cell volume and of aging-associated damage
confers a fitness benefit in avoiding clonal senescence, primarily by diversifying the cellular population. However,
clonal populations of unicellular organisms are already naturally diversified due to the inherent stochasticity of
biological processes.

Results: Applying a model of aging cells that accounts for natural cell-to-cell variations across a broad range of
parameter values, here we show that the parameters directly controlling the accumulation and repair of damage
are the most important factors affecting fitness and clonal senescence, while the effects of both segregation of
damaged components and division asymmetry are frequently minimal and generally context-dependent.

Conclusions: We conclude that damage segregation and division asymmetry, perhaps counterintuitively, are not
necessarily beneficial from an evolutionary perspective.

Background
Even though the somatic cells of multicellular organisms
accumulate significant amounts of aging-related damage
throughout the lifetime of the organism, their young pro-
geny generally start with low levels of protein damage. A
number of mechanisms have been proposed to explain
this phenomenon, generally involving some special way of
eliminating damage in germ cells, or elimination of
damaged germ cells [1–5]. A major hallmark of aging in
higher organisms is the depletion or dysfunction of stem
cells, which accumulate various forms of molecular
damage during the aging process [6–8]. For unicellular
organisms such as the budding yeast Saccharomyces
cerevisiae or the fission yeast Schizosaccharomyces pombe

undergoing mitosis, there is no somatic/germ cell distinc-
tion. Yet both S. cerevisiae and S. pombe exhibit lineage-
specific aging [9–14]. In the budding yeast, for instance,
the mother cell is known to accumulate aging-related
damage markers such as extrachromosomal rDNA circles
(ERCs) as it ages and eventually enters replicative sene-
scence and dies, while the daughter cells that bud off from
the mothers are mostly protected from the accumulated
ERCs and generally enjoy a full replicative lifespan even if
born from old mother cells [15]. Similar segregation of
damaged proteins has been observed during the binary
fission of S. pombe, where oxidatively damaged carbony-
lated proteins are concentrated in one of the two daughter
cells – in this case, the one carrying the previous birth
scar [9]. Lineage-specific aging has also been observed in
the bacteria Caulobacter crescentus and Escherichia coli
[10, 16–19], leading some to analogize the lineage-specific
aging behavior in unicellular organisms to the somatic/
germ cell distinction in higher ones.
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The observation of damage-partitioning behavior even
in unicellular species naturally raises the question of
whether there is any selective advantage resulting from
it. Using a deterministic model based on ordinary diffe-
rential equations (ODEs) with fixed parameter values,
Erjavec and colleagues examined two forms of asym-
metry during the cell-division process, which we will
denote as division asymmetry and damage segregation,
respectively. The former refers to the asymmetric parti-
tioning of cell volume (as naturally seen in S. cerevisiae)
between the two cells after division, while the latter
refers to the asymmetric partition of damaged cellular
components. They concluded that such behavior indeed
confers a fitness advantage: under their model, both
damage segregation and division asymmetry allowed the
population to survive a higher level of protein damage
without entering clonal senescence than it otherwise
would have [9]. The researchers attributed this effect to
the ability of these mechanisms to diversify individuals
within a population; in the absence of these mecha-
nisms, the population of cells in their simulations are
entirely homogeneous [9].
The fact that real cells are not homogeneous at all

raises questions about the reliability of these predictions
made based on such a fully deterministic model. It is
well known that the expression level of genes can fluc-
tuate substantially, even among cells that are genetically
identical or indeed in the same cell over time [20–26].
This kind of fluctuations, commonly known as noise,
can come from a variety of sources: cell-to-cell variations
in the abundance of transcription and translation ma-
chinery (such as RNA polymerase, general transcription
factors, and ribosomes), for instance, or the stochastic
nature of transcription events that take place in any
single cell [20, 27]. Indeed, it has been shown that
stochastic noise can cause drastic differences between
reality and what a deterministic model predicts [28].
Bringing a more realistic approach to the study of aging

cells in terms of damage accumulation, segregation beha-
vior, and their effects on clonal senescence and fitness, here
we investigate whether, and under what circumstances,
damage segregation and division asymmetry confer fitness
advantages in freely dividing unicellular organism popula-
tions when noise is taken into account. We focus on two
forms of fitness advantages: resistance against clonal senes-
cence, and increased rates of population growth. We find
that damage mitigation and the rate of damage accumula-
tion play major roles in determining the fitness of the cells.

Materials and methods
Modeling of cell growth and division in aging cells
We consider a cell that grows exponentially in volume
during the cell cycle [29] and accumulates damage as it
grows (Fig. 1a). Cells are assumed to accumulate damage

(D) at a constant rate rdmg, and reduce damage via two
sources, actively by repair and passively by dilution due
to cell division and volume growth:

dD
dt

¼ rdmg−rrepair Dð Þ−D
V
dV
dt

Here, D is an abstract value representing the concentra-
tion of damaged cellular components and other harmful
artifacts of aging. For simplicity, we assume that the forms
of damage represented by D are freely diffusible, segre-
gable, and repairable, and that there are no other sources
of damage affecting cell growth. The rate of damage repair
rrepair as a function of D is assumed to follow Michaelis-
Menten kinetics with parameters vmax and km:

rrepair Dð Þ ¼ vmaxD
km þ D

The cell volume (V) grows exponentially at a rate that
is slowed by accumulated damage:

dV
dt

¼ rgrowthV

1þ Dα

where rgrowth is the maximum growth rate constant and
α is a nonlinearity coefficient.
In the initial population of cells, each cell starts at an

initial volume Vi. A cell is assumed to divide when it
reaches a generation-dependent critical volume Vcrit

(Fig. 1b). This critical volume increases linearly with rep-
licative age (Additional file 1: Table S1), consistent with
the observations on single budding yeast cells [26]. The
parameters of volume growth during cell cycle were
selected to roughly correspond with the microscopic
growth dynamics measured in budding yeast cells
(Additional file 1: Table S1) [30], with an approximate
expected damage-free doubling time of 100 min for
symmetrically dividing cells. We separated global
noise into two categories: noise in cell volume control
(nv), and noise in damage and its repair (nd). In each case,
global noise was simulated as a random perturbation
applied to each corresponding parameter: the initial
parameter value of each individual cell was sampled from
a normal distribution N(μ = p, σ = np), where p is the
selected mean parameter value from Additional file 1:
Tables S1-S2 and n is the applicable noise level.
During cell division, we consider the original cell

(“mother”) to retain its identity and produce a new
daughter cell, for ease of reference. The accumulated
damage is distributed between mother and daughter
cells as follows. Let D be the damage level of the mother
cell before division, then the damage level of the newly
produced daughter cell is equal to (1 − s)D, where s in
the range [0, 1] is the parameter quantifying the extent
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Fig. 1 a Illustration of the model. The cell grows until it reaches a critical volume and divides. It accumulates damage over time, which slows down
volume growth. The accumulated damage can also be repaired. There is no separate mechanism for killing a cell due to damage, because high level
of accumulated damage will prevent a cell from dividing and cause it to be rapidly overtaken by faster-dividing cells. b The cell volume module of
the model. The volume grows exponentially until it reaches a generation-dependent critical volume and the cell divides (blue dashed line). c Two
mechanisms of particular interest in this study: segregation of damaged proteins in mother cells, and division asymmetry of cell volume. Yellow dots
indicate normal proteins, while green dots indicate damaged proteins. d Illustration of the exponential growth of simulated cell population. An initial
population of 2000 cells were simulated for 6000min with periodic resampling (blue dashes) every time the population size exceeds 2 million cells.
The red dashed line indicates the expected population size without sampling
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of damage segregation, and the damage level of the

mother cell after division is DðRþsÞ
R , where R is the ratio of

the volume between the mother and daughter compo-
nents after division. In other words, the total amount of
the damage (equal to the damage level times volume) is
constant across the specific cell division event.
At each cell division, we assumed that each daughter

cell partially inherits its mother’s parameter values for all
parameters listed in Additional file 1: Tables S1-S2. For
each parameter p, the new value pnew follows the relation-
ship pnew = c pmother + (1 − c) pfresh, where pfresh is a para-
meter value freshly sampled from the normal distribution
applicable to that parameter, pmother is the parameter value
for the mother cell, and c is a constant in the range [0, 1]
characterizing the level of inheritance: when c = 0, the
daughter gets a new parameter value from the same distri-
bution used to generate the parameter values used for the
initial population of cells, while when c = 1, the daughter
perfectly inherits its mother’s parameter value.
Since the simulated cells, just like real ones grown

without nutrient limitations, exhibit exponential growth
and can easily overwhelm the computing capacity if left
unchecked (Fig. 1d), we kept the population size low by
means of periodic resampling as a mimicry of using a
turbidostat [24]. Because cells slow to divide due to
damage are expected to be rapidly overtaken by faster-
dividing cells, we did not include a separate procedure
for killing cells due to accumulated damage.
To keep the generality of the model intact, we de-

termined the parameter values to use in our model by
combinatorially selecting from a grid spanning a wide range
(Additional file 1: Table S2), with a total of 7.185 million
sets of parameter values tested. The parameter bounds are
hand-selected to cover the arguably biologically plausible
range. The noise parameters were capped at 10% because
each parameter is perturbed independently, and so the
noise in each parameter is expected to combine to produce
higher noise in the overall phenotype. We chose the range
of rdmg so that the maximum will virtually immediately
block cell growth in the absence of repair, and then chose
the range of the repair parameters to match the range of
rdmg. These parameters are also sampled on a logarithmic
scale so as to capture a wide variety of damage strengths.
For each parameter set, we recorded its population size

trajectory over the course of the simulation. From these
numbers we calculated the average doubling time of the
population. If the calculated average doubling time was
greater than 1500min, it was treated as 1500min for the
purpose of analysis. Each simulation was repeated three
times and the average doubling time resulting from the
three repeats was calculated. For parameter sets producing
reasonable fitness levels (< 400min doubling time), we do
not observe significant changes in the computed doubling
time if the initial 600min of the trajectory is omitted. This

is expected since these populations relax rapidly to the
steady state and the initial conditions have very limited im-
pact when averaged over the long course of the simulation.

Simulations of the stochastic model
The model as described above was implemented in C++
using custom-written code, utilizing the SUNDIALS
library [31]. The complete set of model parameters are
summarized in Additional file 1: Tables S1-S2.
Simulations for each parameter set chosen according to

the tables above were performed from an initial set of 2000
cells. Every 40min, the number of cells in the population
was recorded and the fold-change in population growth
from the previous time point was calculated, then the
population was randomly resampled down to 2000 cells.
For the illustration of exponential growth as shown in

Fig. 1e, the simulation was performed as described above,
except that

– The population size was recorded every 20 min;
– Resampling was not performed until the population

size reached 1000 times the initial sample size
(i.e., 2 million cells);

– The population size for the resampling was 50 times
the initial sample size (100,000 cells).

Analysis of simulation results
We quantified the effect of changing the value of a
parameter P on fitness (resistance against clonal senescence
or increased rate of population growth) as follows. For sim-
plicity, we denote the nine parameters of the model P1,… ,
P9, which can take N1,… , N9 possible values, respectively
(Additional file 1: Table S2). Without loss of generality, let
P1 be the parameter P we want to examine. Then, we parti-

tion the 7.185 million combinations into G1 ¼
Q9

i¼2 Ni

groups of N1 combinations each, where the combinations
in each group only differ in the value of P1 (and have the
same values of P2,… , P9). For each group, we then com-
puted a minimum and a maximum doubling time, from
which we determined whether changing the value of P1 for
this particular set of parameter value combination could
cause a significant change in fitness (for clonal senescence,
a difference in outcome; for growth rate, defined as more
than 5% difference between minimum and maximum
doubling time). Repeating this for all G1 groups, we found
that, in M1 of them, changing the value of P1 resulted in a
significant change in fitness. Then, the frequency at which a
change in the value of P1 could significantly alter fitness
was M1/G1. The total number of groups for all parameters
combined is G = ∑Gi = 12.56 million. For clonal sene-
scence, we found changes in M = ∑Mi = 1.41 million
groups. For fitness, we found significant changes in
M = ∑Mi = 2.38 million groups.
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Quantification of relative abundance
A key aspect of our analysis is the quantification of the
relative abundance of each possible value of a parameter
Q among the parameter combinations where changes in
the value of a different parameter P has a significant ef-
fect (> 5%) on fitness. We denote the possible values of
Q as Q1,… , Qn, and also denote the number of com-
binations where Q =Qi and changes in P can cause a
change (> 5%) in fitness as ZP

i . We further partition
ZP
i into three groups (colored blue, green and red in

the figure panels) based on the value of P at which
maximum fitness is attained (i.e., ZP

i ¼ ZP
i ðblueÞ þ ZP

i ð
greenÞ þ ZP

i ðredÞ ), blue if P is at its largest possible
value, red if P is at its smallest possible value, and
green if P is at an intermediate value.
Since the possible values of Q are arbitrarily selected from

a large grid, the values are not necessarily equally respon-
sive to fitness changes. Thus, as a normalization measure,
we normalized the value of ZP

i (and the partitioned)
by the total number of combinations where Q =Qi

and changes in the value of any other parameter can
cause a change (> 5%) in fitness. In other words, the

normalized value is SPi ¼ ZP
iX

P

ZP
i

. Similarly, for each

color C the normalized value is SPi ðCÞ ¼ ZP
i ðCÞX

P

ZP
i

.

The value of SPi can vary significantly depending on
the identity of the parameter P. To make the abun-
dance value more uniform across panels, we further
multiplied SPi and SPi ðCÞ for each color by a scaling
factor equal to 100X

i

SPi
to produce the normalized abun-

dance of Qi plotted in each panel. Thus, the normalized
abundance points within in each panel add up to a con-
stant value of 100.

Results
Dissecting the key parameters affecting the clonal
senescence outcome
In our model, a cell reaches senescence when its growth
rate is slow enough as to virtually stop dividing. A clonal
population of cells exhibits clonal senescence if every
single cell in the population reach senescence. For the
purposes of our analysis, we classified a cell population as
clonally senescent if it exhibits an average doubling time
greater than 1000min over the course of the simulation,
which is more than 10 times the expected doubling time
in damage-free conditions.
To determine the degree of importance of a model

parameter for clonal senescence, we examined how likely
it is for changes in the value of one parameter to alter

the senescence outcome. More formally, for each para-
meter P, we partitioned the 7.185 million parameter
value combinations into disjoint groups such that the
combinations in each group only differ in the value
of P, and calculated the fraction of groups whose
combinations diverge in the clonal senescence outcome.
While the absolute value of this fraction is necessarily
dependent on the values of the other parameters we
picked in the study, the relative value is still indicative of
whether the parameter is relevant generally, or only when
the other parameters are in a relatively narrow region of
the parameter space.
Changes in the damage rate rdmg caused a different

senescence outcome in 93% of parameter combinations,
and changes in the repair rate vmax caused a different
outcome in 60% of cases. These observations were in-
tuitive and reaffirmed the validity of the model setup, as
the strongest effect was exerted on the amount of accu-
mulated damage, with the possible values of the parame-
ters spanning a wide range. As expected, we find the
most-fit combination to be when the damage rate is
lowest and the repair rate is highest (Fig. 2a, as indicated
by red and blue coloring of their respective bars).
Changes in damage-related noise (nd), the Michaelis

constant (km) for repair, and the nonlinearity of damage’s
effect on growth (α) are less likely to affect the clonal
senescence outcome. In only 4.6% of the parameter
combinations did a change in α affect the clonal sene-
scence outcome; for km, the number is slightly higher at
6.1%, while for nd, it is lower at 2.3%. These parameters
also affect the amount of accumulated damage or its
effect on the cell, but the effects are weaker and less
direct. When changes in these parameters did affect the
senescence outcome, the direction is essentially uniform:
in almost all of the cases, clonal senescence is avoided
by having high noise, low km, or low α (Fig. 2a, color).
This again makes sense: a lower km means a higher
repair rate, while a lower α means a higher growth
rate (when D > 1, which is necessary for clonal sene-
scence to even come into play because if D < 1 then
the volume growth rate can’t fall below half of the
maximum growth rate). In the borderline cases where
noise matters, moreover, higher noise means a better
chance to come across good parameter values that could
sustain the population.
Damage segregation and division asymmetry only

affected the clonal senescence outcome in a very small
fraction of parameter combinations – 1.6 and 0.4%
respectively (Fig. 2a). We did find that damage segre-
gation is overwhelmingly beneficial in the few cases where
it did matter: in 99% of the cases in which segregation
made a difference on the senescence outcome, some
damage segregation (represented as the blue and green
portions of the bar) was needed to avoid clonal senescence
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(Fig. 2a). On the other hand, division asymmetry is more
likely to be detrimental, if not overwhelmingly so: in 60%
of the cases where asymmetry made a difference in the
senescence outcome (represented by the red portion of
the bar), lack of asymmetry is necessary to avoid clonal
senescence, while in the remaining 40% some level of
asymmetry is necessary.
We therefore conclude that damage segregation and

division asymmetry are not the main effectors of the
senescence outcome. Interestingly, neither mechanism is
capable of altering the total amount of damage accumu-
lated in the population, which appears to be the key de-
terminant. Thus, changing the damage accumulation
rate and the maximum repair rate are most likely to
cause (or avoid) clonal senescence.

Characterizing the effect of age-associated damage on
population fitness
Clonal senescence, which implies a complete loss of fit-
ness, is a drastic outcome, and it is certainly conceivable
that a parameter might affect population fitness

incrementally without causing the entire population to be-
come senescent. We therefore examined the ability of
each model parameter to affect the growth rate (or fitness)
of the population (Fig. 2b). For this analysis, we calculated
the doubling time output of our model using the param-
eter sets determined as described in the previous section,
and examined the cases where the change in the value of
one parameter could lead to a significant change (> 5%) in
doubling time. For each parameter P, we again partitioned
the 7.185 million parameter value combinations into
disjoint groups such that the combinations in each group
only differ in the value of P, and calculated the fraction of
groups whose maximum and minimum doubling time are
different by more than 5%.

The parameters most likely to affect the senescence
outcome are also most likely to have strong fitness effects
As in the output of clonal senescence, we found that
rdmg and vmax were the two parameters most likely to
cause a fitness differential (> 5% in terms of doubling
time). Changing the damage accumulation rate rdmg is

Fig. 2 a Sensitivity analysis for the clonal senescence outcome. The parameter combinations tested were partitioned into groups such that all
combinations in each group differs only in the value of one parameter. The fraction of groups with divergent senescence outcome is plotted for
each parameter. b Sensitivity analysis for the doubling time outcome. The parameter combinations tested were partitioned into groups such that
all combinations in each group differs only in the value of one parameter. The fraction of groups where the minimum doubling time is at least
5% below the maximum is plotted for each parameter. Level of transparency indicates the size of the effect. In each panel, the color indicates
the value of the parameter corresponding to the most-fit combination in the group: red indicates that the smallest parameter value is the most
fit; blue indicates that the largest parameter value is the most fit; and green indicates that an intermediate parameter value is the most fit
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capable of significantly altering fitness in more than 99%
of all parameter combinations used, while changes in the
maximum repair rate vmax significantly altered fitness in
78% of the parameter combinations (Fig. 2b). Other
damage-related parameters are also more likely to affect
fitness: changes in km and α are each capable of affecting
fitness in about one-fifth (23 and 22%, respectively) of
the parameter combinations tested, compared to 3% for
the volume-module noise, the parameter that turned out
to be the least likely to cause fitness differences (Fig. 2b).
For three of the four parameters, moreover, the effect of
a parameter value change on fitness is monotonic (as in-
dicated by the prevalence of one color in the figures): a
higher vmax (Additional file 1: Figure S2) virtually always
improved fitness, while a higher rdmg (Additional file 1:
Figure S4) or km (Additional file 1: Figure S3) decreased
fitness. This is expected given the functional forms linking
these parameters to the model. α, on the other hand,
turned out to be a parameter with a double-edged impact
on fitness, though unsurprisingly (Figs. 2b, 3, blue and red
color). Introducing ultrasensitivity means that some
damage levels will have less impact on fitness while others
will have more. Depending on the other parameter values,
then, the impact of α on fitness could and did go in both
directions (Fig. 3).

Effect of damage segregation on fitness
Somewhat surprisingly, we found that changes in damage
segregation affected fitness in only 7% of the parameter
value combinations used, compared to 6% for division
asymmetry, and 7% for inheritance level and damage-
related noise (Fig. 2b). To gain additional insights into
what other parameters may interact with damage segre-
gation to produce a fitness effect, we next examined those
cases in which damage segregation could cause a signifi-
cant change in population fitness. We found that most of
the cases where damage segregation produced a fitness
effect were seen when the damage rate was low and the
repair rate was even lower (Fig. 4e, g), meaning that dilu-
tion is the primary method of damage reduction instead
of active damage repair, giving significantly more promi-
nence to the ability to sequester damage in the mother
compartment. Another interesting observation related to
these cases of parameter values is that higher values of α
caused damage segregation to behave more like a double-
edged sword: when α = 4, there were as many cases when
damage segregation reduced fitness as when it improved
fitness (Fig. 4f; compare red vs blue). This can be ex-
plained by the fact that the ultrasensitivity of fitness to
damage level caused by the high nonlinearity diminishes
the impact of damage segregation on fitness when the
damage level is low but amplifies the effect when a thresh-
old is crossed – in either direction. Once the damage rate
becomes higher, however, damage segregation becomes

more of a double-edged sword, causing fitness decreases
about as often as it causes fitness increases. As a modular
validation of the modeling approach we took in this study,
consistent with previous reports [32], we also found that
the highest damage rate (1min− 1) means that segregation
is more likely to be beneficial compared to lower damage
rates (0.1 or 0.2 min− 1) (Fig. 4e).

Effect of division asymmetry on fitness
We next examined the effect of introducing division
asymmetry on population doubling time or fitness.
Introduction of division asymmetry caused significant
changes (> 5%) in doubling time in only 6% of the
parameter value combinations used, making it the
parameter the second least likely to alter the fitness out-
come (Fig. 2b). Unlike damage segregation, the effects of
division asymmetry on fitness are more likely to be
double-edged: in 40% of the cases where a change in the
division asymmetry parameter significantly altered fit-
ness, the highest fitness was seen when there was no
division asymmetry (Fig. 2b, red color). Like damage seg-
regation, this behavior was mostly seen when the
damage rate was low and the repair rate was even lower
(Fig. 5e, g), corresponding to situations where dilution is
the primary means of reducing damage levels. Moreover,
such detrimental effects from division asymmetry were
only seen when some damage segregation was present
(Fig. 5c, red line). We interpret this result as follows.
The smaller daughter cell usually takes longer to reach
the volume threshold before it is ready to divide for
the first time, which drags down the volume growth
(and therefore dilution) rate at the population level.
This effect is more pronounced when the damage
segregation mechanism enriched the larger mother
compartment with damage, slowing the growth of the
mother compartment and dilution of damage. At higher
rates of damage accumulation and repair, division asym-
metry also becomes predominantly beneficial (Fig. 5e,
g, blue line).

Effect of noise on fitness
Just as in the case for clonal senescence, we found that
in most cases, higher noise levels had a beneficial effect
on population fitness (Figs. 6 and 7, blue); this was par-
ticularly pronounced when the inheritance level was
high (Figs. 6d, 7d). We interpret this as due to the high
inheritance level permitting the propagation of “good”
sets of parameter values selected by chance (and is more
likely to be chosen if the noise value is high).

Summary
Overall, we found that model parameters directly affecting
the accumulation of damage and its effect on the growth
rate are the most likely to affect fitness. The introduction
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of damage segregation or division asymmetry, on the
other hand, had a significant effect on population fitness
in only a small fraction of the cases and in a context-
dependent manner; however, when there was an effect, it
was far more likely to be beneficial than detrimental. The
fitness impact of asymmetric partitioning of cell volume
was similarly context-dependent: when dilution was the
predominant mechanism for damage removal, it was more
likely to be detrimental, whereas if active damage repair
was predominant, it was more likely to be beneficial.

Discussion
The expansive explorations above demonstrate that
damage segregation and division asymmetry impacts
clonal senescence only in a small fraction of borderline
cases once we account for the natural diversity of the
cell population. We note that our model differs from the
model used in the previously published work [9] in more
ways than just the use of randomized coefficients. For
instance, our model keeps track of single-cell volume
explicitly, while the previous model used the protein

Fig. 3 a-h Relative representation of the other parameters in the cases where changing the nonlinearity of the effect of damage on volume
growth rate caused a significant (> 5%) fitness difference. In each panel, the color indicates the level of nonlinearity resulting in maximum fitness:
red indicates that no nonlinearity (α = 1) is the most fit; blue indicates that maximum nonlinearity (α = 4) is the most fit; and green indicates that
an intermediate level of nonlinearity is the most fit

Song and Acar BMC Bioinformatics          (2019) 20:391 Page 8 of 14



count as a proxy for volume. Using protein count for
cell volume inevitably led to some questionable assump-
tions where the partitioning of damaged proteins ne-
cessitated the inverse partitioning of undamaged proteins
to maintain the protein count (and so the volume) of the
daughter cell. Similarly, the sole mechanism for damaged
protein to exert a detrimental effect in the previous model
was by negative feedback on the production of new pro-
teins, which required the amount of damaged proteins to
be roughly comparable to that of intact proteins to have a

meaningful effect, in turn requiring likely unrealistic
amounts of damage. Our model avoids these problems by
using a more abstract “damage level” concept.
Uneven distribution of aging factors between daughter

cells following cell division is a well-known phenomenon
that has been observed in a variety of unicellular orga-
nisms, and asymmetric partitioning of volume has simi-
larly also been observed in many unicellular organisms. In
the present work, we comprehensively examine the fitness
impact of these asymmetric damage and volume

Fig. 4 a-h Relative representation of the other parameters in the cases where changing the level of damage segregation caused a
significant (> 5%) fitness difference. In each panel, the color indicates the level of damage segregation resulting in maximum fitness: red
indicates that no segregation is the most fit; blue indicates that full segregation is the most fit; and green indicates that an intermediate
level of segregation is the most fit
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partitioning schemes and find that they, perhaps
counterintuitively, have minimal fitness impact most of
the time, as long as the natural diversity of the population
is taken into account. When the repair rate was low and
dilution was the predominant form of damage elimination,
we found damage segregation to be more likely to be
beneficial for fitness but division asymmetry to be gener-
ally detrimental. On the other hand, when active damage
repair was the predominant damage elimination mechan-
ism operating with a high damage repair rate, division

asymmetry was found to be generally beneficial for fit-
ness, while damage segregation had a double-edged im-
pact, becoming more beneficial when the damage
accumulation rate was very high.
Overall, our results here indicate that parameters

governing the accumulation and elimination of cellular
damage are the most important determinants of popula-
tion fitness. Even though asymmetric partitioning of either
cell volume or age-associated damage might seem benefi-
cial at first glance, neither mechanism actually eliminates

Fig. 5 a-h Relative representation of the other parameters in the cases where changing the level of division asymmetry caused a significant
(> 5%) fitness difference. In each panel, the color indicates the level of division asymmetry resulting in maximum fitness: red indicates that no
division asymmetry is the most fit; blue indicates that maximum asymmetry (1:4) is the most fit; and green indicates that an intermediate level
of asymmetry is the most fit
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any damage on the population level, and, as we show here,
they are far from being consistently beneficial evolutio-
narily. Why, then, are these mechanisms seen in some real
organisms? To start with, the fitness impact of both me-
chanisms is context-dependent; depending on the values
of other parameters, representing conditions both intrinsic
and extrinsic to the cell, introduction of damage segre-
gation and/or division asymmetry may be either beneficial
or detrimental. Thus, it is possible that the organisms
exhibiting damage segregation and/or division asymmetry

fall within the section of the parameter space where such
mechanisms are beneficial rather than detrimental, at least
for some portion of their lifespan. And even if this region
of the parameter space is not a common occurrence, the
importance of avoiding irreversible senescence when it is
encountered may be sufficient to preserve the mechanism
evolutionarily, similar to how obscure nutrient pathways
are preserved due to their critical importance under
certain growth conditions. Second, in many cases, intro-
duction of these mechanisms resulted in minimal fitness

Fig. 6 a-h Relative representation of the other parameters in the cases where changing the level of damage-related noise caused a significant
(> 5%) fitness difference. In each panel, the color indicates the level of damage-related noise resulting in maximum fitness: red indicates that
no damage-related noise is the most fit; blue indicates that maximum damage-related noise (10%) is the most fit; and green indicates that an
intermediate level of damage-related noise (5%) is the most fit
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impact, but even minimal levels of fitness impact can
accumulate over time and drive evolutionary selection.
Moreover, several natural forms of damage are resistant to
active repair, and thus may fall within the region of the
parameter space where damage segregation is beneficial.
For instance, carbonylated proteins can form aggregates
that are resistant to proteasome digestion [33, 34], and
ERCs are self-replicating, suggesting that their effective
repair rate – accounting for such self-replication – is
probably also low [15, 35]. Finally, for asymmetric

partitioning of damage in particular, it has been re-
ported that some organisms like S. pombe and E. coli
only exhibit this behavior during high levels of exter-
nal stress [14, 17, 32, 36], suggesting that they may
actually have evolved mechanisms to activate or in-
activate damage partitioning depending on the region
of parameter space they are in, just like other stress
response mechanisms that are only activated in the
presence of stress and can be epigenetically inherited
by daughter cells [37, 38].

Fig. 7 a-h Relative representation of the other parameters in the cases where changing the level of volume module noise caused a significant
(> 5%) fitness difference. In each panel, the color indicates the level of volume module noise resulting in maximum fitness: red indicates that
no volume module noise is the most fit; blue indicates that maximum volume module noise (10%) is the most fit; and green indicates that an
intermediate level of volume module noise (5%) is the most fit
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Conclusions
In this study, we comprehensively examine the effects of
age-associated damage accumulation and removal on the
phenotypes of clonal senescence and population fitness.
Contrary to the results from a previous study that was
based on a fully deterministic model with fixed para-
meter values [9], we found that neither damage segre-
gation nor division asymmetry played a major role in the
avoidance of clonal senescence once the natural diversity
of the population is taken into account. Only in a small
fraction of borderline cases did introduction of damage
segregation eliminated clonal senescence or improve
population fitness. As for division asymmetry, not only
did it have an effect on clonal senescence or population
fitness in an even smaller fraction of cases, but that
effect also is frequently detrimental. While we acknow-
ledge that the exact fraction will depend on the set of
values and range chosen for the parameters, we believe
that the relative value is still a good and useful indicator
of the approximate importance and effect size of the
parameters. We conclude that damage segregation and
division asymmetry, perhaps counterintuitively, are not
necessarily beneficial from an evolutionary perspective.
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