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Abstract: This work explores for the first time the potential contribution of microRNAs (miRNAs)
to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite
of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein
defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for
patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD)
and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone
(SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively,
in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid
metabolism, CNS development and homeostasis, and neuropathological processes, highlighting
region- and disease-specific profiles of miRNA expression. Moreover, by using a computational
analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs.
STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases.
These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the
aim of developing effective treatments.
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1. Introduction

The GM2-Gangliosidosis, Tay-Sachs (TSD; OMIM Entry #272800) and Sandhoff (SD; OMIM Entry
#268800) diseases are autosomal recessive fatal neurodegenerative disorders caused by the deficiency of
the lysosomal enzyme β-Hexosaminidase (Hex, E.C.3.2.1.52). The latter exists in two major isoenzymes:
the β-Hexosaminidase A (HexA), composed of α-subunit (HEXA gene; chromosome 15) and β-subunit
(HEXB gene; chromosome 5), and the β-Hexosaminidase B (HexB) composed of β-subunits [1,2].
Mutations in the HEXA gene cause the absence of HexA and lead to TSD [1,2]. Mutations in the
HEXB cause the absence of both HexA and HexB and lead to SD [1,2], where, as a consequence,
arises the β-Hexosaminidase S, a minor Hex isoenzyme consisting of α-subunit and lacking of activity
in vivo [3,4]. Both HexA and HexB hydrolyze N-acetylgalactosamine/N-acetylglucosamine residues
from glycoproteins, glycolipids and glycosaminoglycans, but only HexA is capable to hydrolyze the
GM2 ganglioside [5,6]. Thus, the absence of HexA and/or HexB leads to the storage of undegraded
substrates in the lysosomes, culminating with cell dysfunction and death [1]. The main hallmark of
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both TSD and SD is the accumulation of undegraded GM2 ganglioside and related lipids within the
nervous system [7,8], leading to progressive neurodegeneration that ends with death in the second or
third year of the life of affected children [8]. No cure is currently available, although many groups are
testing several experimental approaches in animal models [1,9–13]. The main challenges hampering
the development of successful treatments are mostly related to the complex and yet not fully elucidated
pathogenesis of the diseases, due to the general inaccessibility of human tissues, in particular at the
first stage of the disease. At present, much of our understanding of GM2 gangliosidosis derives
from studies focused on the analysis of the correlation between Hex deficiency, lipid storage, and
neurodegeneration/ neuroinflammation [9–14] in the SD and TSD animal models [14–16].

Recently, microRNAs (miRNAs) are emerging as key contributors to the etiology of diseases
and to the clinical aberration observed even in monogenic disorders [17–20]. miRNAs are a class
of non-coding RNAs that regulate gene expression in animals and plants at post-transcriptional
level [21,22]. In fact, by the microRNA Responsive Element, miRNAs bind messenger RNA (mRNA)
targets to seed sequences, and activate their degradation/translational inhibition [21,22]. The ratio
of miRNA-mRNA is heavily unbalanced as one miRNA may regulate hundreds of mRNAs [22–25].
Moreover, it has been demonstrated that the activity of miRNAs is controlled by the concentration of
their targets and that the latter may influence the function of a miRNA toward its other targets [26,27].
The role of miRNA has been documented in several physiological and pathological conditions [17,27].
miRNAs regulate cell cycle [28], cellular metabolism [29], epigenetic mechanisms [30], immunity
mechanisms [31], stem cell differentiation [32] and cell reprogramming [33]. Of note, abnormal
expression of miRNAs should affect the same biological processes that they have regulated and, as a
consequence, lead to numerous diseases [17,18,34,35]. miRNA-mediated regulation of gene expression
plays a key role in fate determination of neuronal cells, neuronal circuit development, maturation
and function [36,37]. Also, miRNAs are often dysregulated in neurodegenerative disorders [38–45].
Currently, there are few studies exploring the involvement of miRNAs in Lysosomal Storage Diseases
(LSDs) [20,46,47], while the potential impact of dysregulated miRNA expression in the pathogenesis of
GM2 gangliosidosis has not been studied.

In this work, we investigated the contribution of miRNAs in the GM2 gangliosidosis. We performed an
integrated computational analysis of a panel of 12 miRNAs selected based on their predicted involvement in
lipid metabolism [48,49], regulation of CNS development and homeostasis [48,49], and neuropathological
processes (i.e., neurodegeneration, inflammation) that characterize GM2 gangliosidosis.

We performed the study in two brain regions, the subventricular zone (SVZ) and the striatum
(STR), that, respectively, represented the neurogenesis and neurodegeneration states of adult murine
TSD and SD animal models [15,16,50]. The SVZ and STR have anatomical contiguity [51,52] and
functional connections [53–55], but they have a distinctive cellular organization. The SVZ is the
major stem cell niche in the mammalian post-natal/adult brain [56,57] and comprises neural stem cells
endowed with intrinsic biological features that distinguish them from lineage-committed progenitors
and mature brain cells [58]. The STR is part of the basal ganglia of the forebrain [51,59,60]. It comprises
GABAergic neurons, different classes of GABAergic and Cholinergic interneurons that manage multiple
features of cognition (e.g., decision-making, reinforcement, motivation, both motor and action planning,
and reward perception [59,60]). Of note, the STR is highly neurodegenerated in GM2 gangliosidosis
and, as a consequence, almost all of the abovementioned neurologic functions are impaired [9,61,62].

We found an altered expression of some of the miRNAs investigated in SD vs. WT and TSD vs.
WT, and identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) profile of
miRNA expression. We also showed the correlation of predicted microRNAs pathways with molecular
events described in SD and TSD. The overall findings of this study may contribute to the understanding
of pathophysiology of GM2 gangliosidosis.
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2. Results

2.1. Isolation of SVZ and STR tissues from the brain of adult mice

The SD mice (hexb−/−) recapitulate the severe infantile form of SD (abundant storage of GM2
ganglioside in the nervous system, progressive neurodegeneration starting from 3 months of age and
death at 4 months) [9,15,16]. The TSD mice (hexa−/−) recapitulate the mild form of TSD (delayed
storage of GM2 ganglioside in the nervous system, slow progressive neurodegeneration, and normal
life-span [15,16,50]). The SVZ and the STR were isolated from the brain of SD and TSD mice at
the end-stage of the disease (4 and 18 months old mice, SD and TSD, respectively) [16] and from
age-matched wild-type (WT) mice according to described protocols [63] (Figure 1a). In Figure 1b are
reported representative Periodic acid–Schiff (PAS) staining of vibratome-cut brain coronal sections
from TSD, SD, and age-matched WT controls in order to highlight glycolipid storage (one of the main
hallmarks of the disease, [9,15,16,62]. Brain coronal section showed that the periventricular region,
and specifically the lateral SVZ, were PAS-negative in SD, TSD, and WT controls (Figure 1b, asterisks).
Conversely, a more intense and widespread PAS-positive staining was detected in the in Lateral septal
nucleus as well as in the STR parenchyma of TSD and SD mice as compared to WT controls, in which
PAS+ myelin-rich patches are expected as described by Mengler and co-authors [64] (Figure 1b).
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2.2. Differential miRNA expression analysis in SVZ and STR of SD and TSD mice 

We analyzed a panel of 12 miRNAs (miR-9, miR-9*, miR-19a, miR-29a, miR-33, miR-34a, 
miR-124, miR-126a, miR-128, miR-133a, miR-137, and miR-181c) selected based on their involvement 
in controlling: neurogenesis, neurodevelopment, neurodegeneration, inflammation, stem cell 

Figure 1. SVZ and STR tissues isolated from WT, TSD and SD mice. (a) Schematic of brain dissection:
with two cuts we isolate a slice of tissue comprising the lateral ventricles. The periventricular area
(SVZ; orange) and a portion of striatum (STR; green) are carefully dissected out from both hemispheres
using small forceps. Black, lateral ventricles (LV); white, corpus callosum (cc); lateral septal (LS).
(b) Representative images of PAS staining on vibratome-cut brain coronal sections from SD, TSD and
WT mice. The asterisks indicate the SVZ region. The dotted ellipse indicates representative pathological
changes Scale bar: 300 µm.

2.2. Differential miRNA expression analysis in SVZ and STR of SD and TSD mice

We analyzed a panel of 12 miRNAs (miR-9, miR-9*, miR-19a, miR-29a, miR-33, miR-34a, miR-124,
miR-126a, miR-128, miR-133a, miR-137, and miR-181c) selected based on their involvement in
controlling: neurogenesis, neurodevelopment, neurodegeneration, inflammation, stem cell properties
and lipid metabolism (from literature open access papers; miRBASE [48]; Figure S1 for details).

In Figure 2 is reported the differential expression analysis of all miRNAs in SVZ and STR from SD
and TSD mice with respect to the WT counterparts (blue dashed line). In SVZ-SD we found 5 miRNAs
significantly changed as compared to SVZ-WT, with 2 miRNAs upregulated (miR-124, miR-128) and
3 miRNAs downregulated (miR-9, miR-126a, miR-137) (heat maps in Figure 2a). In STR-SD the
expression of 7 miRNAs was significantly different as compared to the STR-WT, with 5 miRNAs
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upregulated (miR-29a, miR-34a, miR-124, miR-128, miR-133a), and 2 miRNAs downregulated (miR-33,
miR-126a) (heat maps in Figure 2a). In SVZ-TSD the expression of 3 miRNAs was significantly varied
as compared to the SVZ-WT, with 1 miRNA upregulated (miR-29a), and 2 miRNAs downregulated
(miR-33, miR-128) (heat maps in Figure 2b). In STR-TSD the expression of 7 miRNAs was significantly
changed as compared to STR-WT, with 1 miRNA upregulated (miR-9) and 6 miRNAs downregulated
(miR-19a, miR-33, miR-34a, miR-124, miR-128, miR-133a) (heat maps in Figure 2b).
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Figure 2. Heat map of miRNAs expression profile. (a) SVZ-SD and STR-SD; (b) SVZ-TSD and STR-TSD.
Color nuance represents relative increase (green)/decrease (red) in miRNAs expression with respect to
the related controls, SVZ-WT and STR-WT (blue dashed line). The dark color indicates a comparable
expression of miRNAs in GM2 gangliosidosis mice and WT counterparts.

Next, we applied a filtering approach that compares only significant differentially expressed
miRNAs in SVZ-SD vs. SVZ-WT, STR-SD vs. STR-WT, SVZ-TSD vs. SVZ-WT, STR-TSD vs. STR-WT,
respectively, adjusted for p-value < 0.05 and Log2 fold change < 0.5 or >1 (Table 1). Accordingly, in
SVZ-SD vs. SVZ-WT and STR-SD vs. STR-WT we identified 4 miRNAs downregulated (miR-9, miR-33,
miR-126a, miR-137) and 2 miRNAs upregulated (miR-124, miR-128) (Table 1); whereas in SVZ-TSD vs.
SVZ-WT, STR-TSD vs. STR-WT we identified 5 miRNAs downregulated (miR-19a, miR-33, miR-34a,
miR-124, miR-128) and 1 miRNAs upregulated (miR-29a) (Table 1).

Table 1. miRNAs differentially expressed in SVZ and STR areas from SD and TSD mice.

Brain Area miRNA Log2 FC p-Value

SVZ-SD miR-9 −1.06 0.027
SVZ-SD miR-124 1.39 0.005
SVZ-SD miR-128 1.12 0.044
SVZ-SD miR-137 −1.69 0.032

STR-SD miR-33 −1.25 0.043
STR-SD miR-124 1.03 0.013
STR-SD miR-126a −1.12 0.046

SVZ-TSD miR-29a 1.21 0.038
SVZ-TSD miR-33 −1.32 0.004
SVZ-TSD miR-128 −1.16 0.016

STR-TSD miR-19a −2.67 0.020
STR-TSD miR-33 −1.94 0.027
STR-TSD miR-34a −2.12 0.030
STR-TSD miR-124 −2.03 0.005
STR-TSD miR-128 −1.73 0.017

p < 0.05 was considered statistically significant. miRNA, microRNA; FC, fold-change.
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From now, all data refer to the panel of miRNAs differentially expressed with statistical significance
and Log2 fold change (Table 1). Interestingly, some of these miRNAs are shared between the two brain
areas in both GM2 gangliosidosis mice, while other are characteristics of one region (Venn diagram
in Figure 3). Thus: (i) miR-124 is shared by SVZ-SD, STR-SD and STR-TSD; (ii) miR-128 is shared by
SVZ-SD, STR-TSD and SZV-TSD; (iii) miR-33 is shared by STR-SD, STR-TSD and SVZ-TSD; (iv) miR-9
and miR-137 are exclusive of SVZ-SD; (v) miR-126a is distinctive of STR-SD; (vi) miR-19a and miR-34a
are typical of STR-TSD; (vii) miR-29a is proper of SVZ-TSD (Figure 3).
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2.3. Target prediction and gene list analysis in SVZ and STR of SD and TSD mice

Next, we performed a miRNA-mRNA target prediction analysis in order to generate a miRNA
signature of brain-specific molecular pathways and potentially related to the pathogenesis of GM2
gangliosidosis. To avoid false positive microRNA targets prediction, only targets estimated by at least
6 algorithms plus all experimentally validated targets were taken into account (Figure 4).Int. J. Mol. Sci. 2019, 20, x 6 of 18 
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The summary of target counts is shown in Table 2. miR-9 and miR-124 were the miRNAs with the
highest number of count targets, whereas miR-126a and miR-137 were the miRNAs with the lowest
number of total count targets. However, all selected miRNAs guaranteed the prediction of a list of
target genes > 200. The predicted genes’ list for each miRNA was then forwarded to DAVID external
resources, and filtered for brain tissue-specific gene expression (Figure 4, Table 2).

Table 2. Counts of validated and predicted target genes for each miRNA.

miRNA Validated
Genes

Brain-specific
Validated
Genes

Predicted
Genes

Brain-Specific
Predicted
Genes

Total
Counts/Total
Brain Genes

miR-9 531 304 810 370 1341/674
miR-19a 27 17 453 232 480/249
miR-29a 44 6 528 242 572/248
miR-33 16 0 362 164 378/164
miR-34a 56 28 996 477 1052/505
miR-124 461 203 810 360 1271/563
miR-126a 9 0 207 110 216/110
miR-128 56 6 1136 518 1192/524
miR-137 33 19 247 119 280/138

This step allowed us to identify genes with a potential different expression that were correlated
with each candidate miRNA in SVZ and STR brain regions. Hence, we identified 1899 total target
genes in SVZ-SD regulated by miR-9, miR-124, miR-128 and miR-137; 837 total target genes in STR-SD
regulated by miR-33, miR-124 and miR-126a; 936 total target genes in SVZ-TSD regulated by miR-29a,
miR-33, miR-128; 2005 total target genes in STR-TSD regulated by miR-19a, miR-33, miR-34a, miR-124
and miR-128 (Figure 5).Int. J. Mol. Sci. 2019, 20, x 7 of 18 
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2.4. The impact of miRNA meta-signature on cellular pathways and biological processes in SVZ and STR of SD
and TSD mice

All identified target genes were further analyzed for enrichment analysis by the PANTHERDB
v.14.1 classification system web tool [65]. This software allowed acquisition of knowledge about the
biological relevance of each miRNA. We obtained signatures of the Gene Ontology Biological Process
(GO BP), Panther pathways and Reactome pathways (Figure 6, Figure 7, Figure 8 and Figure S2).
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In order to correlate these findings with the pathophysiology of GM2 gangliosidosis, wherever
possible, we performed a comparative analysis of the enriched pathways (p < 0.05) in the
neurodegenerative area (STR) versus the neurogenetic area (SVZ). The comparative analysis allowed
us to erase the shared pathways between SVZ and STR in each model and to highlight over-represented
STR-specific processes (Figure 6, Venn diagram). We identified 13 GO BP, 4 Panther pathways and 4
Reactome pathways enriched in STR-SD (p-adjusted < 0.05) (Figure 6a); 22 GO BP, 12 Panther pathways
and 21 Reactome pathways enriched in SVZ-SD (p-adjusted < 0.05) (Figure 6a); 31 GO BP, 14 Panther
pathways and 16 Reactome pathways enriched (p-adjusted < 0.05) in STR-TSD (Figure 6b); 7 GO BP,
15 Panther pathways and 12 Reactome pathways enriched (p-adjusted < 0.05) in SVZ-TSD (Figure 6b).
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Enriched Panther pathways and Reactome pathways in STR-SD are most frequently associated
with cell signaling (Integrin signaling pathway, RET signaling pathway, Signal Transduction pathway),
PI3 kinase pathway, axon guidance mediated by netrin, p53 pathways feedback loops 2 and generic
transcription pathway (Figure 7a). The enriched GO BP included regulation of adenylate cyclase
activity, actin filament organization, cytoskeleton organization and G-protein coupled receptor signaling
pathway, cellular processes, RNA biosynthetic process, cellular biosynthetic process, transcription by
RNA Polymerase II (Figure 7b).

Enriched Panther pathways and Reactome pathways in STR-TSD envisaged pathways frequently
associated with cell signaling (5HT1 and 5HT2 type receptor mediated signaling pathway, Inflammation
mediated by chemokine and cytokine signaling pathway, Notch signaling pathway, Ras pathway,
Nicotinic acetylcholine receptor signaling pathway, Endothelin signaling pathway, Heterotrimeric
G-protein signaling pathway, RET signaling, Sema4d in semaphorin signaling), cytoskeletal regulation
by Rho GTPase, membrane trafficking, Sema4d mediated inhibition of cell attachment and migration,
vesicle mediated transport and neurotransmitter receptors and postsynaptic signal transmission
(Figure 8a). The most enriched GO BP included regulation of biosynthetic process, cytoskeleton
organization, cell morphogenesis in neuron differentiation, programmed cell death, intracellular
protein transport, apoptotic process, intracellular signaling transduction, axogenesis, regulation of cell
motility, protein phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway
and regulation of cellular component organization (Figure 8b).

2.5. Identification of miRNA-mRNA target-relationship in enriched pathways

Finally, we performed a Gene-miRNA-Network meta-analysis in order to identify the genes of
each enriched pathways down-stream of each miRNA (Figure 9). The main enriched pathways and
target genes are reported in Table S1 (supplementary file). Of note, some genes were down-stream
of several miRNAs while some/other genes were shared among different pathways, confirming the
crosstalk activity of miRNAs.
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3. Discussion

In this work, we explored the contribution of miRNAs in the pathophysiology of the GM2
gangliosidosis, Tay-Sachs and Sandhoff diseases. We identified a panel of 9 miRNAs (miR-9, miR-19a,
miR-29a, miR-33, miR-34a, miR-124, miR-126a, miR-128 and, miR-137) with altered expression in
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the SVZ and the STR of both SD and TSD mice with respect to the age-matched WT counterparts.
We documented a peculiar distribution and composition of the abovementioned miRNAs in the SVZ
and STR of both GM2 gangliosidosis animal models, with some miRNAs shared by both brain regions
and others exclusive of SVZ or STR. Thus, we identified unique miRNAs profiles for SVZ and STR
in SD and TSD mice and revealed a STR- or SVZ-specific signature of altered pathways in SD or
TSD. After elaboration with computational analysis, we highlighted molecular interplays potentially
associated with the neurodegenerative condition in SD and/or TSD mice.

In STR-SD, the miRNA profile was composed of miR-33, miR-124, and miR-126a. The latter
was STR-SD-specific. The miRNA cluster has several common predicted downstream pathways that,
if altered, may concur to the neurodegenerative process in SD. For instance, miR-33, miR-124, and
miR-126a control Netrin3 and the netrin-receptor (Dcc) genes within Axon netrin pathway, which
meta-analysis correlated with the abnormal dendritic-like growth processes described in feline GM2
gangliosidosis [66,67], and with the impaired neurite outgrowth in the retina documented in SD
mice [68]. Moreover, miR-33, miR-124 and miR-126a regulate the Integrin pathway that include genes
involved in the regulation of cell survival, cell proliferation, cell differentiation, cell adhesion, spreading
and migration. Within these target genes we highlighted the Rag GTPase, a class of proteins involved
in the activation of the recruitment of mTORC1 to the lysosome by aminoacids, a pathway associated
with dysfunctions of the lysosomal compartment [69].

In STR-TSD, we identified an miRNA profile composed of miR-19a, miR-33, miR-34a, miR-124,
and miR-128. Among these, miR-19a and miR-34a were STR-TSD-specific. Yet, the computational
analysis revealed that miR-34a, miR-124, and miR-128, and to a lower extent, miR-33 and miR-19a,
govern different genes involved in cytoskeletal organization, neurotransmission, inflammation,
membrane trafficking, and vesicle-mediated transport. All these pathways correlated with biological
processes that are altered in GM2 gangliosidosis, in particular with target genes of the vesicle-mediated
transport pathways. It has been shown that, due to primary defects in lipid catabolism in LSDs, the
storage of sphingolipids in the lysosomes hampers the intracellular distribution of cholesterol, leading
to the alteration of the lipid membrane composition and, consequently, affecting the trafficking of
sphingolipids and proteins [70]. In this regard, in attempt to develop a therapeutic treatment for TSD,
we have demonstrated that HexA delivered in the culture medium was efficiently up-taken by TSD
fibroblasts, but the enzyme failed to reach the lysosomes in a sufficient quantity to guarantee the
hydrolysis of the GM2 ganglioside to GM3 ganglioside. We interpreted these results as a consequence of
the lipid catabolic alteration that affected the correct sorting of the recaptured HexA within the cells [71].
Further evidence correlating the alteration of lysosomal enzymes trafficking and miRNAs activities
derives from one of the target genes of miR-34a, the Cation-dependent mannose-6-phosphate receptor
(M6PR), that represents the main mechanism for endocytosis of the lysosomal enzymes. The M6PR
transports manno-6-phosphorylated lysosomal enzymes, including HexA and HexB, from the Golgi
Apparatus to the lysosomes or to the plasma membrane and, via receptor-mediated endocytosis, from
the cell surface to lysosomes [72,73]. We also highlighted Sortilin, a receptor required for the transport
of protein from the Golgi Apparatus to lysosomes via M6PR-independent pathway [74], as a predicted
target under the control of miR-128. Other predicted genes down-stream of miR-34a and miR-124
are involved in the networks of neurotransmitter receptors and postsynaptic signal transmission.
These miRNAs are potentially involved in the dysfunction of the GABAergic neurons and GABAergic
interneurons in the STR-TSD, as shown by the disappearance of the myokymia and improvement in
the ataxia after the administration of GABAergic drugs Gabapentin and Tiagabine in one case of adult
GM2 gangliosidosis, B1-variant [75]. Finally, we focused on target genes of miR-33 involved in the
Ca2+ transport from/into the endoplasmic reticulum such as Calcium/Calmodulin Dependent Protein
Kinase II Gamma (CAMK2G) that, in neurons, may partake in the rise of dendritic spines, formation of
synapses, and maintenance of synaptic plasticity. There is no direct evidence describing the role of
CAMK2G in GM2 gangliosidosis. However, alterations of calcium homeostasis in the endoplasmic
reticulum have been described for GM2 gangliosidosis as well as for other LSDs [76]. For instance, it has
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been demonstrated that GM2 ganglioside inhibits calcium re-uptake into the endoplasmic reticulum
by decreasing the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) [77].

In SVZ-SD, the miRNA profile consisted of miR-9, miR-124, miR-128 and miR-137. Here, miR-9
and miR-137 are exclusive to SVZ-SD. The computational analysis emphasized unique downstream
target pathways in SVZ-SD that do not overlap with STR-SD. This envisages genes associated with
neurotransmitter receptors and growth factors. Among them, we highlighted a correlation between the
Hexosaminidase metabolism and the activity of Epidermal growth factor receptor (EGFR), inasmuch as
the ganglioside GM3 is one of its negative modulators [78]. Additionally, it has been shown that EGFR
activity is associated with the abnormal accumulation of heparan sulfate in mucopolysaccharidosis IIIB,
due to the absence of the lysosomal enzyme α-N-acetylglucosaminidase [79]. Target genes controlled
by miR-33 and miR-128 belong to the Insulin-like growth factors (IGF) pathways and are abundant
also in the brain. In particular, the IGFII binds to the plasma membrane IGF-II/mannose-6-phosphate
receptor taking part in the sorting processes allowing M6P-tagged proteins - such as lysosomal
enzymes- to be up-taken from the plasma membrane for lysosomal delivery [80]. The synergy of miR-9,
miR-33, miR-124 and miR-137 also control axon guidance genes involved in the Slit Robo pathway,
and inflammation-related genes involved in chemokine and cytokine signaling pathway, which is
particularly relevant in GM2 gangliosidosis [81]. We also underlined the Sialic acid metabolism
pathways, under the activity of miR-128, which is relevant for the synthesis of gangliosides and other
glycosphingolipids (the most abundant sialoglycans in neural cells) [82].

In SVZ-TSD, we identified an miRNA profile composed of miR-29a, miR-33, and miR-128, with
miR-29a being SVZ-TSD-specific. Yet, the computational analysis highlighted pathways that were not
shared with STR-TSD. Axon guidance mediated by netrin is downstream to miR-29a and miR-33, while
the Axon guidance mediated by Slit Robo, the Transforming Growth Factor beta signaling (TGF-ß), the
Synthesis of Phosphatidylinositol phosphates (PIPs) at the plasma membrane and the Synthesis of
PIPs at early endosomes membrane pathways were downstream to miR-33 and miR-128. A recent
work has correlated some of the abovementioned pathways with LSDs. It was demonstrated that in a
model of mucolipidosis II, the loss of carbohydrate-dependent lysosomal sorting affects the activity
of several cathepsin proteases via TGF-β [83]. Other important pathways downstream to miR-29a
include the Insulin/IGF pathway, the protein kinase MAP kinase signaling cascade, Phosphoinositide
3-kinases (PI3 kinase) pathway, neurotransmitters pathway and Integrin signaling pathway that, as
reported above, might be correlated with biological processes altered in GM2 gangliosidosis.

Interestingly, among the miRNAs investigated, miR-124 and miR-128 were expressed in opposite
direction in SD and TSD mice. In fact, miR-124 was upregulated in STR-SD and downregulated in
STR-TSD, whereas miR-128 was upregulated in SVZ-SD and downregulated in SVZ-TSD. We speculated
that this tailored expression might correlate with the different features and disease progression in SD
and TSD mice [15,16].

In conclusion, these results showed altered expression of several miRNAs in the SVZ and STR
of SD and TSD mice whose predicted target genes belong to signaling/biological pathways with
documented or suggested dysregulation in GM2 gangliosidosis as well as in other LSDs. By exploring
GM2 gangliosidosis pathophysiology at the molecular level, we highlighted a novel correlation between
the activity of miRNAs, neurogenesis (SVZ) and neurodegeneration/neuroinflammation (STR) in SD
and TSD murine models. The robustness of our findings is validated by the characteristics of the
murine models used, because WT, SD and TSD mice are inbred animals and each model has identical
genotype. The meta-data provided by the computational analysis performed here may be a suitable
tool for better elucidating the mechanisms downstream to the primary storage, which may contribute to
the progression of GM2 gangliosidosis neuropathology, thus aiding the developing of more proficient
therapeutic approaches.
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4. Materials and Methods

4.1. Animal Models

SD (hexb−/−, kindly provided by Platt F. M.) and TSD mice (hexa−/−) were generated as previously
described [15,50] and were bred in the SPF animal house at the San Raffaele Scientific Institute.
Genotyping was performed by DNA extraction from tail tips according as described previously [84].
C57/bL6 (Charles-River, Calco, LC, Italy) and hexb+/+ littermates were used as WT controls for hexa−/−

and hexb−/−mice, respectively. All procedures involving mice were performed according to protocols
approved by an internal Animal Care and Use Committee (IACUC #791) and were reported to the
Italian Ministry of Health (Authorisation n.923/2016-PR, released on 5 October 2016).

4.2. Tissue Dissection

SD (4 months of age; n = 5), TSD (18 months of age; n = 5), and age-matched control mice (WT,
n = 5) were sacrificed by overdose of Avertin. Brains were isolated and olfactory bulbs were removed.
A coronal slice comprising the periventricular subventricular zone (SVZ) and the striatal region (STR)
was cut. The periventricular tissue and the central portion of the STR were then carefully dissected out
from both hemispheres of the same tissue slice. Dissected tissues were washed in PBS and immediately
frozen in liquid nitrogen. The tissues (SVZ or STR) from the two hemispheres of the same brain were
pooled in one tube.

4.3. Periodic Acid Shiff (PAS) Staining

Mice were anesthetized intraperitoneally with Avertin and perfused with 4% paraformaldehyde
(PFA) in PBS. Brains were removed, equilibrated for 24 h in 30% sucrose in PBS and quickly frozen in
optimal cutting temperature compound (OCT). Then, 20-µm-thick serial coronal cryostatic sections
were processed for PAS. The cryostatic sections were washed twice in bidistilled water, and then
incubated for 10 min in 1% Periodic Acid (Sigma Aldrich, St. Louis, MO, USA). After a rapid wash in
bi-distilled water, sections were stained for 20 min with Shiff Solution (Sigma Aldrich, St. Louis, MO,
USA) and then washed for 20 min in tap water. Subsequently, slices were dehydrated in increasing
ethanol gradients and xilene, and finally mounted with EUKITT. Samples were visualized with a
Nikon Eclipse E600 microscope. Images were acquired using a Nikon DMX 1200 digital camera and
ACT-1 acquisition software (Nikon, Tokyo, Japan).

4.4. MicroRNA Real Time Quantitative RT-PCR

For microRNAs analyses, total RNA was extracted from SVZ and STR tissues (WT, SD and
TSD) using the miRCURY RNA isolation KIT (Exiqon-Qiagen, Hulsterweg 82, 5912 PL Venlo, The
Netherlands), according to the manufacturer’s protocol and our previous work [85–87]. Quality
and concentration of purified RNA were evaluated by a BioPhotometer (Eppendorf, Mittelsachsen,
Saxony, Germany), using the RNA program. Low molecular weight RNAs were converted to cDNA
using miRCURY LNA Universal RT microRNA PCR (Exiqon-Qiagen), following the manufacturer’s
protocol. Real-time RT-PCR was performed using specific PCR primer set assay (miRCURY LNA,
UniRT microRNA PCR) (Table 3) and relative miRCURY LNA SYBR Green master mix, Universal RT,
both from Exiqon, to analyze miRNA expression. The relative quantification of miRNA analyzed in
SVZ and striatum region of WT, SD and TSD mice was determined by the comparative 2−∆∆Ct method,
where the target is normalized to the reference U6 snRNA, which was determined using the miRCURY
LNA U6 snRNA PCR primer set, and relative to WT.
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Table 3. miScript Primer Assays QIAGEN.

Targets Mature miRNA Catalogue No. miRBASE
Accession Number

Abbreviation
in the Text

mmu-miR-9-5p MS00012873 MIMAT0000142 miR-9

mmu-miR-9* MS00005887 MIMAT0000143 miR-9*

mmu-miR-19a-3p MS00001302 MIMAT0000651 miR-19a

mmu-miR-29a-3p MS00001372 MIMAT0000535 miR-29a

mmu-miR-33-5p MS00032697 MIMAT0000667 miR-33

mmu-miR-34a-5p MS00001428 MIMAT0000542 miR-34a

mmu-miR-124-3p MS00029211 MIMAT0000134 miR-124

mmu-miR-126a-3p MS00005999 MIMAT0000138 miR-126a

mmu-miR-128-3p MS00011116 MIMAT0000140 miR-128

mmu-miR-133a-3p MS00032305 MIMAT0000145 miR-133a

mmu-miR-137-3p MS00001589 MIMAT0000149 miR-137

mmu-miR-181c-5p MS00032382 MIMAT0000674 miR-181c

4.5. Computational Analysis

4.5.1. miRNA Differential Expression Analysis Profiling

For the analysis of real-time qPCR data, the Pcr package (https://CRAN.R-project.org/package=pcr)
was used for quality assessing, analyzing and testing data and to identify differential expression of
miRNAs between WT and pathological samples. We used the ∆∆CT method and a two-tailed Student’s
t-test for statistical analysis. The DEMs were considered significantly differentially expressed if the
Log2 Fold Change (FC) was >1 or <0.5 and the p-value was <0.05.

4.5.2. miRNA-Gene Target Prediction

miRWalk2.0 [88] is a webserver containing novel predicted miRNA-mRNA pairs that are calculated
using well-established algorithms, including DIANA-MicroTar, miRanda, miRDB, mirWalk, Pita,
RNA22, Targetscan, RNAhybrid among others. For the validated target, three different databases
were used: miRecords, miRTarBase, TarBase, which are included in MultiMir R package [89]. Targets
gene were defined as genes predicted by at least six algorithms of eight target prediction tools
(DIANA-MicroTar, miRanda, miRDB, mirWalk, Pita, RNA22, Targetscan, RNAhybrid) plus all
experimentally validated targets.

4.5.3. Gene List Targets Generation and Pathway Enrichment Analysis

For SVZ-SD, STR-SD, SVZ-TSD, and STR-TSD, we generated a gene list of predicted targets
correlated to the specific miRNAs’ expression. We used the DAVID web tool [90] to filter the gene list
to predict the gene ontology biological process (GO BP) and to perform pathway enrichment analysis
(Panther and Reactome pathways) of all miRNAs that were identified as significantly expressed
miRNAs in the differential expression analysis. The gene list was filtered based on predicted targets
expressed only in the brain tissue [90].

Further, for testing pathways, GO terms, and for eliminating redundant terms, the PANTHER
classification system (v.14.1 released12 March 2019; http://www.pantherdb.org) was used with the
test statistics based on gene counts, i.e., Fisher’s exact test p-value, with the Benjamini–Hochberg
false discovery rate (FDR) correction method [65], based on a previously generated gene list.
Only significantly corrected p-values (p-adjusted < 0.05) and terms annotated to more than 5 and to
fewer than 300 genes in our dataset were taken into account.

https://CRAN.R-project.org/package=pcr
http://www.pantherdb.org
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4.5.4. Gene-miRNA Targets Prediction

To highlight the principal miRNAs and their targets genes involved in a specific pathway, for
each enriched pathway, the list of genes was obtained (http://www.pantherdb.org/pathway/; https:
//www.reactome.org) and a Gene-miRNA target prediction was conducted through mirWalk2.0 [88].
Target miRNAs were defined as miRNA predicted by at least four algorithms of eight target prediction
tools (DIANA-MicroTar, miRanda, miRDB, mirWalk, Pita, RNA22, Targetscan, RNAhybrid) plus all
experimentally validated targets.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/
3179/s1. Figure S1. Word cloud based on the literature (open access papers) for each miRNA, and from the
searchable database miRBASE (www.mirbase.org). Figure S2. Dotplot of enrichment analysis in: (a) SD-SVZ
compared to SD-STR.; Panther (P) and Reactome (R-MMU) pathways; (b) and in TSD-SVZ compared to TSD-STR.;
Panther (P) and Reactome (R-MMU) pathways. p-adjusted < 0.05 was considered statistically significant. Table
S1. miRNA-mRNA target-relationship in enriched pathways in SVZ and STR of SD and TSD mice.
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