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Abstract

We examined the expression kinetics of some of the aryl hydrocarbon receptor (AhR)-regulated 

genes in LA1 variant cells compared to wild type (WT) Hepa-1 mouse hepatoma cell lines, and we 

investigated the stability of AhR protein as a key step in the function of this receptor. Treatment of 

both cell types with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in increased CYP1A1 

and CYP1B1 mRNA with a subsequent down regulation of AhR. We show here that co-treatment 

with transcription inhibitor actinomycin D (ActD) has reversed the TCDD-induced depletion of 

AhR protein in WT. However, the proteolytic degradation of AhR in absence of TCDD was 

significantly higher in LA1 cells than in WT, and ActD treatment reduced this loss. Induction of 

CYP1A1 and CYP1B1 mRNA by TCDD in WT cells each exhibited bursts of activity in the 

initial hour which were about 3-fold greater than in LAI cells. The induced mRNA levels in LA1 

exhibited a slow and sustained increase approximating the WT levels by 20 h. The induction of 

two other AhR-regulated genes also showed comparable turnover differences between the two cell 

types. Thus, altered regulation of the AhR responsive genes in LA1 may result from a difference 

in AhR stability.
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1. Introduction

The aryl hydrocarbon receptor (AhR) which is a ligand-activated basic helix-loop-helix 

(bHLH) transcriptional factor (Burbach, Poland et al. 1992), binds poly aromatic 

hydrocarbons (PAHs), including 2,3,7,8 tetrachloro-dibenzo-p-dioxin (TCDD), and 

mediates their toxic responses (Poland and Knutson 1982). Binding of PAHs to the cytosolic 

AhR triggers a sequence of events which include the dissociation of AhR from chaperone 
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proteins, including heat shock protein 90 (hsp90) and immunophilin-type chaperon termed 

ARA9, AIP or XAP2 (Carver and Bradfield 1997; Ma and Whitlock 1997; Meyer, Pray-

Grant et al. 1998; Meyer and Perdew 1999; LaPres, Glover et al. 2000; Kazlauskas, 

Sundstrom et al. 2001). The AhR is then transformed into a form that readily translocates to 

the nucleus where it forms a heterodimer with the related bHLH, Ah receptor nuclear 

translocator (ARNT) protein (Hoffman, Reyes et al. 1991). Binding of this heterodimer to 

DNA recognition motifs designated as xenobiotic-responsive elements (XREs), results in 

enhanced transcription of multiple genes (Jones, Galeazzi et al. 1985; Denison, Fisher et al. 

1989). These genes known as the Ah-responsive genes include CYP1A1, CYP1A2 

(Gonzalez, Mackenzie et al. 1984) and CYP1B1 (Savas, Bhattacharyya et al. 1994; 

Bhattacharyya, Brake et al. 1995). The protein products of these CYPs are catalytically 

active in metabolizing not only many endogenous compounds, such as β-estradiol, but also 

many drugs, dietary components, mutagens, carcinogens and environmental pollutants 

(Conney 1982).

Subsequent to transcriptional activation, the AhR undergoes a rapid depletion leading to 

substantially decreased cellular levels within hours (Prokipcak and Okey 1991; Reick, 

Robertson et al. 1994; Pollenz 1996). This ligand-induced down-regulation of the receptor 

was shown to be blocked by inhibitors to calpain, proteasomes and nuclear export, 

suggesting a role for calpain and proteasome-dependent degradation and the subcellular 

localization (Davarinos and Pollenz 1999; Ma and Baldwin 2000; Ma, Renzelli et al. 2000; 

Dale and Eltom 2006; Dale and Eltom 2006)a.

The mouse hepatoma cell line Hepa1c1c7 (Hepa-1), in which CYP1A1 is highly inducible, 

is commonly used as a model system to study the regulation of CYP1A1 and other AhR-

regulated genes (Miller, Israel et al. 1983; Whitlock and Galeazzi 1984). Multiple clones of 

Hepa-1 were isolated by selection for resistance to benzo[a]pyrene toxicity (Hankinson 

1979; Miller, Israel et al. 1983). Two of these mutant clones, the low-activity class I (LAI) 

and the low-activity class II (LA2) variants were identified by their failure to induce 

CYP1A1-dependent aryl hydrocarbon hydroxylase in response to PAHs treatment (Miller, 

Israel et al. 1983; Whitlock and Galeazzi 1984). The LA1 variant defect was attributed to a 

decreased transcriptional level of AhR compared to WT (Miller, Israel et al. 1983), while 

LA2 cells express normal level of cytosolic AhR but is defective in nuclear localization due 

to mutation in ARNT gene (Hoffman, Reyes et al. 1991). Even though the LA1 cells were 

originally isolated as multiple clones with AhR levels ranging from 5–40% of WT and 

paralleled by equivalent low TCDD-induced CYP1A1 protein levels, these cells have been 

invariably reported to express only 10% of the wild type CYP1A1 mRNA level (Miller, 

Israel et al. 1983). However, our analysis of TCDD-induced CYP1A1 expression in these 

cells has shown its level to be only slightly lower than that of WT (Eltom, Zhang et al. 

1999), which is consistent with a finding by other investigators using these cells (Sadek and 

Allen-Hoffmann 1994). In order to discern the difference of TCDD-inducibility between 

these two cell lines, in this report we examine the expression kinetics of some AhR-

regulated genes in LA1 variant cells compared to WT Hepa-1 cells, and we investigate the 

kinetics of AhR nuclear-translocation and turnover, key steps in the function of this receptor, 

as a possible coupled-regulatory mechanism.
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2. Materials and Methods

2.1. Tissue culture and treatment

Mouse hepatoma cell lines, Hepa-1 WT and mutants (LAI or LA2) were the kind gift of Dr. 

James Whitlock, Jr. (Stanford University, Stanford, CA). Cells were maintained in 

Dulbecco’s Minimum Essential Medium Eagle (DMEM) with high glucose (Sigma) and 5% 

heat inactivated fetal bovine serum (Gibco), 100 U/ml Penicillin, 100 μg/ml Streptomycin, 

2.5 μg/ml amphotericin B as fungizone® (Sigma). All cultures were maintained in a 

humidified atmosphere containing 5% CO2 and 95% air, at 37°C. Typically, cells were 

treated at ~85% confluence with 10 nM TCDD or equivalent volume of DMSO (not to 

exceed 0.1%) for the indicated times. Cells which were used for RNA isolation and analysis 

were lyzed in Trizol® reagent immediately following the removal of treatment media. 

Alternatively, cells were harvested by mechanical scraping in cold PBS, and cell pellets 

were washed in PBS, lysed and used in fractionation experiments.

2.2. RNA Isolation and Northern Analysis

Northern analysis was done as described (Eltom, Larsen et al. 1998), using the following 

probes: mouse CYP1A1 cDNA (Gonzalez, Mackenzie et al. 1984), human CYP1A2 cDNA 

(Parikh, Gillam et al. 1997) GAPDH cDNA (Fort, Marty et al. 1985) and UDP-glucuronsyl 

transferase*6 (Vasiliou, Puga et al. 1995). Probes were labeled non-radioactively using 

digoxigenin-dUTP random primed DNA labeling kit (Roche Diagnostics), following the 

supplier’s instructions. For quantification of CYP1B1 mRNA, a semi-quantitative RT-PCR 

assay was developed as described previously (Eltom, Zhang et al. 1999), to quantify the very 

low levels of CYP1B1 mRNA expressed by Hepa-1 cells.

2.3. Isolation of total cellular proteins

Cells were harvested under denaturing condition by lysis in Trizol. Total RNA was first 

isolated from the Trizol lysates, subsequently total cellular proteins were isolated from the 

remaining lysate, as described previously (Eltom, Zhang et al. 1999).

2.4. Cell fractionation and nuclear translocation experiments

In these experiments, cells were harvested by mechanical scraping in cold PBS, washed two 

times in cold PBS and suspended and lysed for 30 min at 4°C in lysis buffer: (1% NP-40, 

0.025% SDS in 25 mM Mops buffer pH 7.4, containing 0.02% Na azide, 1 mM EDTA, 10% 

glycerol, 5 mM EGTA and 20 mM Na molybdate), supplemented with protease inhibitors 

cocktail: (5 μg/ml leupeptin, 0.15 units/ml aprotinin, 10 μg/ml TLCK, 1 mM PMSF, 5 μg/ml 

soy bean trypsin inhibitor), and phosphatase inhibitors (1mM Na orthovanadate and 1mM 

Na fluoride). Cell lysates were centrifuged at 2,000 rpm for 5 min in microcentrifuge at 4°C 

to pellet nuclei. Supernatants were saved at −20°C until analyzed, and nuclei were washed 

four times in lysis buffer to remove cytosolic contamination. Nuclear pellets were then 

homogenized in lysis buffer at 4°C by sonication on ice bath.

2.5. Protein Electrophoresis and Immunoblotting

Gel electrophoresis and immunoblotting was done as described (Eltom, Zhang et al. 1999).
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2.6. Measurement of mRNA stability

Hepa-1 WT cells and LA1 cell variant (at passage 9) growing in DMEM medium containing 

5% heat inactivated-FBS were treated with 10 nM TCDD or equivalent amount of DMSO 

(0.1%) for 20 h. Actinomycin D (Sigma) was dissolved at 10 mg/ml in 100% ethanol, and 

was added to the treatment media at 10 μg/ml final concentration (0.1% ethanol final 

concentration in medium). At the indicated times, plates were removed and cells were lyzed 

in Trizol for RNA and protein isolation. No toxic effect of actinomycin D was observed on 

the cell viability up to 6 h. To assess the validity of GAPDH for loading normalization, and 

that actinomycin D didn’t affect GAPDH expression within the experimental time, 

ribosomal RNA was checked by staining gels with ethidium bromide and were found to 

match GAPDH signal.

2.7. Reverse transcriptase - polymerase chain reaction (RT-PCR)

Total RNA isolation and semi-quantitative RT-PCR was done as described previously 

(Eltom, Zhang et al. 1999).

3. Results

3.1 Analysis of CYP1A1 mRNA expression in early and late passage of LA1 Hepa-1 
variants as compared to the WT

Although LA1 Hepa-1 variants express only 10% of the WT levels of AhR, and have been 

characterized by low induction of CYP1A1 (Miller, Israel et al. 1983; Whitlock and 

Galeazzi 1984), we have shown previously that 18 h TCDD-treatment of LA1 Hepa-1 

variant induced CYP1A1 mRNA up to 60–80 percent of the WT response (Eltom, Zhang et 

al. 1999). We find this elevated CYP1A1 mRNA in LA1 disproportionate to their AhR 

levels (Fig. 1-A), to be associated with early passage of cells in culture, whereas culture of 

later passaged-LA1 cells (passage >15) show substantially less inducibility of CYP1A1 with 

TCDD treatment (Fig. 1-B). However, WT cells didn’t show substantial difference in their 

AhR protein level or TCDD inducibility of CYP1A1 between early passage (p8) and later 

passage (p24) (Fig. 1-C).

3.2. Difference in the time course of TCDD-induction of CYP1A1 & CYP1B1 mRNA between 
WT and LA1 Hepa-1 cell lines

To further explore the mechanism involved in the elevated inducible levels of CYP1A1 and 

CYP1B1 mRNA in LA1 cells, the time course of TCDD-induction of CYP1A1 and 

CYP1B1 mRNA was compared to that of WT. The data presented in Fig. 2A-B shows a 

rapid rise in the transcription of CYP1A1 (30% of maximal) and CYP1B1 (50% of 

maximal) in WT within the first hour of TCDD treatment. In LA1 cells, the initial rate of 

synthesis of both CYP1A1 and CYP1B1 mRNA was three times slower than in WT cells. 

After six hours the rate of CYP1A1 synthesis in LA1 increased to a rate that was almost 

comparable to that of WT. Subsequently, the steady state level of mRNA was reached at 

approximately 12 h in WT, while these mRNA levels in LA1 continued to rise until 20 h to 

reach levels approximating those seen in WT.
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3.3. Kinetic Analysis of TCDD effect on the AhR nuclear translocation

In order to correlate the kinetics of TCDD induction of CYP1A1 and CYP1B1 mRNA to 

nuclear levels of activated AhR, we compared the kinetics of TCDD effect on the AhR 

nuclear translocation in WT and LA1 and we included LA2 variant as a control. In both WT 

and LA1 variant, the AhR accumulates in the nuclei as early as 1 h (~30% of total cellular) 

and reached maximum levels by 8 h (40%) before it dropped at 20 h of TCDD-treatment 

(Fig. 3A). A more time detailed analysis of TCDD effect on AhR nuclear translocation and 

degradation in Hepa WT showed that the nuclear levels peaked around 2 h before started 

declining (data not shown), however, even by 20 h after TCDD exposure there was still 

substantial level of nuclear AhR. As expected, no nuclear AhR protein was detected in 

nuclear fraction of LA2 cells, which is defective in AhR nuclear translocation process.

3.4. Measurement of CYP1A1 mRNA stability in WT and LA1 variant following treatment 
with actinomycin-D

To determine whether the slower rise of CYP1A1/1B1 mRNA levels in LA1 cells is due to a 

difference in the stability of these mRNAs between WT and LA1 cells, we measured the 

change in CYP1A1 mRNA level following addition of the RNA synthesis inhibitor 

actinomycin-D to each cell line after a 20 h TCDD induction. The subsequent changes in 

mRNA provide a measure of mRNA stability. Analysis for CYP1A1 by Northern (Fig. 4-A) 

demonstrated a much slower degradation rate in LA1 cells than WT cells, with a calculated 

half-life of 8 h for LA1 and 2 h for WT (Fig. 4-C). The TCDD-induced CYP1A1 mRNA 

level at the time of actinomycin D addition indicated that LA1 expresses approximately 60% 

of that of WT, confirming RT-PCR data in Fig. 2. The calculated half life for CYP1A1 

mRNA in LA1 was >10h compared to 4.67h in WT. The closely related gene CYP1A2, 

although induced to a lesser extent, showed a very similar trend in its decay to CYP1A1. 

Another AhR-regulated gene UDP-GT 1*6 also showed less stability in WT cells than in 

LA1 cells (Fig. 4-A), with a T1/2 of 2.5 h in WT compared to 4.39 h in LA1 (Fig. 4-C). 

Quantitation by RT-PCR of CYP1B1 mRNA (Fig. 4-B), showed a similar slower decay rate 

in LA1 with a half-life of 4.66 h compared to 2.05 h in WT (Fig. 4-C).

3.5. TCDD-treatment affects the response of AhR to actinomycin D treatment differently in 
WT and LA1 variants

To distinguish whether the above response is associated with an effect on the AhR stability 

in these cells, the parallel AhR protein levels were measured at the indicated time points 

following actinomycin D treatment. LA1 cells contained about one tenth of the WT levels of 

the full length AhR protein (95 kDa), but also contained increased levels of smaller AhR 

fragments at 70 and 55 kDa (Fig. 5-A). This suggests that at least some of the AhR in LA1 

cells was removed by proteolytic degradation which was slower in WT. Treatment with 

TCDD for 20 h, causes ~70% reduction of AhR protein in WT concomitant with nuclear 

translocation of the receptor (Fig. 5-A). Subsequent treatment with actinomycin D resulted 

in time-dependent recovery of the AhR in WT, while in LA1 inhibiting transcription did not 

affect depletion of AhR (Fig. 5-A). In the untreated cells where the receptor is 

predominantly cytosolic, another difference in AhR regulation was evident; while in WT the 

already high AhR level was insensitive to actinomycin D in 2 h treatment period, the initial 
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low levels of AhR in LA1 increased by 5 folds while several apparent AhR degradation 

products (70 and 55 kDa) decreased substantially (fig. 5-B). Thus actinomycin D augmented 

the difference in the AhR levels between WT and LA1 cells.

4. Discussion

We have presented here data to show that in spite of the tenfold lower AhR levels in LA1 

Hepa cells variant, upon TCDD treatment, the steady state levels of induced CYP1B1 and 

CYP1A1 mRNA are close to those of Hepa WT. The initial rates of transcription of 

CYP1A1 and CYP1B1, however, are very sensitive to the lower AhR levels in LA1 cells as 

evident by the initial lag of slow transcription. This lag of transcription in LA1 could be 

explained in terms of genomic-receptor binding sites that are required to be minimally 

saturated for transcription to start and proceed (Reick, Robertson et al. 1994). Such 

requirement for threshold levels of AhR to initiate transcription was proposed to explain the 

loss of CYP1A1 transcription as measured by the run-on assay when nuclear AhR levels 

were depleted below certain level (Reick, Robertson et al. 1994). Here we show that in WT 

there is a rapid burst of CYP1A1 and CYP1B1 transcription concomitant with the rise in 

nuclear AhR. In multiple experiments we have shown that steady state TCDD-induced 

levels of CYP1A1 and CYP1B1 mRNA in LA1 variant reach 50–80 percent of WT levels 

(Eltom, Zhang et al. 1999). This parallels data reported by Sadek and Allen-Hoffman (Sadek 

and Allen-Hoffmann 1994), which also showed high levels of induced CYP1A1 mRNA in 

LA1 cells. This passage-dependent Change in TCDD-induced CYP1A1 expression might 

explain the controversy with other reports which might have used late passage cells. A 

decline in the expression of CYP1A1 associated with increased passage in culture was 

reported in rat keratinocytes, and was related to an activity of a negative regulatory element 

on the 5′-flanking region of CYP1A1 gene (Walsh, Tullis et al. 1996). Such a phenomenon 

could also be ascribed to AhR gene silencing by an epigenetic alteration of the chromatin 

structure, which was suggested for the loss of AhR gene expression in various other 

deficient clones derived from Hepa-1 (Zhang, Watson et al. 1996).

In this report we have demonstrated that the surprisingly high steady state levels of TCDD-

induced CYP1A1 mRNA in the early passage LA1 cells arise from about 2-fold slower 

degradation rate of mRNA. This difference in mRNA stability in LA1 cells is also observed 

for three other genes induced through AhR; CYP1A2, CYP1B1 and UGT 1*6. Thus, slower 

synthesis is counter-balanced by slower removal, and the longer time to steady state levels in 

LA1 cells is fully consistent with this analysis. These observations also support previous 

reports suggesting a role for post-transcriptional regulation in induction of CYP1A1 by 

PAHs, although no evidence was presented for direct involvement of the AhR in that effect 

(Gonzalez, Tukey et al. 1984; Kimura, Gonzalez et al. 1986; Pasco, Boyum et al. 1988; Aida 

and Negishi 1991). This difference between WT and LA1 cells may be directly related to 

their differences in AhR levels but may also reflect more indirect influences of the AhR on 

cell phenotype or other differences between the two cell lines (Ma and Whitlock 1996)

These experiments are additionally complicated by opposite responses in AhR levels to 

inhibition of transcription in LA1 and WT cells. In WT cells, 20 h of TCDD treatment 

caused about 70 percent depletion of AhR protein however; the inhibition of transcription by 
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actinomycin D progressively recovered about half of this loss of AhR levels in WT cells 

within 4 h. Significantly, Okey and Harper and coworkers have seen that inhibition of 

transcription concomitant with TCDD treatment completely blocks AhR down regulation 

(Prokipcak and Okey 1991). AhR turnover therefore clearly requires ongoing transcription 

suggesting that transcription is directly linked to AhR degradation. Evidence for a 

cyclohexamide-sensitive labile repressor that down-regulates nuclear AhR-DNA activity has 

been previously presented (Reick, Robertson et al. 1994; Ma, Renzelli et al. 2000). By 

contrast in LA1 cells, AhR continues to disappear through degradation by a nuclear protease 

that is not sensitive to actinomycin D. Remarkably in LA1 cells but not WT cells treatment 

with actinomycin D elevates the basal level of AhR. Since under these conditions AhR is 

localized in cytosol, this suggests that in LA1 the cytosolic AhR degradation is an ongoing 

process that is linked to a labile mRNA. Interestingly, we see what appears to be proteolytic 

fragments of AhR in untreated LA1 that do not appear in WT. Consistent with our 

interpretation, is the appearance of a 70 kDa fragment (AhR70) in the nucleus of WT after 

TCDD treatment, whereas in LA1 high levels of AhR70 are present in the nucleus prior to 

TCDD treatment. It seems that AhR70 is generated under basal conditions in LA1 and can 

itself translocate to the nucleus, although with a limited ability to activate transcription (Ma, 

Dong et al. 1995). In the nucleus, binding of AhR70 to ARNT takes place thus possibly 

competing and inhibiting AhR activity in a dominant-negative fashion.

4.1 Conclusion

This study indicates that AhR plays a much expansive role in cell processes than simple 

transcriptional activation via heterodimerization. The comparison of LA1 variants with WT 

cells reveals that the AhR deficiency in LA1 is associated with increased mRNA stability of 

AhR-dependent gene batteries and possibly decreased in their translation to protein 

products, while increased cytosolic turnover of the AhR. It remains to be determined 

whether these changes are linked, although it seems likely that a change in cytosolic 

proteolysis may contribute to the AhR deficiency in this cell variant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PAH polycyclic aromatic hydrocarbon

AhR aryl hydrocarbon receptor

ARNT aryl hydrocarbon receptor nuclear translocating protein
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AHH aryl hydrocarbon hydroxylase

Hepa-1 mouse hepatoma cell line

WT wild type

LA1 low AHH-activity, class I variant

LA2 low AHH-activity, class II variant

CYP1B1 cytochrome P4501B1

CYP1A1 cytochrome P4501A1

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

SDS-PAGE SDS-polyacrylamide gel electrophoresis

RT-PCR reverse transcription-polymerase chain reaction

cDNA complementary DNA

UGT UDP-glucuronyltransferase

GAPDH glyceraldehyde-3-phosphate dehydrogenase

ECL enhanced chemiluminescence

DRB 5,6-dichloro-ribofuranosyl benzimidazole

References

Aida K, Negishi M. Posttranscriptional regulation of coumarin 7-hydroxylase induction by xenobiotics 
in mouse liver: mRNA stabilization by pyrazole. Biochemistry. 1991; 30(32):8041–8045. [PubMed: 
1868078] 

Bhattacharyya KK, Brake PB, et al. Identification of a rat adrenal cytochrome P450 active in 
polycyclic hydrocarbon metabolism as rat CYP1B1. Demonstration of a unique tissue-specific 
pattern of hormonal and aryl hydrocarbon receptor-linked regulation. J Biol Chem. 1995; 270(19):
11595–11602. [PubMed: 7744798] 

Burbach KM, Poland A, et al. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated 
transcription factor. Proc Natl Acad Sci U S A. 1992; 89(17):8185–8189. [PubMed: 1325649] 

Carver LA, Bradfield CA. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel 
immunophilin homolog in vivo. J Biol Chem. 1997; 272(17):11452–11456. [PubMed: 9111057] 

Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic 
aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 1982; 42(12):4875–4917. 
[PubMed: 6814745] 

Dale Y, Eltom SE. The induction of CYP1A1 by oltipraz is mediated through calcium-dependent-
calpain. Toxicol Lett. 2006; 166(2):150–159. [PubMed: 16891067] 

Dale YR, Eltom SE. Calpain mediates the dioxin-induced activation and down-regulation of the aryl 
hydrocarbon receptor. Mol Pharmacol. 2006a; 70(5):1481–1487. [PubMed: 16891617] 

Davarinos NA, Pollenz RS. Aryl hydrocarbon receptor imported into the nucleus following ligand 
binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem. 
1999; 274(40):28708–28715. [PubMed: 10497241] 

Denison MS, Fisher JM, et al. Protein-DNA interactions at recognition sites for the dioxin-Ah receptor 
complex. J Biol Chem. 1989; 264(28):16478–16482. [PubMed: 2550446] 

Humphrey-Johnson et al. Page 8

Toxicol Lett. Author manuscript; available in PMC 2016 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eltom SE, Larsen MC, et al. Expression of CYP1B1 but not CYP1A1 by primary cultured human 
mammary stromal fibroblasts constitutively and in response to dioxin exposure: role of the Ah 
receptor. Carcinogenesis. 1998; 19(8):1437–1444. [PubMed: 9744540] 

Eltom SE, Zhang L, et al. Regulation of cytochrome P-450 (CYP) 1B1 in mouse Hepa-1 variant cell 
lines: A possible role for aryl hydrocarbon receptor nuclear translocator (ARNT) as a suppressor 
of CYP1B1 gene expression. Mol Pharmacol. 1999; 55(3):594–604. [PubMed: 10051545] 

Fort P, Marty L, et al. Various rat adult tissues express only one major mRNA species from the 
glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985; 13(5):
1431–1442. [PubMed: 2987824] 

Gonzalez FJ, Mackenzie PI, et al. Isolation and characterization of full-length mouse cDNA and 
genomic clones of 3-methylcholanthrene-inducible cytochrome P1-450 and P3-450. Gene. 1984; 
29 (3):281–292. [PubMed: 6548461] 

Gonzalez FJ, Tukey RH, et al. Structural gene products of the Ah locus. Transcriptional regulation of 
cytochrome P1-450 and P3-450 mRNA levels by 3-methylcholanthrene. Mol Pharmacol. 1984; 
26(1):117–121. [PubMed: 6749129] 

Hankinson O. Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon 
hydroxylase. Proc Natl Acad Sci U S A. 1979; 76(1):373–376. [PubMed: 106390] 

Hoffman EC, Reyes H, et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. 
Science. 1991; 252(5008):954–958. [PubMed: 1852076] 

Jones PB, Galeazzi DR, et al. Control of cytochrome P1-450 gene expression by dioxin. Science. 
1985; 227(4693):1499–1502. [PubMed: 3856321] 

Kazlauskas A, Sundstrom S, et al. The hsp90 chaperone complex regulates intracellular localization of 
the dioxin receptor. Mol Cell Biol. 2001; 21(7):2594–2607. [PubMed: 11259606] 

Kimura S, Gonzalez FJ, et al. Tissue-specific expression of the mouse dioxin-inducible P(1)450 and 
P(3)450 genes: differential transcriptional activation and mRNA stability in liver and extrahepatic 
tissues. Mol Cell Biol. 1986; 6(5):1471–1477. [PubMed: 3785172] 

LaPres JJ, Glover E, et al. ARA9 modifies agonist signaling through an increase in cytosolic aryl 
hydrocarbon receptor. J Biol Chem. 2000; 275(9):6153–6159. [PubMed: 10692406] 

Ma Q, Baldwin KT. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon 
receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activaton and DNA 
binding of AhR. J Biol Chem. 2000; 275(12):8432–8438. [PubMed: 10722677] 

Ma Q, Dong L, et al. Transcriptional activation by the mouse Ah receptor. Interplay between multiple 
stimulatory and inhibitory functions. J Biol Chem. 1995; 270(21):12697–12703. [PubMed: 
7759522] 

Ma Q, Renzelli AJ, et al. Superinduction of CYP1A1 gene expression. Regulation of 2,3,7, 8-
tetrachlorodibenzo-p-dioxin-induced degradation of Ah receptor by cycloheximide. J Biol Chem. 
2000; 275(17):12676–12683. [PubMed: 10777561] 

Ma Q, Whitlock JP Jr. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and 
differentiated state independently of dioxin. Mol Cell Biol. 1996; 16(5):2144–2150. [PubMed: 
8628281] 

Ma Q, Whitlock JP Jr. A novel cytoplasmic protein that interacts with the Ah receptor, contains 
tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-
tetrachlorodibenzo-p-dioxin. J Biol Chem. 1997; 272(14):8878–8884. [PubMed: 9083006] 

Meyer BK, Perdew GH. Characterization of the AhR-hsp90-XAP2 core complex and the role of the 
immunophilin-related protein XAP2 in AhR stabilization. Biochemistry. 1999; 38(28):8907–8917. 
[PubMed: 10413464] 

Meyer BK, Pray-Grant MG, et al. Hepatitis B virus X-associated protein 2 is a subunit of the 
unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. 
Mol Cell Biol. 1998; 18(2):978–988. [PubMed: 9447995] 

Miller AG, Israel D, et al. Biochemical and genetic analysis of variant mouse hepatoma cells defective 
in the induction of benzo(a)pyrene-metabolizing enzyme activity. J Biol Chem. 1983; 258(6):
3523–3527. [PubMed: 6300048] 

Parikh A, Gillam EM, et al. Drug metabolism by Escherichia coli expressing human cytochromes 
P450. Nat Biotechnol. 1997; 15(8):784–788. [PubMed: 9255795] 

Humphrey-Johnson et al. Page 9

Toxicol Lett. Author manuscript; available in PMC 2016 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pasco DS, Boyum KW, et al. Transcriptional and post-transcriptional regulation of the genes encoding 
cytochromes P-450c and P-450d in vivo and in primary hepatocyte cultures. J Biol Chem. 1988; 
263(18):8671–8676. [PubMed: 3379039] 

Poland A, Knutson JC. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic 
hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982; 
22:517–554. [PubMed: 6282188] 

Pollenz RS. The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator 
protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-
tetrachlorodibenzo-p-dioxin. Mol Pharmacol. 1996; 49(3):391–398. [PubMed: 8643077] 

Prokipcak RD, Okey AB. Downregulation of the Ah receptor in mouse hepatoma cells treated in 
culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Can J Physiol Pharmacol. 1991; 69(8):1204–
1210. [PubMed: 1664293] 

Reick M, Robertson RW, et al. Down-regulation of nuclear aryl hydrocarbon receptor DNA-binding 
and transactivation functions: requirement for a labile or inducible factor. Mol Cell Biol. 1994; 
14(9):5653–5660. [PubMed: 8065302] 

Sadek CM, Allen-Hoffmann BL. Suspension-mediated induction of Hepa 1c1c7 Cyp1a-1 expression is 
dependent on the Ah receptor signal transduction pathway. J Biol Chem. 1994; 269(50):31505–
31509. [PubMed: 7989317] 

Savas U, Bhattacharyya KK, et al. Mouse cytochrome P-450EF, representative of a new 1B subfamily 
of cytochrome P-450s. Cloning, sequence determination, and tissue expression. J Biol Chem. 
1994; 269(21):14905–14911. [PubMed: 8195121] 

Vasiliou V, Puga A, et al. Interaction between the Ah receptor and proteins binding to the AP-1-like 
electrophile response element (EpRE) during murine phase II [Ah] battery gene expression. 
Biochem Pharmacol. 1995; 50(12):2057–2068. [PubMed: 8849333] 

Walsh AA, Tullis K, et al. Identification of a novel cis-acting negative regulatory element affecting 
expression of the CYP1A1 gene in rat epidermal cells. J Biol Chem. 1996; 271(37):22746–22753. 
[PubMed: 8798449] 

Whitlock JP Jr, Galeazzi DR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin receptors in wild type and variant 
mouse hepatoma cells. Nuclear location and strength of nuclear binding. J Biol Chem. 1984; 
259(2):980–985. [PubMed: 6319394] 

Zhang J, Watson AJ, et al. Basis for the loss of aryl hydrocarbon receptor gene expression in clones of 
a mouse hepatoma cell line. Mol Pharmacol. 1996; 50(6):1454–1462. [PubMed: 8967965] 

Humphrey-Johnson et al. Page 10

Toxicol Lett. Author manuscript; available in PMC 2016 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• LA1 variant of Hepa-1 mouse hepatoma cell line & WT are compare for TCDD 

induction and AhR stability

• Turnover of CYP1A1 and other related genes are much slower in LA1 

compared to WT

• Actinomycin D reversed TCDD-induced depletion of AhR protein in WT but 

not in LA1

• Actinomycin D stabilized the constitutive depletion of AhR in LA1 but not in 

WT

Humphrey-Johnson et al. Page 11

Toxicol Lett. Author manuscript; available in PMC 2016 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
A. Comparison of AhR protein levels in LA1 cells at early (p4) and late (p21) passage 

relative to WT hepa-1 cells (at p15). Protein samples (15 μg) from each treatment were 

analyzed by Western blotting (mini-gels) as described in Materials & Methods, using anti-

AhR antibodies. The same membrane was stripped and re-probed with anti-actin antibodies, 

for protein loading. B. Expression of CYP1A1 mRNA in LA1 cells at early (p4) and late 

passage (p21), in comparison to Hepa-1 WT. Total RNA was isolated by Trizol method 

from cells treated with 10 nM TCDD or vehicle (DMSO) for 20 h. Approximately 30 μg 

total RNA was subjected to Northern blot analysis as described in Materials & Methods. 

Membranes were first hybridized with a mouse CYP1A1 cDNA probe, stripped and re-
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probed with a human actin cDNA probe. Relative CYP1A1 RNA levels (calculated as the 

corrected intensity of CYP1A1 band divided by the intensity of actin band) from two 

separate experiments were averaged and plotted. C. Expression of CYP1A1 mRNA in Hepa 

-1 WT at early (p8) and late passage (p24) following TCDD treatment for 20h (upper panel). 

CYP1A1 mRNA expression was determined by RT-PCR as reported previously (Dale and 

Eltom 2006). In lower panel, proteins isolated from trizol extract of the same treatment 

points used for CYP1A1 mRNA determination, were analyzed by Western blotting and 

probed by AhR antibody. Protein loading was verified by Ponceau S staining of the 

membrane.
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FIG. 2. 
Time course of TCDD induction of CYP1A1 (A) and CYP1B1 (B) mRNA expression in 

wild type and LA1 variant of mouse Hepa-1 cell lines. Levels of both CYP1A1 and 

CYP1B1 were determined by semi-quantitative RT-PCR. Each point is the mean and 

standard deviation of n=4; duplicate RT-PCR determinations of duplicate experiments.

Humphrey-Johnson et al. Page 14

Toxicol Lett. Author manuscript; available in PMC 2016 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
The time course of TCDD-induced nuclear accumulation of AhR in Hepa- WT and LA1 and 

LA2 variants. Cells were treated with 10 nM TCDD or DMSO (vehicle) in fresh growth 

media, and were collected at the indicated times after treatment by scraping in cold PBS, 

pelleted and lyzed. Nuclei were separated from supernatant (SN), 100 μg of nuclear lysates 

at each treatment were electrophoresed (in regular size gels) and immunoblotted with anti-

AhR antibody. Approximately 100 μg of SN of each respective cell line at time zero after 

TCDD exposure, were included as a reference control for total cellular AhR protein. The 

nuclear AhR immuno-detectable band (95 kDa) was quantified by densitometric scanning of 
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the blots and density of the nuclear AhR bands was corrected relative to the respective value 

of SN, and values from duplicate blots of two experiments were averaged and the mean 

values and standard deviation (n=4) were plotted (A). Time course of TCDD- depletion of 

cytosolic AhR in Hepa-1 WT, LA1 and LA2 variants. Fifty μg of the non-nuclear fraction 

(SN) of cellular lysates of similar treatments as in Fig 3-A were electrophoresed and 

immunoblotted for cytosolic AhR. The AhR immuno-detectable band (95 kDa) was 

quantified by densitometric scanning and the AhR estimated relative levels were plotted 

against time of TCDD exposure (B).
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FIG. 4. 
Northern blot analysis of mRNA stability of CYP1A1 and selected other AhR-regulated 

genes for drug metabolizing enzymes in Hepa-1 WT and LA1 variant cells following TCDD 

and actinomycin D treatment. Cells were treated with TCDD and actinomycin D as detailed 

in materials and methods. Approximately 40 μg of total RNA were analyzed by Northern 

blot analysis, using probes of human CYP1A1 cDNA, CYP1A2 cDNA, mouse UDP-

glucuronyl transferase*6, and GPDH cDNA using non-radioactive technology, (A) is a 

representative image of one experiment. RT-PCR analysis of CYP1B1 mRNA stability in 

Hepa-1 wild-type and LA1 mutant cells following TCDD and actinomycin D treatment (B). 

Aliquots of total RNA samples from experiments outlined in Fig. 4-A, were subjected to 

RT-PCR analysis for CYP1B1 expression. Shown is a representative image of ethidium 

bromide-stained gel of PCR products at the indicted times after actinomycin D treatment 

(B). Images from multiple Northern blots were scanned and the intensity of the bands were 

quantified using NIH Image J. Data were fitted by exponential regression analysis 

(representative is shown in 4-C). Each regression equation is used to calculate the respective 

T1/2 using the formula: T1/2 = ln(2)τ = ln(2)/λ. The half-lives obtained from three 

independent experiments were then used to calculate the mean half-life (mean ± SEM, n = 

3), as tabulated in lower panel of 4-C.
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FIG. 5. 
Total cellular AhR levels in Hepa-1 wild-type and LA1 variant cells following actinomycin 

D treatment of TCDD-treated or untreated cells. Parallel plates to experiments outlined in 

Fig 4 were treated simultaneously and cells were lysed in Trizol at the indicated times after 

actinomycin D treatment and used for protein isolation. Approximately 10 μg (WT) or 50 μg 

(LA1) protein aliquots of each treatment were immunoblotted for AhR and actin. Cells were 

either pre-treated with 10 nM TCDD (A) or vehicle (DMSO) (B) for 20 h, then treated with 

actinomycin D. The AhR immuno-detectable bands (95 kDa) were quantified by 

densitometric scanning of multiple blots and values were corrected for actin loading and 

normalized to the respective value at the time of actinomycin D addition (0 h) of each cell 

line and plotted (lower panel).
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