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Abstract

Drosophila community composition is complex in temperate regions with different abun-

dance of flies and species across the growing season. Monitoring Drosophila populations

provides insights into the phenology of both native and invasive species. Over a single grow-

ing season, we collected Drosophila at regular intervals and determined the number of indi-

viduals of the nine species we found in Kansas, USA. Species varied in their presence and

abundance through the growing season with peak diversity occurring after the highest sea-

sonal temperatures. We developed models for the abundance of the most common species,

Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D.

suzukii. These models revealed that temperature played the largest role in abundance of

each species across the season. For the two most commonly studied species, D. melanoga-

ster and D. simulans, the best models indicate shifted thermal optima compared to labora-

tory studies, implying that fluctuating temperature may play a greater role in the physiology

and ecology of these insects than indicated by laboratory studies, and should be considered

in global climate change studies.

Introduction

Species composition in temperate regions is dynamic, changing in response to both abiotic

and biotic factors over space and time [1]. Species abundance is often constrained by specific

phenologies [2], instances of which have been observed in diverse groups of species and envi-

ronments including zooplankton in ephemeral pools [3], bacterial communities in lakes [4],

migratory birds [5], and complex insect communities [6, 7] Often seasonal phenology is driven

by abiotic environmental factors including environmental stressors, which in combination

can have pronounced effects on community composition [8]. However, the addition of new
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species via range expansion or human-facilitated introduction can also shift the community

composition and produce immediate and long-term effects [9].

Given the fragile and dynamic nature of species abundance and community dynamics,

understanding the dynamics of temporal changes in communities across seasons can provide

insights into the biology and ecology of organisms. In addition, identifying the ecological

drivers underlying changes in phenology is critical to understanding the effects of global cli-

mate change in real time [10]. Insect communities provide models for tracking phenological

shifts in species abundance because their physiology is strongly influenced by thermal varia-

tion and resource availability [11–13]. One group of species that has received limited focus

in the field of community ecology are the Drosophilids. Drosophila species have differing

phenology and environmental tolerances (e.g. [14–18]). Although multiple studies focused

on diverse Drosophila taxa have documented the dynamics of single species or species

groups in temperate zones (e.g. [19–22]), the majority of studies of community assemblage

have been conducted in the tropics (e.g. [23, 24]). In disturbed areas of the tropics, exotic

species dominate and displace native species [17, 23–26], a pattern also seen in temperate

zones [27]. Thus Drosophila can serve as indicator species for environmental disturbance

with major changes in community composition across years as a signal of environmental

degradation [28].

In Drosophila, interspecific dynamics in the temperate region have focused mostly on two

cosmopolitan species, D. melanogaster and D. simulans. Patterns of abundance in nature in the

Northern Hemisphere indicate that D. simulans is more common than D. melanogaster in

southern communities whereas the opposite occurs in northern communities, with seasonal

variation [21]. One explanation for geographically-specific distributions of D. melanogaster
and D. simulans is that D. melanogaster is more desiccation resistant [29], implying a differ-

ence in response to environmental stress, because desiccation stress alone can change commu-

nity composition [30].

In the state of Kansas, few collection records exist for Drosophila and those available all

date to the 1950s or earlier [31–34]. The most extensive collections (Table 1) occurred in the

fall of 1950 and 1951, primarily in Riley County (around Kansas State University) and in

Douglas County (around the University of Kansas, [33]). That study found a total of 16 species,

three of which were non-native cosmopolitan species (D. immigrans, D. melanogaster and D.

simulans).
Two Drosophila species recently invaded Kansas: Zaprionus indianus, first noted in 2012 (S.

Noh and T. Morgan, pers. comm.) and D. suzukii in 2013 [35]. Although Zaprionus is a differ-

ent genus, the genus Drosophila is paraphyletic with Zaprionus embedded within it [36]. These

species are of particular interest because, unlike most Drosophila, they are agricultural pests.

Zaprionus indianus lays eggs on developing fruit, particularly on oranges, peaches and figs

(reviewed in [37]). First detected in Florida in 2006 [37], the species has been moving north

and westward [38]. Previously the species invaded South American in 1998, where it has

received great attention because of economic crop losses there (reviewed in [39]).

Drosophila suzukii, a native of Asia, recently invaded North America and Europe [40, 41].

The original invasion was in California but the species jumped to Florida from where it has

spread north and westward [42]. Unlike many Drosophila species that lay eggs on rotting fruit,

Drosophila suzukii females lay eggs in ripening soft fruit, damaging the fruit with their serrated

ovipositor [43]. Losses observed on individual fruit may be as high as 40% for blueberries, 50%

for blackberries and raspberries, 33% for cherries and 20% for strawberries [44]. Thus, D. suzu-
kii is a pest species of great economic importance.

We monitored Drosophila abundance across a growing season in one year (2014) at two

fruit orchards in Kansas to determine 1) what species are present and if the recent invasive
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species (D. suzukii and Z. indianus) are established, 2) the phenology and population dynamics

of each species and 3) how community composition changes over the seasons. Overall, we

found a decrease in diversity compared to sampling 60 years ago and variation in seasonal

abundance for individual species, as has been found in other temperate populations.

Using our data, we built a model of species abundance given weather data, predominantly

temperature, for the four most abundant species. The predictions of the model, which include

minimum and maximum temperatures for positive growth rates, are discussed with respect to

laboratory-based measurements on species thermal tolerances. These models are among the

first that are based on the ecology of Drosophila species.

Materials and methods

Collections

From late April through early November 2014 we collected flies at two locations near Topeka,

KS: Rees’ Fruit Farm (39.0913163 latitude, -95.5939707 longitude) and eleven miles away, 86th

Street Orchard (39.202831 latitude, -95.7415270 longitude). Owners of the farms gave permis-

sion for our collections. Both sites had a mixture of soft fruits (S1 Table). Bottle traps baited

with banana mash were modified from the design of Markow and O’Grady [45]. Bottles were

empty 1.75 L juice containers (Simply Orange Juice Company; Apopka, FL). Three rows of

seven 3/16-inch (4.76 mm) holes were burned into one side. Bait was prepared two days in

advance of setting traps; each trap was baited with 1.5 mashed bananas, approximately 30 mL

water, and approximately 0.5 grams of yeast placed in the bottom of the container. Collections

occurred approximately weekly or biweekly (the one exception was a 28-day gap between a

collection in May and the next collection in June) with traps hung from fruit trees or in a

Table 1. Species collected in Kansas.

Species group Species1 Percentage of collection

Yoshimoto 19542 This Survey2

busckii busckii� 3.38 0.29

funebris funebris� 1.65

guttifera guttifera 0.08

immigrans immigrans� 0.16

melanica melanica 0.39 0.24

melanogaster melanogaster� 83.12 19.96

simulans� 0.16 57.10

suzukii 11.13

obscura affinis 2.90 1.69

algonquin 0.24 7.31

athabasca 1.02

repleta hydei� 2.43 1.93

repleta� 1.33

robusta robusta 0.86

testacea putrida 1.18

tripunctata tripunctata 0.31 0.44

virilis americana 0.78

1Invasive species are in bold. Cosmopolitan species are designated with an asterisk.
2Numbers are the percentage of the total collection that is each species.

https://doi.org/10.1371/journal.pone.0216601.t001
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raspberry hoophouse for 2–7 days (Table 2, S2 Table). Traps were always hung in the same

locations and were pooled by date and across both locations. Dates of collections were con-

verted to day of the year using the date at which the trap was placed. Because the number of

days of collection varied, in some analyses the number of flies was corrected for the trapping

duration. All Drosophila, live and dead, were removed from bottles and keyed to species either

immediately or after storage in 70% ethanol for up to 6 months. The predominant species

were D. simulans and D. melanogaster. Females of these species are difficult to distinguish;

thus, these females were assigned to the two species in the same proportion as that of the males

that were in the collection. In some analyses, only the males were used.

Ecological indices

The relative abundance of a species was determined as the proportion of a collection that was

the focal species. For each date, species richness (S, the number of species in the sample) was

determined. We calculated the Shannon Diversity Index [46] as

H ¼ �
XS

i
pilnðpiÞ ð1Þ

where pi was the proportion of species i in the sample and H was the species richness. The

inverse Simpson index [47] was calculated as

1

D
¼

1
PS

i p2
i

ð2Þ

Evenness was calculated as

J
0

¼ H=Hmax ð3Þ

Where Hmax was the maximum diversity in the sample found when all species were equally

abundant (equivalent to ln(S)). All the above indices were calculated for each collection date.

The mean and standard deviation over all collections were calculated as well. Evenness was

also calculated as a corrected index in which S was the total number of species found across

the entire collecting season (nine species).

Weather data

Hourly weather data for Topeka, KS were obtained from the Weather Data Library in the

Department of Agronomy, Kansas State University. Specifically, hourly measurements were

recorded at the Topeka Billard Municipal Airport (KTOP: 39.07 latitude, -95.62 longitude).

These measurements were point estimates and not hourly means.

Table 2. Summary statistics for collections.

Mean ± SD Min Max

Number of species 4.21 ± 1.78 2 8

Number of individuals per day 241.77 ± 321.95 10 1400

Number of collection days 2.48 ± 1.47 2 7

Number of days between initial dates of sequential collections 9.80 ± 5.15 6 28

Traps were set out for 2–7 days from April 18, 2014 through November 2, 2014 for a total of 21 collections.

https://doi.org/10.1371/journal.pone.0216601.t002
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Modeling the capture of flies during the collection season

We modeled the variation in the number of flies captured in the traps using the environmental

variables of temperature and relative humidity. We limited our examination to the four most

abundant species (D. simulans, D. melanogaster, D. algonquin and D. suzukii) because only

these species provided sufficient counts to be adequately modeled. Because the basic data for

each species consisted of the number of flies captured during each collection period, the natu-

ral distribution for describing the probability of a fly being captured is given by the Poisson

distribution [48]:

Pr njφð Þ ¼
φn

n!
e� φ ð4Þ

where n is the number of flies captures and φ is the intensity parameter (or relative abundance)

of flies of a given species. The intensity parameter depends most heavily on two characteristics

of the species of interest: the size of the population in the neighborhood of the traps and the

level of activity of the flies while the traps are available. We hypothesized that both of these

characteristics are strongly affected by the temperature and relative humidity in the region of

the traps. In particular, we conjectured that the intensity parameter changes over time in a

manner given by

φt ¼ φt� 1
eGt ð5Þ

Where t is a moment in time and Gt is a growth factor (or rate) that depends on temperature

and relative humidity by the expression

Gt ¼ Aþ BTt þ CT2

t þ DHt ð6Þ

where T is temperature and H is relative humidity.

If we set φ0 to be the relative intensity parameter at the start of the season, then these three

equations allowed us to calculate the probability of capturing nt flies at any time t during the

collecting season using just five free parameters: φ0, the intensity parameter at the start of the

season, and A, B, C, and D, the constants of the growth rate. Estimates for the parameters were

obtained by choosing those values that maximize the natural log likelihood of the observed

data given the parameters. The likelihood of the data in these instances was the product of the

probabilities of the number of captured flies in each collecting period.

Because the temperature and humidity data were measured hourly, the natural unit for the

model was an hour. Collections, however, were made for longer periods, usually for 48 hours,

although some collections were as long as a week. The Poisson process has the property that if

intensity parameter estimates are calculated for each hour, the probabilities for an entire col-

lection period could be calculated by simply summing the intensity parameters for each hour

of that period [49]. To have a uniform starting point for all models, t = 0, we set the beginning

of each model at sunrise on Day 98 of the calendar year, 10 days before the first traps were put

out on Day 108.

Model selection revealed that only the daylight hours were relevant for calculating changes

in the population sizes of the species. By using only daylight hours for adjusting population

sizes, we effectively assumed that no flies were captured at night and no significant changes in

the fly populations occurred during the nighttime hours. To test this assumption, we estimated

the model parameters using all the hours of the day. These models were sensitive to average

daily temperatures and not to humidity. Furthermore, the more complex models lost the abil-

ity to reflect the detailed variation in the capture data among collection periods. These models

were not particularly good at fitting the data.

Seasonal shifts in Drosophila species abundance
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Once the free parameters were estimated, we assessed the quality of the models by correlat-

ing the mean number of flies captured per hour with the mean intensity parameter for each

capture period. The conventional F-test for these correlations,

F ¼
r2ðN � KÞ
ð1 � r2ÞK

ð7Þ

where r is the correlation, N is the number of collection periods, and K is the number of

parameters), yielded P-values less than 0.01 for all the models. All analyses were conducted

with custom written scripts in R [50].

Results

Species composition and relative abundance

Among the 10,638 individuals identified as Drosophila over 21 collections, we found nine spe-

cies, including three invasive species (D. melanogaster, D. simulans and D. suzukii) and six

native species (Table 1). Notably absent across the entire season was Zaprionus indianus,
which was found in Kansas at these same sites in 2012 and 2013 (S. Noh and TJ Morgan,

unpublished). All the invasive species, with the exception of D. suzukii, are cosmopolitan and

have been established for many years. Of the nine species found in 2014, eight were found in

the state over 60 years ago in the last collection records that we were able to find for Kansas

[34]. The one species found only in our collection is D. suzukii, a recent invasive species,

which was first collected in Kansas in 2013 [35].

Both the number of species and individual flies increased across the season, with different

species combinations detected in different collections. Total counts of individuals per day in

a collection peaked in the October 24 collection (day 297; Fig 1). The first frost in 2014 was

on October 31 (day 304); that collection was greatly reduced. All collections contained at

least one species with a mean of 4.21 ± 1.78 (standard deviation) species per collection day

(Table 2).

The earliest species were D. algonquin, D. melanogaster and D. hydei; the latter two species

persisted throughout the collections though D. algonquin was last collected on day 184. Nota-

bly, D. algonquin and D. affinis, which are members of the same species subgroup, were never

in the collection at the same time because D. affinis did not appear until day 192 (Fig 2, S3

Table), thus no single collection contained all species (Fig 1, S1 Fig). The last species to appear,

D. tripunctata, was first collected on day 227. Most species were present late in the season so

that one collection in September (day 262; Fig 2, S2 Table) contained the most species, eight;

the missing species was D. algonquin.

The number of individuals of a species was variable throughout the collection period (S4

Table, S1 Fig). All species had dramatic fluctuations in the total number of individuals per

collection day, with regular peaks and crashes in population size. Not all of these fluctua-

tions covaried, thus many peaks and crashes were species-specific (Table 3), though only the

most abundant species had enough individuals to find correlations. D. algonquin and D.

hydei, as early season species, peaked in May (day 129) long before several of the other spe-

cies appear, thus their abundance positively covaried, although D. algonquin negatively

covaried with all the other species (Table 3). Unlike D. algonquin, D. hydei reappeared

throughout the summer with a second, smaller peak in late October. The peak numbers of

individuals collected differed greatly among species with D. busckii and D. tripunctata on

the low end with a maximum of 6.5 individuals per collection day compared to the most

abundant species, D. simulans, with a maximum of 1129.5 individuals per collection day (S1

Fig). At any time, one of four species, D. algonquin, D. melanogaster, D. simulans, and D.
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suzukii dominated the collections (Fig 3). The sister species D. melanogaster and D. simulans
were the most common species in the entire collection, with D. melanogaster much more

abundant than D. simulans until day 206, at which point D. simulans became more abun-

dant than its sister species (though D. suzukii was the most abundant on that date). At the

end of the season, D. simulans was far more abundant than D. melanogaster. The abundance

of the three invasive species, D. melanogaster, D. simulans and D. suzukii, positively covar-

ied; D. simulans abundance was significantly correlated with that of the other two species

(Table 3).

Fig 1. Collection statistics for the season. The cumulative number of species (black circles) reached a maximum of 9

in the August 15 (day 227) collection. The number of species in a collection (gray circles) hit a maximum in the

September 19 (day 262) collection. The total number of individuals per day of collection (triangles) peaked in the

September 26 (day 269) collection. The number of species caught increased with time (r2 = 0.483, P = 0.0005). Over the

entire season, the number of individuals caught per collection day increased until the last collection, which coincided

with the first frost (r2 = 0.296, P = 0.01).

https://doi.org/10.1371/journal.pone.0216601.g001
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Community composition

Collections later in the season were more diverse than those earlier in the season (S2 Table) as

was reflected in the positive correlation between Shannon Diversity Index and date (Fig 4; r2 =

0.272, P = 0.015). The Inverse Simpson Index, a measure of dominance, showed an insignifi-

cant increase over the season (r2 = 0.177, P = 0.057). However, the abundance of the species

fits a log series model (Fig 5, r2 = 0.978, P<< 0.001), a situation in which Simpson’s index is

insensitive to species richness [47]. Overall, the diversity of the samples was low and variable

across the season.

Fig 2. Presence and absence of each species across the season. Gaps across all species reflect gaps in collections.

Numbers across the bottom reflect the day of year.

https://doi.org/10.1371/journal.pone.0216601.g002

Table 3. Covariancea and correlationb of Pair-wise species abundancec.

D. affinis D. algonquin D. busckii D. hydei D. melanica D. melanogaster D. simulans D. suzukii D. tripunctata

D. affinis -313.052 18.676 34.762 8.838 455.015 1399.066 207.631 18.838

D. algonquin -0.521 -19.924 743.512 -48.162 -2896.985 -11468.534 -2184.369 -87.062

D. busckii 0.450 -0.105 -3.781 -0.119 57.813 142.046 20.560 3.631

D. hydei 0.195 0.160 -0.077 -9.240 511.724593 1218.320 -273.705 -19.840

D. melanica 0.484 -0.381 0.238 -0.228 -18.221 153.776 99.105 8.540

D. melanogaster 0.563 -0.377 0.174 0.417 0.137 43640.729 858.027 -65.420

D. simulans 0.615 -0.711 0.336 -0.003 0.376 0.505 13684.671 205.175

D. suzukii 0.317 -0.734 0.131 -0.368 0.566 0.229 0.706 153.605

D. tripunctata 0.345 -0.5678 0.323 -0.562 0.571 -0.083 0.481 0.745

aCovariances are in the upper diagonal
bSpearman correlations are in the lower diagonal
cValues in bold: P< 0.0014 (Bonferroni correction for 36 tests); values in italics: P< 0.01, underlined values P < 0.05.

https://doi.org/10.1371/journal.pone.0216601.t003
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Fluctuations in abundance and environmental variables

To understand the relationship between species abundance and temperature, maximum likeli-

hood calculations were applied to the capture data for the four most abundant species. For

each species, a succession of models was calculated using the parameters in the order φ0, A, B,

C, and D (Eq 6). The addition of each parameter dramatically improved the log likelihood

function until the parameter for humidity, D, was added (S5 Table). For all the species, humid-

ity, when added to the model in the presence of temperature and temperature squared, did not

contribute significantly to the explanation of the counts of captured flies. The failure of humid-

ity to contribute to these models was probably because of the negative correlation between

temperature and humidity (as the temperature rose, humidity declined during the day). The

models, based on 21 observations, had significant r2 values, all P< 0.001 (Table 4).

Parameter estimates varied greatly among the four species (Table 4). The relatively large

value of φ0, the relative size abundance at the start of the season, for D. algonquin reflected the

early presence in the traps for this species. Although the first traps were put out in late April,

relatively early for most species, D. algonquin already had a strong presence. D. simulans, in

contrast, with a small value of φ0, was very late to appear in the traps.

Fig 3. The relative abundance of the four most abundant species over the entire collection season. Only species

that were 20% or more of a single collection are included.

https://doi.org/10.1371/journal.pone.0216601.g003

Seasonal shifts in Drosophila species abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0216601 May 16, 2019 9 / 21

https://doi.org/10.1371/journal.pone.0216601.g003
https://doi.org/10.1371/journal.pone.0216601


The negative coefficients for temperature (B) and temperature squared (C) implied that,

with the rising temperatures toward the middle of the summer, the D. algonquin population

was declining until it had completely disappeared by July. The other species, by contrast, had

positive coefficients for temperature. They all responded to rising temperatures through sub-

stantial population growth by late summer.

Because there was a negative coefficient to the squared term for temperature (C, Eq 6), we

calculated the optimum temperature for growth implied by these models (Table 5), except for

D. algonquin, which was already in decline in the early part of the study. In particular D. suzu-
kii responded strongly to the warmer temperatures of the late summer. The models also

allowed us to estimate the minimum and maximum temperatures for which the growth rate

was positive (Table 5). For D. melanogaster the range of positive growth was between 9.9˚C

and 25.4˚C. Outside of this range the population declined. For D. simulans the range was

slightly larger and shifted to higher temperatures. For D. suzukii the range was smaller (12.5–

27.2˚C) but shifted to higher temperatures compared to the other species. In contrast, D.

algonquin fell into decline at the relatively modest 17.4˚C, which was closer to the optimum

temperature for positive growth of the other species.

Given that the temperatures obtained from the model for population limits did not fit with

empirical lab results (e.g. [51– 53]), although we had a reasonable fit for the population abun-

dance, we built a final model that included separate equations for population growth and fly

Fig 4. Diversity indices calculated by date. Both the Shannon Diversity index and the Inverse Simpson index

increased between April and October.

https://doi.org/10.1371/journal.pone.0216601.g004
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activity level. For the population growth, higher order terms in temperature made no differ-

ence to the equations for r. As a consequence, for all species except D. algonquin, the popula-

tions grew more quickly as the temperature increased (Fig 6). For D. algonquin, the population

fell as the temperature climbed.

Fig 5. Rank abundance plot showing diversity of the nine species caught over the entire season. The relationship

fits a log series model (r2 = 0.978, P<< 0.001). The species are, in order of rank, D. simulans, D. melanogaster, D.

suzukii, D. algonquin, D. hydei, D. affiniis, D. tripunctata, D. busckii and D. melanica.

https://doi.org/10.1371/journal.pone.0216601.g005

Table 4. Best model parameter estimates for the four speciesa.

Species φ0 Constant (A) Temperature (B) Temperature2 (C) ln(L) r2 b

D. algonquin 3.656 0.0073 -0.00019 -0.00001 -387 0.704

D. melanogaster 0.280 -0.0665 0.00934 -0.00026 -536 0.822

D. simulans 0.045 -0.0693 0.00918 -0.00025 -2160 0.826

D. suzukii 0.281 -0.0736 0.00859 -0.00022 -366 0.748

aLetters with each parameter correspond to the equations in the Materials and Methods
bAll r2 values are significant (P< 0.001)

https://doi.org/10.1371/journal.pone.0216601.t004
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Discussion

Species and community composition

The species composition in our seasonal sample is variable across the season and the composi-

tion of our collections was notably less diverse than that of Yoshimoto [33, 34]. This may be in

part because our collections were narrower in geography and bait type than those of Yoshi-

moto [33]. Our bait type was not optimal for all species given that few mushroom breeders are

attracted to banana [54] and some species are only found in particular habitats. For example,

D. americana is found along rivers on sandbar and black willows [55, 56], but our sites were

distant from both rivers and willows. Other missing species were individually less than 2% of

Table 5. Implications of the parameter estimates.

Species Daylight Hours to One Fly

per Houra
Temperature of Maximum

Growth (˚C)

Minimum Temperature for Positive

Growth (˚C)

Maximum Temperature for Positive

Growth (˚C)

D. algonquinb 17.4

D.

melanogaster
117 17.6 9.9 25.4

D. simulans 250 18.5 10.6 26.4

D. suzukii 120 19.8 12.5 27.2

aAssuming a constant temperature of 22˚C and 70% relative humidity, this is the number of daylight hours required for the population to reach a size that would result

in one capture per hour.
bSampling of D. algonquin was insufficient to estimate most of the parameters

https://doi.org/10.1371/journal.pone.0216601.t005

Fig 6. Growth rates at temperatures across the season inferred from the model. Using φ as calculated from the data,

the population growth of each species in the temperature model is plotted.

https://doi.org/10.1371/journal.pone.0216601.g006
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the Yoshimoto collection, and collectively 7% (Table 1). Nonetheless, two of the rarest species

of that collection were represented at modest numbers in our collection (e.g., D. melanica and

D. algonquin).

One notably absent species that was present in Yoshimoto [34] is D. athabasca, which is not

found as far south as it used to be, except in the Appalachian Mountains [57]. Although global

climate change has possibly eliminated this species from the area, collections must be done fur-

ther afield. Nonetheless, the species has not been found in our casual collections in previous

years at the University of Kansas Field Station, whereas all the species found in our orchard

traps were also present at the field station (Roy and Gleason, unpublished). Miller [58] argued

that D. athabasca was never this far south and in many collections was misidentified D. affinis
or D. algonquin, both of which were found in our collection.

In addition to the presence and absence of species in our collection versus Yoshimoto [34],

the most abundant species has changed over the last 60 years. In the Yoshimoto collection, the

proportion of D. simulans was only 0.16% (Table 1) but it was the most dominant species in

our collection (57.97%, Table 1). At the same time, D. melanogaster has dropped from 83.12%

to 18.93% (Table 1). Directly comparing these numbers to previous records needs to be done

cautiously because of differences in collection methods; however, the expansion of D. simulans
appears to be a general trend across time and not the result of confusing D. melanogaster with

D. simulans. In the late 1940s D. simulans was less than 1% of June and July collections in

St. Louis [59] whereas D. simulans was 13.5% of our June and July collections (although absent

in June; S3 Table).

The invasive species, Z. indianus, was not found in our 2014 collection, which followed a

particular cold winter. November 2013 through February 2014 had 349 more heating degree

days than normal. In contrast, Z. indianus was collected in September and October 2015 in the

same locations (Gleason et al. unpublished) following a winter (November 2014-February

2015) that had only 91 heating degree days more than normal. These two observations suggest

that the species may reinvade after populations are reduced because of the response to cold

stress. Zaprionus indianus is particularly sensitive to cold [60] but additional work on the phe-

nology of the species is needed to determine the likelihood that it will become established in

this region.

Growth model

Our population growth models based on species abundance provide estimates of the tempera-

ture ranges where positive growth occurred. In some cases, these estimates are different from

those estimated in the laboratory. Within laboratory studies, different labs have found different

optimal temperatures and relevance to ecological conditions has been questioned. For exam-

ple, D. simulans in the lab responded to cold better than D. melanogaster and performed more

poorly in response to heat [53], yet this was the opposite of our observations of the species

under ecological conditions (Table 5). Other studies have found a lower preferred temperature

for D. simulans (20.5˚C) versus D. melanogaster (21.3˚C [51]). Ecophysiological responses to

temperature are usually measured as stress response or developmental rate, but survivorship is

only part of fitness. Reproductive fitness may be affected by temperature in a different manner;

ovariole number in the lab peaks for D. simulans at a higher temperature (24˚C) than it does

for D. melanogaster (24˚C [61]).

For D. melanogaster, viability has been estimated to occur between 10 and 32˚C with fertil-

ity between 12 and 30˚C; optimal temperatures are between 14 and 29˚C (reviewed in [62]).

Fecundity peaks in the lab at approximately 25˚C [63], which is much higher than the esti-

mated temperature for optimal growth rate (17.6˚C, Table 5), and the maximum temperature
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for positive growth (25˚C, Table 5) based on parameters estimated in our growth model. This

is likely caused by the use of constant temperatures in the laboratory whereas our measure-

ments are from a thermally variable environment. Thermal variation can have dramatic effects

on many life history traits, including development time, fecundity, and stress tolerance [63–

66]. In addition, the occurrence of extreme temperatures likely plays a significant role in popu-

lation growth. In a lab temperature gradient experiment, with stepped temperatures from 10

to 25˚C in 5˚C increments, the optimum temperature for D. melanogaster was estimated to

be 20.9˚C [52], which is consistent with the estimates from our population growth models

(Table 5).

Like D. melanogaster, D. simulans is plastic in temperature responses with different geo-

graphic lines responding optimally across a wide range of temperature between 14 and 30˚C,

regardless of origin [67]. Only copulation success is diminished at lower temperatures though

males are persistent in courting [67]. In the same stepped temperature gradient experiment as

for D. melanogaster [52], the optimum temperature for D. simulans was 19.0˚C, which con-

trasts with our estimate of an optimal temperature for D. simulans that is higher than that of

D. melanogaster.
Male and female D. melanogaster and D. simulans have different temperature tolerances

[68]. For example, D. melanogaster females are behaviorally more sensitive to heat than are

males [69]. Because we cannot distinguish the females of these two species, we cannot directly

address how sex affects population abundance in our fly traps. A high throughput diagnostic

test would aid in understanding sex effects in abundance.

In our models, D. suzukii had the highest estimated temperature for maximum growth

(27.2˚C, Table 5). For this species, lab estimates put an upper threshold for survivorship at

31˚C [70] whereas field observations indicate that adults of the species are not found in traps

when the temperature average is greater than 28˚C or is above 33˚C for more than 8 hours

[71]. This contrasts with an egg-to-adult developmental optimum of 28.2˚C [72], though high-

est fecundity is at 22.8˚C [72], indicating that thermal tolerance is dependent on life stage. The

minimum threshold average daily temperature for development under constant conditions

has been estimated to be 7.2˚C [70] or 8.1˚C [72] though others have suggested the species is

unlikely to survive below 10˚C [73] or even at 11.6˚C with variable conditions [74]. Low tem-

perature tolerance changes with morphology as those with a dark morphology have a lower

temp resistance than light morphs [75]. The dark morph is induced by low temperatures, inde-

pendent of day length, and is accompanied by increased body size and reproductive quies-

cence, which likely collectively contribute to increased thermal stress resistance [76–79].

Phenology of D. melanogaster and D. simulans
Few studies have examined the abundance of these species with monthly sampling and almost

none as frequently as our samples. Still, the pattern in abundance in our collections, in which

D. melanogaster appears earlier in the growing season than D. simulans, has been observed in

many other temperate locations in both the Northern and Southern hemisphere (e.g. [19, 21,

29, 80, 81]). Temperature is a likely driving force for the difference in species presence in the

collections. In Brazil, D. melanogaster is negatively correlated with high temperatures (above

29˚C) and low temperatures (below 12˚C) indicating that mid temperature ranges are ideal

[16]. The abundance of D. simulans, which had a population 30 times that of D. melanogaster
in Brazil, is not correlated with temperature. Thus, D. simulans may have faster population

growth when it is hotter, but are slow to get started when winters are cold, as in the temperate

region. Drosophila melanogaster is more cold resistant and behaviorally more likely to survive

overwintering at higher numbers because the species will enter buildings whereas D. simulans
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will not [82]. This implies that the severity of cold temperatures in the winter should affect the

date at which D. simulans becomes abundant during the summer. The two species have addi-

tional differences in life span and under-feeding tolerance that gives D. simulans a wider per-

formance breadth, but makes it less resistant at colder extremes in the lab [51, 81].

Humidity has been proposed as a factor in the abundance of these species. In the lab, D.

melanogaster is more desiccation resistant than D. simulans [83] but these measures were

taken at 0% relative humidity and do not reflect growth in variable humidity environments.

The absence of an effect of humidity in our study probably reflects that humidity is rarely low

during the growing season in Kansas, and is continuously correlated with temperature, thus

temperature has a larger effect than humidity on growth rates.

Phenology of D. suzukii
The phenology of D. suzukii is similar to D. simulans in that it appears in appreciable numbers

in July and peaks in October (S1 Fig), though it is the dominant species at the end of August

(Fig 3). Other localities have found it to be a late season species: infestation on blueberries in

Rhode Island peaked in August [84]; D. suzukii in Tuscany, Italy, are present in June and July

but peak in August [85]; in the Willamette Valley of Oregon where D. suzukii is found on cher-

ries, early peak abundances occur in July [70]. In contrast, near Winters, CA, where average

winter temperatures are not below freezing and summers are hot and dry, peaks in abundance

are found in spring and autumn [86], a pattern also seen in warmer areas of Spain [87]. Host

switching occurs regularly with D. suzukii found on different fruits as they ripen [88]. Together

this evidence indicates that D. suzukii may differ in phenology in different climatic regions.

The similarity we see here between D. simulans and D. suzukii peak abundance is in con-

trast to populations in Southern Italy, where the two species were abundant at different times

of the year, although Southern Italy has winter daily temperatures well above freezing [89]. In

this location, hot dry weather coincides with the absence of D. suzukii. The pattern is repeated

in the San Joaquin Valley, California, where abundance is locally high by fruit type in Novem-

ber through June, but the flies are not attracted to bait in July through October [90].

The number of individuals caught can be influenced by farm type. All of the flies in this

study came from conventional orchards, but in one study examining D. suzukii associated

with raspberries found that organic farms had far fewer D. suzukii than conventional farms

[91]. Our original plan was to collect Drosophila at two conventional orchards and at least one

organic farm; however, we caught very few Drosophila at the organic farm sites and we chose

to not continue the collections after mid-summer when the other farms had a variety of flies,

thus anecdotally we confirm the pattern observed.

Although recently invasive, D. suzukii has the potential to become a dominant species in

Kansas given that is was 11.22% of the total collection (Table 1). Able to exploit ripening fruit,

whereas other species are restricted to rotting fruit, D. suzukii may reduce its competition with

other species through use of alternate larval hosts, thus predicting whether or not it will dis-

place native species is difficult. Together with its ability to exploit non-fruit species [92], D.

suzukii has the colonizing ability of D. melanogaster and D. simulans and is likely to be locally

established near humans.

Phenology of other species

The native species, D. algonquin was one of the earliest detected species, already present when

we started our collections in April. To fully understand the phenology of D. algonquin will

require starting collections earlier in the season. D. algonquin disappeared from collections

in the latter half of the collecting season, thus it never overlapped with D. affinis, its closest
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relative in the collection. Other collections of these species had the same pattern in that D.

algonquin is the predominate species in colder months and is replaced by D. affinis in warmer

months [22, 93, 94]. In lab cultures, D. affinis outcompetes D. algonquin at higher tempera-

tures [22], and has greater heat tolerance [94], indicating that these species are adapted to dif-

ferent seasonal temperatures resulting in the observed seasonal isolation.

Appearing early and then again late in the season implies that D. hydei is a cooler weather

species. Its abundance was not sufficient to allow closer examination of its relationship with

temperature. The other native species were rare and similarly it is hard to make inferences

about their phenological patterns. Drosophila tripunctata, a mycophagous species with low

desiccation resistance [95] and low survivorship at 30˚C [96], was only found in the late part of

the collecting season, as temperatures decreased.

Conclusion

Our data demonstrate that species differ in phenology in Kansas in analogous ways to that at

other locations around the world for Cosmopolitan species. Additional long-term data is

needed to understand fluctuations in Drosophila populations from year to year, particularly to

test the implications of the models developed here, which may have implications for the

response of species to climate change. Basic ecology and physiology of multiple insects are

needed for studies on the effect of climate change in insects, which has been dominated by pest

species of agriculture and forests [97]. Drosophila offer an ideal species collection with variable

phylogenetic relationships to allow tests of adaptation. We agree with previous authors that a

community based analysis to understand the dynamics of all species will improve our under-

standing of the effect of pest species (e.g. D. suzukii [14]). Drosophila assemblages are good

bioindicators of climate change [98] and habitat fragmentation and urbanization [27, 99].
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