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PERSPECTIVE
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1 � Evolution conserves neural components 
and connectivity—does this extend 
to computations and circuitry?

In contrast to the broad diversity of the structure and func-
tion of life forms, nervous systems across species and even 
phyla are assembled from a remarkably similar set of com-
ponents. Essentially all nervous systems use evolutionarily-
conserved small molecules, neurotransmitters, proteins, 
excitatory and inhibitory neurons, and synapses. At higher 
levels, vertebrate and mammalian neuroanatomy conserves 
connectivity and functional role of nuclei, layers, and 
regions. At still higher levels, the goals and functions of all 
nervous systems are similar. Neural circuits have evolved to 
learn and to perform relevant pattern recognition, classify 
inputs, and make decisions. But at intermediate levels: are 
neural circuits and the computations they perform evolution-
arily conserved? Is there a small number of canonical iden-
tifiable micro- and meso-circuit computations or algorithms 
that can be identified and verified (Fig. 1a)? We do not yet 
have the data to answer these questions. A provisionally 
useful assumption is that some computations—arithmetic, 
logical, transformative, and more—are performed by local 
circuits, and still others arise from the interconnections of 
such computationally-functional assemblies via both shorter 
and longer axons.

Evolutionary parallels motivate this Perspective, but there 
is another, even more fundamental, unknown. In spite of the 
many individual advances of computational neuroscience, 
we incompletely understand how neuronal circuits compute, 
and what algorithms they use to do so. I propose that the 

neuroscience community consider, and devote resources 
toward answering, these reductionist questions:

1.	 What do brains compute? What are the computations 
that process sensory information, make choices, form 
memories, and plan and execute actions?

2.	 How are computations implemented by neural circuitry?
3.	 Do these transforms or computations form a small 

canonical set?
4.	 Which of the many properties of nervous systems are 

essential for these computations, and which are merely 
incidental or cell-biological?

There are many individual findings that relate to these 
questions, but few general principles. What we seek are 
general principles of how molecular, cellular, synaptic, and 
network properties give rise to the information processing 
necessary for perception, decision making, and action. If 
we knew such principles, they could be described mathe-
matically, tested, confirmed, and simulated, but except for a 
very few we don’t and so they can’t. There are well-known 
successes: canonical cortical circuitry (Douglas & Martin, 
2018), cerebellum as a liquid-state machine (Yamazaki & 
Tanaka, 2007) and fly sensory processing (Aso et al., 2014). 
Two recent and elegant examples by Stevens and co-workers 
present fly odor encoding as a maximum-entropy locality 
hash and find similar coding by face recognition neurons in 
monkey cortex (Dasgupta et al., 2017; Stevens, 2015, 2016, 
2018). Another current promising example is the assertion 
that the cortical microcircuit is itself a recurrent neural net-
work (Yuste, 2018).

General, global, answers to these questions could codify 
important principles of neural science (Kandel et al., 2021). 
Such principles would include a theory of how nervous sys-
tems compute, or instead suggest that computations are ad-
hoc, an an emergent property of assembling the neural (and 
glial) components. Although single-unit, multi-unit, local field  
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potential, and other recordings are routinely used to probe neu-
ronal circuitry, along with dynamical, information-theoretic, 
and other analyses, these techniques have in only rare cases 
been able to extract the computations being performed.

2 � The neurobiology of neural networks 
revisited

A lookback: the development and utilization of back-propagation  
in artificial neural networks (ANNs) stimulated neurobiologists 
to ask how biological neural nets (BNNs) computed, and to 
look for parallels between ANNs and BNNs. These included a 
much-discussed Nature commentary by Francis Crick (1989), 
a critique by Gordon Shepherd (1989), and my own Neurobi-
ology of Neural Networks (Gardner, 1993), which presented 
then-current parallels between ANN models and BNN neuronal 
circuitry. In the intervening years, powerful and broadly useful, 
wide, recurrent, and deep convolutional ANNs using effective 
but non-neuromorphic architectures have been developed. Neu-
robiologists have advanced our understanding of the molecular, 
cellular, synaptic, and network complexity of BNNs. Evolution-
ary complexity and molecular, cellular, and network variability 
of BNNs reflect ethological diversity, and BNN computations 
may be optimized for relevant real-world features such as local-
ity, low-dimensionality, and relevance. If we were able to dis-
cover and analyze the computations carried out by BNNs, then 
the ways the BNN circuits compute, adjust synaptic strength and 
other neural and glial properties and perform credit assignment 
might further enhance ANN design and performance. ANNs 
hewing more closely to neuronal architecture and algorithms 
might solve additional problems isomorphic to the ones the 
brain evolved to solve.

3 � Is neural circuitry identifiable 
and analyzable? Electrical circuits are.

What would enhance computational neuroscience is a schema 
for neural circuit analysis similar to those readily applied to 
circuits of electrical and electronic components. Transistors, 
gates, capacitors, and resistors can be purposefully assembled 

to form devices with defined but complex functions: half-
adders, shift-registers, amplifiers, filters, oscillators, and 
more. A small set of principles govern such circuits’ behav-
ior, their function can be analyzed with probes of voltage vs. 
time, and such recordings can be correlated with the com-
putations or signal processing being performed. Function is 
readily predictable from the circuitry and the circuitry can 
be reverse-engineered or system-identified from its behavior 
(Fig. 1b; Morris & Miller, 1971.) We can’t do this; predicting 
the behavior of BNNs over times greater than a few seconds 
or applying system identification to neural circuits the same 
way is very difficult for any but some detectable simple neu-
ral circuit operations or calculations, including:

•	 Weighted summation; leaky integration; gating; winner-
take-all

•	 Lateral/surround/directional inhibition: sharpening, gain 
control

•	 Persistence, delay, attractors, predictors for pattern com-
pletion & more

•	 Nonlinear A/D and D/A

The compendium of neural microcircuits by Shepherd 
and Grillner (2018) lays out anatomy, connectivity, func-
tion, and relevance of more than a hundred microcircuits in 
elegant detail, but rarely describes the computations they 
perform. Many, perhaps most, of these circuits have com-
putational function or potential, but strikingly few of the 
descriptions show correlations between neuronal circuitry, 
activity, or dynamics, and what is being computed or infor-
mation processing. The first (2010) edition cited ‘neuro-
computing’ and ‘neuronal computation’ only once each (Ito, 
2010; Wang et al., 2010) and used the word ‘neuromorphic’ 
in only one instance, describing fly vision as a neuromorphic 
circuit (Strausfeld, 2010). The second (2018) edition offers 
one chapter directly presenting the cortical microcircuit as 
a recurrent neural network (Yuste, 2018) and some explicit 
neuronal machine models (Ito, 2018).

By contrast, the functions of, and operations performed 
by ANNs seem to be emergent properties of connectivity 
and hidden layer properties, not readily described by any 
basic yet comprehensive theory.

4 � What components or connectivity enable 
neuronal computation?

If network and circuit properties and computations are evo-
lutionarily conserved across phyla, there may be a set of 
canonical identifiable micro- and meso-circuits and compu-
tations, and these are likely to leverage what’s common to 
all or most nervous systems:

Fig. 1   1a: Which of the components and functions in the classic lev-
els defined by Churchland and Sejnowski (1992) are evolutionarily 
conserved? At lower levels, molecules, neurotransmitters, membrane 
proteins, synapse functions, and excitatory and inhibitory neurons are 
conserved, as are large-scale mammalian neuroanatomy at the top. 
But in between, this Perspective asks, are circuits, microcircuits and 
the computations and transforms they mediate similarly conserved? Is 
there a small number of canonical types? 1b: For electronic circuits, 
both digital as shown and analog, function can be predicted from 
component properties and circuit connectivity. Probes give data that 
permit reverse-engineering a circuit from recordings. This is not yet 
possible for BNNs. From Morris and Miller (1971)

◂
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•	 a parts kit of differently-abled neurons and glia that vary in 
biochemistry, structure, connectivity, function, and integra-
tion, assembled into computational processing units,

•	 neurons that are post-mitotic and very long-lived, ena-
bling persistence of informative structure,

•	 irregular firing and stochastic plastic synapses, straining 
determinism,

•	 alternating digital spikes with analog graded PSPs, linked 
by nonlinear f-I relationships

•	 dynamic but stable complex networks with selective bal-
ancing of inhibition, high fan-in and fan-out, and both 
fixed and adaptive components, and

•	 local processing nets linked by distant connectivity—
top-down, bottom-up, and lateral—enabling both coher-
ence and modulation

There exists a complementary set of properties that 
are found in some but not all nervous systems, and so are 
unlikely to be universally essential for computation. No sin-
gle specific architecture or connectivity is essential, because 
multiple BNN architectures can compute and learn. What 
appears universal about connectomics is not a single rule 
for making connections, but that each circuit follows some 
rule. The neuromorphic question becomes what do such 
rules have in common. Excitatory/inhibitory balance varies 
greatly among different neuronal architectures. Computa-
tion is not simply an emergent property of neuron number—
unless the number is very small—as flies, worms, gastro-
pod molluscs, leeches, and others function perfectly well, 
including learning, with small neuron numbers. A parallel 
argument can be made for the number of ‘layers’ or layer-
equivalent processing stages. There is of course no single 
canonical neuron type, as the many types of neurons each 
differentially express specific patterns of RNAs and proteins 
and form highly individual cell structures that make specific 
connections. Nor is there a universal neuronal microcircuit.

What is also not yet clear is which of the many common 
properties of neurons, synapses, and neuronal networks are nec-
essary for computation, and which are simply cell-biological, 
aiding neuronal metabolism or stability. Structures or processes 
unlikely to mediate actual computational work performed by 
networks of real neurons include mitochondria, glycolysis 
or oxidative phosphorylation, endocytosis, Na/K ATPases, 
endolysosomes, and many others central to the function of non-
neural as well as neural cells.

5 � An opposing perspective: Could it all be 
ad‑hoc?

We seek a general theory, based firmly in neuroscience, for 
how nervous systems compute. The search for neuromor-
phic properties across diverse nervous systems posits that 

each of many circuit types has commonalities that give rise 
to the ability to process information via computation, so 
each of these forms of neuronal wetware can instantiate 
functional algorithms.

Alternatively, there may be no generality nor canonical 
circuitry. Neurons may have—may be—their own logic, 
and evolution builds ad-hoc neural networks with com-
mon components but not principles. Computability may be 
inherent in any neuronal circuitry, an emergent property 
of any circuit that transforms information using extensive 
connectivity and globally-informed learning rules. The 
diversity of neural circuit designs may just present mul-
tiple examples of evolution converging on computability, 
analogous to the many different ways vision has appeared 
and been implemented in organisms. This implies that sim-
ple summation of information, with some nonlinearities, 
convergence, and divergence is all that nervous systems 
need to do, sufficient for simple transforms such as inte-
gration. ANNs themselves suggest the possibility of no 
underlying algorithmic principle. In many cases, ANN 
function seems to be an emergent property of the connec-
tivity matrices and hidden layer unit properties. Such mul-
tilayer nets seem to be good models in some cases: early 
visual and olfactory sensation, and for mapping upper to 
lower motor neurons, but not for many other neural com-
putations. Thus there may well be a number of discover-
able neuromorphic functional computations for which the 
underlying principles remain unclear.

Another counterargument says that the specific func-
tions that different neuronal circuits perform need only to 
be specified by an input/output table. This is descriptive but 
not analytic, and like any black-box view, capable of being 
modeled phenomenologically only in terms of the inputs and 
outputs observed, disregarding the specific local circuitry or 
connectivity that performs the task.

There is at present insufficient evidence to accept or 
reject any of these explanations of neuronal function. At a 
symposium organized for the purpose at the 2019 Society 
for Neuroscience meeting (Gardner, 2019), attendees were 
asked if they thought neural computations and circuits were 
likely to be computationally conserved, and the community 
consensus was clear: 90% voted ‘yes’. And there is contin-
ued interest in this question. Luo (2021) called for extended 
examination of information-processing neuronal motifs, but 
he jumped from the simplest circuitry to between-region 
connectivity, thus bypassing the range that may yield the 
greatest insight. He also offered the metaphor of letters and 
words for neuronal assembly, but text is inherently serial 
and any understanding of neuronal circuitry must acknowl-
edge the extreme parallelism. Finally, Demas et al. (2021) 
promoted light-beam microscopy as a tool “for discovering 
the neurocomputations underlying cortex-wide encoding and 
processing of information in the mammalian brain.”
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6 � Summary—and a call for discussion 
and collaboration

Evolution conserves components below, and goals above, the 
levels for circuits and computations. I have presented evi-
dence consistent with similar evolutionary conservation of 
a small, possibly canonical number of circuits and computa-
tions, and cited some historical interest in this idea. Elec-
tronic circuits are examples of what we would like to know. 
There are several strikingly common features of nervous sys-
tems that may be both conserved and computational essential. 
There is always a null hypothesis, and I have acknowledged 
the possibility that computation itself is ad-hoc in multiple 
areas and nervous systems, and not itself a conserved prop-
erty. But we don’t know, and we should. To quote Tommy 
Poggio: ‘The problem of intelligence is not solved as either a 
scientific or engineering problem’ (personal communication). 
To which I suggest, let’s try the ‘scientific’—in our case, 
neuroscientific—and the engineering, and the math, as com-
putational neuroscientists always do. Poggio was referring to 
artificial intelligence, but the question is far more interesting 
for biomedical, natural, intelligence.

Many of us are producing important insights toward 
this idea, but these are almost always focused on one neu-
ral circuit or testing one specific theory. To explore and 
test the concept of canonical circuits requires expanding 
beyond the individual-lab paradigm to a collaboration. To 
build on the many insights derived from single prepara-
tions, collegial efforts are needed to explore and test prom-
ising candidates for evolutionarily conserved, possibly 
canonical, circuits and computations. Toward this end, I 
call for a Neuromorphic Neural Network initiative, abbre-
viated N3 and pronounced ‘Encubed’. One way to start 
would be a focused meeting of computational and systems 
neuroscientists, ANN developers, and AI researchers. Each 
attendee would give a plenary talk advancing a potential 
canonical circuit or calculation (or refuting the concept). 
This is likely to be productive if at least half the invitees 
say: ‘I’m already doing that’ or ‘I’ve already solved that 
problem.’ This might engage the larger neuroscience com-
munity, and possibly public and private funding agencies.
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