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Background. Systemic lupus erythematosus (SLE) has become increasingly common in the clinic and requires complicated
evidence of both clinical manifestations and laboratory examinations. Additionally, the assessment and monitoring of lupus
disease activity are challenging. We hope to find efficient biomarkers and establish diagnostic models of SLE. Materials and
Methods. We detected and quantified 40 proteins using a quantitative protein array of 76 SLE patients and 21 healthy controls,
and differentially expressed proteins were screened out by volcano plot. Logistic regression analysis was used to recognize
biomarkers that could be enrolled in the disease diagnosis model and disease activity diagnosis model, and a receiver operating
characteristic (ROC) curve was drawn to evaluate the efficiency of the model. A nomogram was depicted for convenient and
visualized application of our models in the clinic. Decision curves and clinical impact curves were also plotted to validate our
models. Results. The protein levels of TNF RII, BLC, TNF RI, MIP-1b, eotaxin, MIG, MCSF, IL-8, MCP-1, and IL-10 showed
significant differences between patients with SLE and healthy controls. TNF RII and MIP-1b were included in the SLE
diagnosis model with logistic regression analysis, and the value of the area under the ROC curve (AUC) was 0.914 (95%
confidence interval (CI), 0.859-0.969). TNF RII, BLC, and MIP-1b were enrolled in the disease activity diagnosis model, and
the AUC value was 0.823 (95% CI 0.729-0.916). Both of the models that we established showed high efficiency. Additionally,
the three protein biomarkers contained in the disease activity distinguish model provided additional benefit to conventional
biomarkers in predicting active lupus. Conclusions. The disease diagnosis model and disease activity diagnosis model that we
developed based on protein array chip results showed high efficiency in differentiating patients with SLE from healthy controls
and recognizing SLE patients with high disease activity, and they have also been validated. This implied that they might greatly
benefit clinical decisions and the treatment of SLE.

1. Introduction

Systemic lupus erythematosus (SLE) has always been a com-
plicated systemic autoimmune disease with a high relapse ten-
dency. It is characterized by disorders of the immune system,
such as persistently activated T cells and B cells that secrete
autoimmune antibodies, dysfunction of macrophages, and
abnormally deposited immune complexes [1–4]. It is also
known to us because of common and serious complications,
for example, lupus nephritis, which could result in hospitaliza-
tion and death [5]. It has been troublesome and consumes a
high economic cost [6]. The diagnosis criterion that we most
commonly used in the clinic is 1997 American College of

Rheumatology (ACR) revised criteria for the classification of
SLE, which included many indices, and is not convenient to
use [7, 8]. Evaluation of SLE disease activity has similar issues
with that of diagnosis criteria, and it also lacks efficient means
of monitoring disease activity and relapse. This urges us to
find novel methods for SLE diagnosis and disease activity
assessment. Currently, SLE patients show various degrees of
abnormal cytokine levels, and some of the secretory protein
levels are related to lupus disease activity or systemic organ
injuries [9, 10]. Although the discovery of new biomarkers
has attracted the interest of researchers, few of the biomarkers
that have been found could be used in clinical treatment [11].
However, our attempts and perseverance are still required, and
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we have confidence in this area. Thus, we used inflammatory
proteins as our starting point. We detected and quantified a
selected array of proteins and established models for diagnos-
ing SLE and active lupus. Models have also been proven effec-
tive, and we believe that our models would be helpful to
clinicians and benefit our patients.

2. Materials and Methods

2.1. Study Population, Subjects, and Ethics Approval. In this
clinical study, we recruited seventy-six SLE patients who were
hospitalized at the Zhengzhou University First Affiliated Hos-
pital from July 2019 to December 2019. All of the SLE patients
we enrolled were diagnosed with SLE based on the 1997 ACR
revised criteria for the classification of SLE [7, 8]. The exclu-
sion criteria were (a) suffering an active infection and (b) suf-
fered or suffering a tumor or cancer. At the same time, we
recruited a group of 21 healthy controls. To satisfy our study
needs, we obtained a 3.0mL peripheral blood sample from
each of our participants in the morning after an eight-hour
overnight fast after the day they were enrolled. Blood samples
were collected in an EDTA-K2 anticoagulant tube and then
centrifuged at 3000 rpm for 10 minutes. The plasma was sep-
arated and stored at -80°C until testing. All operations were
completed in one hour after the plasma sample was collected.
The study was censored and approved by the Medical Ethics
Committee of Zhengzhou University First Affiliated Hospital
(2019-KY-134). All of the participants enrolled, including all
the patients and/or their legal guardians and healthy volun-
teers, signed written informed consent forms.

2.2. Date Collection and Assessment of Inflammatory Protein
Levels.The data we collected from SLE patients mainly included
demographic information, clinical manifestations, and labora-
tory and imaging examinations, and all the information above
was collected during hospitalization. We assessed and quanti-
fied 40 plasma inflammatory protein expression levels in 97
plasma samples (76 SLE patient samples and 21 healthy control
samples) by Quantibody® Human Inflammation Array 3 (Cat#
QAH-INF-G3-4, RayBiotech). All the plasma was thawed for
the first time to avoid adverse effects that repeated freeze/thaw
cycles might bring to the sample quality. Lupus clinical disease
activity was measured based on Systemic Lupus Erythematous
Disease Activity Index (SLEDAI) 2000 [12].

2.3. Statistical Analysis. Proteins are shown in a scatter diagram
and sorted into upregulated, downregulated, and nonsignifi-
cant groups based on protein level fold change (FD) of SLE
patients compared to healthy controls. Volcano plots and heat-
map were also depicted so that we could recognize those differ-
entially expressed inflammatory proteins and intuitively
display protein level differences. To identify proteins that could
be used to develop a diagnostic model for differentiating SLE
patients from healthy controls, we carried out univariable and
multivariable logistic regression analyses. We drew a receiver
operating characteristic (ROC) curve and calculated the area
under the ROC curve (AUC) to evaluate the model efficiency.
A logistic regression analysis calibration curve was also per-
formed to further assess diagnostic efficiency and application

value. A nomogram is also presented. Decision curves and clin-
ical impact curves were depicted to evaluate and illustrate the
clinical application value of our model. Not only the diagnosis
model but also a model that would discriminate active lupus
patients from inactive ones was established and assessed in
similar ways. SLE patients were sorted into active lupus with
SLEDAI ≥ 5 and inactive lupus with SLEDAI < 5.

All statistical analyses and figures were generated and
drawn using R software version 4.0.5. The variation between
groups was considered statistically significant if the two-
sided p value was less than 0.05.

3. Results

3.1. Levels of Inflammatory Proteins. We quantified both
patients with SLE and healthy controls with a protein array,
and all the members came from central China and showed
similar sex compositions, which would greatly influence dis-
ease activity (shown in Table 1). The median age of controls
was less than that of patients with SLE; most of our partici-
pants were middle-aged and all were younger than 60 years
old. Reports available showed that immune system function
would decay until people were older than 60-65 years old
[13, 14]. Therefore, we think this heterogeneity would not
be a significant factor in our study and conclusion.

To visualize our protein array results, we drew a scatter
diagram (Figure 1(a)). AveExp., which represents the aver-
age value of logarithmic levels of each protein, determined
their position. The average value of SLE patients is shown
on the x-axis, and that of healthy controls is shown on the
y-axis. FD was determined by the ratio of the average protein
level of SLE patients to healthy controls, and proteins were
sorted into different groups based on FD.

We further explored whether these upregulated and down-
regulated proteins were significantly different between SLE
patients and healthy controls, and volcano plot analysis was
performed (Figure 1(b)). Log2 (FD) and -log10 (adjusted p
value) determined the coordinate axis system. According to
the plot, we found that TNF RII, BLC, TNF RI, MIP-1b,
eotaxin, MIG, MCSF, IL-8, MCP-1, and IL-10 showed signifi-
cant differences (adjusted p value < 0.05), and all of them were
upregulated. Detailed information of these ten proteins is
shown in Table 2. A heatmap was also displayed to show the
expression level differences of these ten proteins (Figure 1(d)),
and we found that most high protein levels were obviously dis-
tributed in the SLE group.

Additionally, we carried out subgroup analysis to deter-
mine whether there were significant protein level differences
between SLE patients without renal involvement and lupus
nephritis patients [15]. Unfortunately, the results showed
all of the adjusted p > 0:05, although a few basic p values
were promising (Figure 1(c)).

Ahead of further analysis, we wanted know whether SLE
patients under a given medical regimen would show differ-
ent levels of the ten selected plasma proteins. We sorted
SLE patients into two groups, patients under given regimens
(use of glucocorticoids and/or immunosuppressive agents)
and patients without a given regimen. Nine of the ten pro-
teins showed similar levels between the two groups, and only
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MIP-1b in patients under the given regimens was lower than
the others (p < 0:05). Although the level difference was
reduced, patients with SLE still showed higher plasma
MIP-1b levels than healthy controls, and this would not
change our conclusion.

3.2. Development of a Disease Diagnosis Model for
Differentiating SLE Patients fromHealthy Controls.To identify
whether the ten proteins could be used in diagnosing SLE and
developing a disease diagnosis model, we carried out univari-
ate logistic regression analysis, and TNF RII, BLC, TNF RI,
MIP-1b, eotaxin, MIG, IL-8, and MCP-1 showed statistical
significance in distinguishing SLE patients from healthy con-
trols (Table 3). Furthermore, with backward stepwise multiple
logistic regression analysis, TNF RII and MIP-1b were finally
indicated to be independent risk factors for SLE. Thus, we
enrolled TNF RII and MIP-1b in a disease diagnosis model
to differentiate SLE patients from healthy controls. The model
suggested that people with higher plasma levels of TNF RII
and/or MIP-1b tended to suffer SLE.

Next, we plotted an ROC curve to assess the diagnostic
efficiency of the model (Figure 2(a)). It showed a relatively
high efficiency with an AUC of 0.914 (95% CI 0.859-0.969),
and the cutoff point value was 0.780, with a specificity of
0.952 and a sensitivity of 0.803. Both the high AUC value
and specificity and sensitivity of the cutoff point showed a
quite high level of discrimination ability. Then, we displayed
a calibration curve and manifested a mean absolute error of
0.025, which suggested that this model has a high capability
of calibration (Figure 2(b)).

Furthermore, we depicted a nomogram for better use of
this model in clinical decision-making (Figure 2(c)). We
obtained a score by drawing a vertical line upward from each
variable and obtained a point on the “points” axis. Then, we
summed the two points and obtained a total point, and we
obtained a probability on the “SLE probability” axis. In this
way, we could conveniently speculate the probability of suffer-
ing SLE based on quantified levels of TNF RII and MIP-1b.

To better evaluate the potential of this model in clinical
decision-making, we carried out decision curve analysis

(DCA) and drew the curve down (Figure 2(d)). This result
suggested that this diagnosis model could add more benefit
in the clinic if we could obtain a threshold probability higher
than 0.26. Clinical impact curve analysis also showed a high
efficiency of our model in distinguishing SLE patients from
healthy controls at all risk thresholds (Figure 2(e)).

3.3. Combined Protein Markers in Recognizing Active Lupus.
How to find a better way to monitor SLE disease activity has
always been a hot topic, and we further analyzed the potential
of the proteins in predicting active lupus. TNF RII, BLC, and
MIP-1b showed statistical significance in logistic regression
analysis in differentiating active lupus from inactive lupus
(Table 4). This result suggested that SLE patients with high
levels of these three proteins were more prone to suffer an
active disease, and thus, we established a model for predicting
patients with active lupus based on these three proteins.

ROC analysis was carried out and suggested that this
model had a rather good predictive value with an AUC of
0.823 (95% CI 0.729-0.916) and cutoff point of 0.464 (specific-
ity 0.844 and sensitivity 0.710) (Figure 3(a)). The calibration
curve showed a mean absolute error of 0.039, which also gave
us confidence that this model was qualified andmight be help-
ful in clinical treatment (Figure 3(b)). A nomogram was also
presented to make this model convenient to use (Figure 3(c)).

As the assessment method that had been used on the
diagnosis model, we also performed decision curve analysis
and plotted a clinical impact curve (Figures 3(d) and 3(e)).
The DCA model curve suggested that our activity model
would benefit us more in a wide range of thresholds. The
clinical impact curve showed that we would have more con-
fidence in diagnosing active lupus while we had a relatively
higher risk threshold. Both of them implied that the activity
model might be promising in clinical decision-making.

3.4. Combined Diagnosis Efficiency of Inflammatory Proteins
and Conventional Biomarkers in Distinguishing Active Lupus.
Complement 3 (C3) and 4 (C4) levels and anti-double-
stranded DNA antibody (anti-dsDNA Ab) were considered
efficient and conventional biomarkers of active lupus and were

Table 1: General clinical characteristics of population.

Variable SLE (N = 76) Control (N = 21) p value

Age (year), median (IQR) 30.0 (24.0-44.8) 25.0 (22.5-27.5) 0.009

Gender, n (%) 0.138

Male 12 (15.8%) 7 (33.3%)

Female 64 (84.2%) 14 (66.7%)

Ethnic origin Middle of China Middle of China —

Onset age (year), median (IQR) 28.0 (21.3-38.8) —

Disease duration (month), median (IQR) 15.5 (2.0-43.9) —

SLEDAI —

Median, IQR 4 (1-10)

0-4, median (IQR) 45 (59.2%)

≥5, median (IQR) 31 (40.8%)

Positive anti-ANAs, n (%) 69 (90.8%) —

Positive anti-dsDNA Ab (%) 22 (28.9%) —
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Figure 1: Continued.
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Figure 1: Levels of quantified proteins. (a) Quantified levels of the 40 proteins. Upregulation (red dot) was FD > 1:2, downregulation (green
dot) was FD < 0:83, and other proteins (grey dot) were regarded as there was no significant difference between SLE patients and healthy
controls. (b) Volcano plot of the 40 proteins and statistical significance between patients with SLE and healthy controls. Adjusted p value
was determined by method “BH” based on the original p value. (c) Volcano plot of the 40 proteins and differences between SLE patients
with and without renal involvement. (d) Heatmap of the ten differently expressed proteins.

Table 2: Proteins which showed statistical differences between the SLE group and control group.

Protein ID AveExp. SLE AveExp. Con Fold change log2 (FD) p value Adjusted p (BH) Regulation

TNF RII 8.75426 8.51666 1.27915 0.35519 4.74E-13 1.897E-11 Up

BLC 3.73913 2.60778 3.44763 1.78560 1.60E-05 0.00016 Up

TNF RI 8.93266 8.62099 1.40409 0.48964 1.20E-05 0.00016 Up

MIP-1b 3.28035 2.52714 2.44976 1.29264 1.10E-05 0.00016 Up

Eotaxin 4.89815 4.30996 1.88399 0.91379 2.50E-05 0.00020 Up

MIG 3.00623 1.56953 15.48548 3.95284 7.07E-04 0.00354 Up

MCSF 0.95948 -1.00187 35.34142 5.14329 1.64E-03 0.00657 Up

IL-8 -0.61980 -1.85654 3.18792 1.67262 5.45E-04 0.00311 Up

MCP-1 4.53743 4.04290 1.84726 0.88538 8.46E-04 0.00376 Up

IL-10 0.01865 -1.10739 2.57508 1.36462 3.47E-04 0.00231 Up
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components of SLEDAI. We performed ROC curve analysis
based on low level complements (low levels of C3 and/or C4)
combined with positive anti-dsDNA Ab to assess the efficiency
of conventional biomarkers in predicting active lupus
(SLEDAI ≥ 5) (Figure 4(a)). It showed a moderate AUC value
(0.773, 95% CI 0.666-0.880). Then, we combined factors of
the activity diagnosis model with this conventional model
and formed a novel model of recognizing active lupus, which
contained factors of TNF RII, BLC, MIP-1b, low level comple-
ments, and positive anti-dsDNA Ab. The ROC curve was also
plotted, and it showed an elevated AUC value of 0.881 with a
95% CI of 0.802-0.960 (cutoff point value 0.229, specificity
0.711, and sensitivity 0.933) (Figure 4(b)). For better acceptabil-
ity, we made a nomogram that could be used in the clinic easily
(Figure 4(c)). It contained these five factors that we had men-
tioned, and we hoped that it could add more benefit and con-
venience for our clinical decision and treatment.

4. Discussion

Currently, an increasing number of SLE patients are being
diagnosed with advancedmedical inspection technology. How-
ever, the disease remission rate is still not where we want to see
it, although the overall rate of SLE patients who have achieved
and maintained remission status has improved considerably
over recent decades, and further evidence is required to better
characterize the pathogenesis and features of SLE, especially
in patients in the Asia Pacific region [16, 17]. Discovery of
new biomarkers of SLE has always been positive, as it can pro-
vide better comprehension of SLE pathogenesis and could also
be a potential treatment target, for example, CD163, which has
been a hot topic lately [18, 19]. Nevertheless, this seems to pro-
vide limited value to our clinical decisions and treatment,
although it would indeed add more benefit in choosing study
topics and developing novel treatment targets. Thus, we aimed
to find biomarkers that can benefit SLE diagnosis and predict
disease activity precisely in the clinic.

Differential diagnosis and prediction combined with mul-
tifeature models have been developed rapidly in recent years,
and this method has also been applied in diagnosing SLE.
Diagnostic models based on clinical data and manifestations
have been developed for better accuracy in diagnosing SLE,

including indices such asmalar rash, serositis, neurologic disor-
der, and low C3 and C4 levels [20]. Additionally, it has been
reported that RNA could be applied in establishing a risk pre-
diction model of SLE, and they showed high efficiency
[21–23]. Models for predicting lupus disease activity that have
been developed with combined clinical features have also
appealed to us, as well as diagnosing SLE complications and
predicting treatment response [24–27]. Thus, we were inspired
to establish an SLE diagnosis model from a different perspec-
tive. Inflammatory proteins such as cytokines and chemokines
have always been considered to play crucial roles in SLE path-
ogenesis, and multiple protein markers are widely studied
worldwide [28]. To discover and validate as many inflamma-
tory proteins as we could efficiently, we performed protein
array quantitation and developed an SLE diagnosis model
and disease activity diagnosis model. To our excitement, our
models showed great differential diagnostic efficiency with
AUCs of 0.914 and 0.823, respectively. Additionally, the pro-
tein markers we selected could add more benefit to conven-
tional biomarkers, such as C3, C4, and anti-dsDNA Ab, in
predicting active lupus. To the best of our knowledge, this is
the first study to attempt to establish a diagnosismodel and dis-
ease activity diagnosis model based on such a wide range of
inflammatory proteins. Furthermore, our models might be a
bridge between the laboratory and the clinic and could make
our experimental findings benefit clinical decisions conve-
niently. Thus, we could obtain more feedback and further
improve our decision models and eventually add more benefit
to clinical treatment.

Efficient plasma biomarkers have been explored for a long
time because of the multiple varieties of proteins contained
and convenience to be obtained, and a few available reports have
discovered some promising proteins. The tumor necrosis factor
(TNF) superfamily contains proteins with proinflammatory
and anti-inflammatory activity and has been studied in many
diseases, especially in some rheumatic diseases, such as SLE
[29]. They have been proven to play an important role in disease
pathogenesis by enhancing the inflammatory activity of immune
cells as well as tissue cells themselves and creating a sustained
inflammatory microenvironment, which would cause tissue
and organ injuries. In addition, some of the TNF superfamily
proteins promote cell death and limit inflammation. Novel

Table 3: Logistic regression analysis in differentiating SLE patients from healthy controls.

Proteins
Univariable Multivariable

OR (95% CI) p OR (95% CI) p

TNF RII 1.002 (1.001-1.003) <0.001 1.002 (1.001-1.003) <0.001
BLC 1.025 (1.004-1.047) 0.021

TNF RI 1.001 (1.000-1.001) <0.001
MIP-1b 1.126 (1.046-1.212) 0.002 1.105 (1.007-1.212) 0.035

Eotaxin 1.021 (1.009-1.033) <0.001
MIG 1.106 (1.016-1.204) 0.020

MCSF 3.443 (0.965-12.282) 0.057

IL-8 4.901 (1.144-21.000) 0.032

MCP-1 1.021 (1.007-1.035) 0.004

IL-10 1.027 (0.902-1.168) 0.692
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Figure 2: Continued.
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biologic drugs, such as BAFF antagonists, that could help in the
treatment of SLE patients also imply that proteins of the TNF
superfamily might be promising biomarkers. Colony stimulating
factors (CSF), represented by granulocyte CSF, macrophage
CSF, granulocyte-macrophage CSF, and a few other cytokines,
have been proven to be upregulated when infections and auto-

immune diseases occur. They can enhance the activity of
granulocytes, macrophages, and both granulocytes and macro-
phages and promote their cell proliferation, as well as monocyte
chemoattractant proteins (MCP) [30]. It is well known that SLE
damage is mainly caused by an immune complex-mediated
autoimmune response, and patients with SLE usually have
impaired macrophage function, which could result in a reduc-
tion in macrophage phagocytotic ability, and then, an increas-
ing number of deposited immune complexes are left,
increasing injuries [31]. Additionally, CSF could stimulate the
activation and migration of macrophages and granulocytes to
inflammation sites and sustain their survival and renewal, and
an imbalance in CSF production would result in harmful effects.
However, some reports have suggested protective roles of CSF
in SLE [32, 33]. Thus, we were interested in what roles they
played in patients with SLE.We could never ignore interleukins
(IL) when talking about abnormal cytokines in SLE patients. ILs
have been discussed in many reports and used as a treatment
target owing to the variety of types and broad biological signif-
icance and signaling pathways. Similar to TNFs, ILs do not
always promote immune responses, but they can regulate
immune cell activity; thus, IL-2 can be used for SLE treatment,
as well as IL-12 and IL-17, which are promising therapeutic tar-
gets, as well as potential biomarkers of disease activity [34–36].
Moreover, gene polymorphisms of a few ILs have also been
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Figure 2: Efficiency and validation of the disease diagnosis model. (a) ROC of diagnosis model in differentiating SLE patients from healthy
controls. (b) Calibration curve of the diagnosis model. (c) Nomogram based on the diagnosis model. (d) Decision curve for the diagnosis
model in predicting SLE. Standard net benefit (y-axis) and risk threshold (x-axis) formed the coordinate system. The red line represented
our model, grey line represented the assumption that all the people were suffering SLE, and black line represented the assumption that
all the people were healthy. (e) Clinical impact curve analysis diagram. Red line represented number of people which were diagnosed
with SLE by our model at different threshold probability, and blue line represented number of SLE patients.

Table 4: Logistic regression analysis of differentiating active SLE
from inactive SLE.

Variable
Univariable Multivariable

OR (95% CI) p OR (95% CI) p

TNF RII 1.001 (1.000-1.001) 0.002 1.001 (1.000-1.001) 0.006

BLC 1.007 (1.001-1.013) 0.032 1.007 (1.001-1.012) 0.020

TNF RI 1.000 (1.000-1.000) 0.049

MIP-1b 1.031 (1.008-1.053) 0.007 1.026 (1.002-1.050) 0.035

Eotaxin 1.001 (0.995-1.007) 0.749

MIG 1.000 (0.997-1.004) 0.792

MCSF 1.030 (0.974-1.090) 0.299

IL-8 1.616 (0.968-2.700) 0.067

MCP-1 1.006 (1.000-1.013) 0.060

IL-10 0.990 (0.954-1.027) 0.593
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Figure 3: Continued.
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proven to influence the predisposition of SLE [37]. All of these
inflammatory proteins attracted our interest.

Therefore, we chose the inflammation array Cat# QAH-
INF-G3-4 to quantify 40 proteins in our plasma samples,
including TNF RI, TNF RII, BLC, MIP-1b, eotaxin,
eotaxin-2, MIG, MCSF, G-CSF, GM-CSF, MCP-1, MIP-1a,
MIP-1d, PDGF-BB, TIMP-1, TIMP-2, I-309, TNFa, TNFb,
RANTES, IFNg, ICAM-1, IL-1a, IL-1b, IL-1RA, IL-2, IL-4,
IL-5, IL-6, IL-6R, IL-7, IL-8, IL-10, IL-11, IL-12p40, IL-
12p70, IL-13, IL-15, IL-16, and IL-17, and samples from
both SLE patients and healthy controls were quantified.

Proteins that we quantified were considered statistically
significant not only based on their low p value but also with
FD > 1:2 (upregulated) or FD < 0:83 (downregulated). Addi-
tionally, to reduce statistical error in distinguishing differen-
tially expressed proteins, we calibrated our p value using the
Benjamini and Hochberg (BH) method and generated an
adjusted p value. Thus, we could recognize proteins that satis-
fied our demands visually in the volcano plot underlying both
adjusted p value and FD. Following univariable and multivar-
iable logistic regression analysis, TNF RII and MIP-1b were
enrolled in the diagnosis model, and TNF RII, BLC, and
MIP-1b were enrolled in the active lupus diagnosis model.

Tumor necrosis factor receptor type II (TNF RII) belongs
to the tumor necrosis factor receptor superfamily and is bound

to the cell membrane, and it can enhance inflammatory inju-
ries induced by infections and autoimmune diseases [38].
According to available studies, the serum-soluble TNF RII
level was higher in patients with SLE than in healthy volun-
teers, not only at the time of diagnosis but also at the time of
posttreatment, and it showed a significant correlation with
lupus disease activity [39, 40]. Additionally, the TNF RII level
was associated with a decreased estimated glomerular filtra-
tion rate in SLE patients with renal involvement. This evidence
implied that TNF RII might take part in lupus pathogenesis
and organ injuries. B lymphocyte chemoattractant (BLC), also
known as CXCmotif ligand 13 (CXCL13), and its correspond-
ing receptor CXCR5 have been reported to be part of SLE
pathogenesis and the levels of BLC were higher in SLE patients
than in healthy controls [41]. Additionally, lupus patients with
higher disease activity scores showed higher circulating BCL
levels [42]. Regarding macrophage inflammatory protein 1
beta (MIP-1b), some debate remains. MIP-1b, also known as
chemokine (CC motif) ligand 4 (CCL4), is a powerful chemo-
kine and can enhance immune system disorders by recruiting
regulatory T cells and macrophages, which eventually results
in organ lesions [43]. In some studies, MIP-1b might be a
promising biomarker of SLE underlying its ability to predict
active lupus, and circulating MIP-1b levels were higher in
patients with SLE than in healthy controls [44, 45]. However,
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Figure 3: Efficiency and validation of the activity diagnosis model. (a) ROC of activity model in differentiating active SLE from inactive
ones. (b) Calibration curve of activity model. (c) Nomogram of activity model with TNF RII, BLC, and MIP-1b. (d) Decision curve for
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probability, and blue line represented number of patients with active lupus.
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quite a few studies showed negative opinions and suggested
that there was no MIP-1b difference between patients with
SLE and healthy persons [46]. Thus, we concluded that
MIP-1b has the potential to be a qualified biomarker of SLE.

Our models were validated to be efficient, and the DCA
curve and clinical impact curve showed that the models could
add more benefit to our clinical decision and treatment strate-
gies. Clinicians would have more confidence in diagnosing SLE
if our diagnosis model could be well used. Moreover, how to
monitor lupus activity precisely and conveniently has troubled
us for a long time. The full-scale current evaluation rules are
complicated and costly, and this urges us to develop a novel
method to be used in the clinic. This disease activity diagnosis
model not only showed high efficiency but could also provide

additional benefit to conventional biomarkers in differentiating
active lupus from inactive ones. It would be a promising tool in
helping develop an appropriate treatment plan and provide
more evidence in judging treatment response and taping drug
doses.

Our study developed diagnosis and activity diagnosis
models based on forty types of inflammatory proteins. We
then validated the model efficiency, and it showed high value
in contributing to clinical determinations. We obtained a neg-
ative outcome when we further performed subgroup analysis
to verify whether the protein levels were significantly different
between SLE patients with or without renal involvement. In
the subgroup analysis, a few protein levels were significantly
higher than those of healthy controls, with an original p value
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less than 0.05, whereas all of the adjusted p values were more
than 0.05. Additionally, our evaluations had not been per-
formed blindly, which might potentially make our findings
slightly less convincing, and we could have done it better if
we had carried out our analysis blindly. Last, we have no
follow-up data at present, but we will follow up with these
patients and obtain more data to determine whether we could
develop a model that could predict the disease flare and prog-
nosis of our SLE patients and eventually benefit their lives.

5. Conclusions

In this study, we developed a disease diagnosis model and dis-
ease activity diagnosis model based on the inflammatory array
quantitation data of forty proteins, and both of these models
have been verified to be efficient and convenient for application
in clinical decisions. We believe that they would have promis-
ing performance and benefit clinicians and our patients.
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