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ABSTRACT
Lung adenocarcinoma (LUAD) represents the major histological type of lung cancer with high 
mortality globally. Due to the heterogeneous nature, the same treatment strategy to various 
patients may result in different therapeutic responses. Hence, we aimed to elaborate an effective 
signature for predicting patient survival outcomes. The TCGA-LUAD cohort from the TCGA portal 
was used as a training dataset. The GSE26939 and GSE68465 cohorts from the GEO database were 
taken as validation datasets. All immunologically relevant genes were extracted from the ImmPort. 
The ESTIMATE algorithm was employed to explore LUAD microenvironment in the training 
dataset. Further, the DEGs were picked out based on the immune-associated genes reflecting 
different statuses in the immune context of TME. Univariate/multivariate Cox regression was 
performed to determine six prognosis- specific genes (PIK3CG, BTK, VEGFD, INHA, INSL4, and 
PTPRC) and established a risk predictive signature. The time-dependent ROC indicated that AUC 
values were all greater than 0.70 at 1-, 3-, and 5- year intervals. Corresponding RiskScore of each 
LUAD patient was calculated from the signature, and they were stratified into the high- and low- 
risk groups by the median value of RiskScore. K-M curves and Log-rank test demonstrated 
significant survival differences between the two groups (P < 0.05). Similar results were exhibited 
in the validation datasets. The RiskScore was incredibly relevant to clinicopathological factors like 
gender, AJCC stage, and T stage. Also, it can mirror the distribution state of 15 kinds of TIICs and 
have some predictive value for the sensitivity of therapeutic drugs.
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Introduction

Lung cancer is the second leading aggressive 
malignancy after breast cancer, responsible for 
18% of all tumor-related deaths [1,2]. Lung ade
nocarcinoma (LUAD) is the primary histopatho
logical type of lung cancer [3]. Since there are 
insidious and symptomless at the early stage, it is 
commonly diagnosed in advanced stages with local 
invasion or distant metastasis [4]. Therefore, this 
contributes to missing the therapeutic opportu
nities to gain surgical procedures and even causes 
a poor prognosis. The advent of immunotherapy 
has brought a unique perspective to pave the way 
for advanced LUAD patients. More recently, the 
immunotherapy targeting immune checkpoint

molecules like programmed cell death protein 1 
receptor/ ligand (PD-1, PD-L1) and cytotoxic 
T lymphocyte antigen-4 (CTLA-4) has yielded 
encouraging outcomes [5–7], emphasizing the 

essential role of the tumor microenvironment 
(TME) to influence the clinical therapeutic out
come. Nowadays, it is generally accepted that 
immunotherapy is to recruit the immune cells 
within or outside the TME to recognize and kill 
the cancer cells by targeting tumor surface differ
entiation antigens, which can induce a protective 
antitumor response to suppress immune escape of 
neoplastic cells [8]. However, the efficacy of this 
method is nearly 15–20% [9]. Furthermore, it 
might produce a series of immune-related adverse 
events and acquire drug resistance [10,11]. At the 
same time, the cost of immunotherapy is enor
mous [12]. Accordingly, it is imperative to identify 
the beneficiary population and predict patient sur
vival from the immunotherapy.

With significant advances in high-throughput 
sequencing technology combined with bioinfor
matics analytic methods, more novel prognostic 
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and predictive biomarkers of LUAD have been 
mined. The signature consisting of 30 immune- 
related genes could be recognized as an indepen
dent factor for the survival time of LUAD patients 
[13]. SPRR1B gene was identified as a prognosis 
predictor in LUAD via being screened by bioinfor
matics analysis methods and then verified using 
cell biology experiments [14]. In particular, 
increasing attention has been focused on the rela
tionship between TME and the projection of 
LUAD. Four immune-related prognostic biomar
kers were screened by integrating five public 
microarray datasets, and the expression level of 
markers was positively correlated with different 
types of tumor-infiltrating immune cells [15]. 
Chen et al. [16] have revealed TME-based signa
tures capable of predicting LUAD patient survival 
and therapeutic responses. However, large 
amounts of studies tended to mainly concentrate 
on a single critical gene/pathway or one aspect of 
tumor development. They paid little attention to 
tumor crosstalk among different driving factors. 
Therefore, it is necessary to search for the broader 
signatures from the view of multiple factors that 
could accurately predict the clinical efficacy of 
varying immunotherapy approaches and prognos
tic information for LUAD patients. In this present 
study, we hypothesized that continuous crosstalk 
between immunologically relevant genes and the 
immune cell infiltration in the TME could provide 
clues for predicting survival outcome and immu
notherapy response with LUAD patients. The goal 
of our present study was to uncover appropriate 
prognostic signatures from both immune- 
associated gene profiles and the surrounding 
microenvironment of LUAD cells aspects. 
Specifically, the immune-associated genes were 
obtained from the ImmPort database. The micro
environment of LUAD was analyzed by means of 
the ESTIMATE algorithm, and further a list of 
TME-specific genes was extracted. The immune- 
TME-related genes as candidate biomarkers were 
identified from the above two gene sets. As 
a result, we innovatively proposed a prognostic 
signature of six genes through univariable/multi
variate Cox regression analysis. Besides, both 
internal and external validation was carried out 
to verify the effectiveness of this prediction signa
ture. Finally, it is expected that these results are to 

provide a more comprehensive picture of the 
immunogenomic landscape of TME and a better 
prognosis predictor for patient stratification and 
personalized precision treatment.

Materials and methods

Data collection of TCGA & GEO databases

Raw transcriptome RNA-sequencing (RNA-seq) 
and clinical pathology information of The Cancer 
Genome Atlas (TCGA) LUAD patients were 
obtained from the Genomic Data Commons 
(GDC) data portal (https://portal.gdc.cancer.gov/ 
). The GSE26939 and GSE68465, including the 
mRNA expression and matching clinical data of 
patients with LUAD, were retrieved from the data
base of the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). The 
GSE26939 dataset was analyzed using the 
GPL9053 Agilent-UNC-custom-4X44K microarray 
chip platform, submitted by Wilkerson et al. [17]. 
The GSE68465 was described based on the [HG- 
U133A] Affymetrix Human Genome U133A Array 
(GPL96) platform by Shedden et al. [18]. The data 
of TCGA-LUAD was used as a training dataset for 
establishing the risk prognostic signature, whereas 
data in GSE26939 and GSE68465 were applied to 
verify the effectiveness of the signature.

Analysis of TME components in TCGA-LUAD 
dataset

To evaluate the cellular heterogeneity of the TME 
for each LUAD patient, it was necessary to quan
tify the TME using the cancer tissue genomic and 
transcriptomic spectrums. ESTIMATE algorithm 
was exploited to analyze tumor purity and non- 
neoplastic cell infiltration based on ssGSEA [19]. 
The R package ‘ESTIMATE’ was implemented to 
RNA-seq transcriptome profiles to calculate three 
types of score in tumor tissue: ImmuneScore that 
quantifies the abundance of infiltrating immune 
cells, StromalScore that denotes the presence of 
stromal cells, and ESTIMATEScore that is the 
sum of the above ImmuneScore and 
StromalScore which re presenting the composite 
proportion of these two components in TME. 

7418 W. WU ET AL.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


Then, Kaplan-Meier (K-M) survival analyses and 
Log-rank test were constructed for ImmuneScore, 
StromalScore, and ESTIMATEScore, respectively. 
Associations between three scores and clinical 
parameters were assessed by the Kruskal-Wallis 
test or the Wilcoxon test. Differences were taken 
to be statistical significance if P < 0.05.

Generation of differentially expressed genes 
(DEGs)

First, all TCGA-LUAD patients were classified 
into high vs. low score subgroups by the median 
ImmuneScore/StromalScore split, respectively. 
Genes that were upregulated (downregulated) 
among high ImmuneScore and StromalScore 
subgroups were taken as co-upregulated (co- 
downregulated) DEGs. Only genes that com
monly appeared in these two intersection sets 
were considered as the significant TME-specific 
DEGs. DEGs were picked out using the ‘limma’ 
R package [20]. The selection criteria were |log2 
(fold change) | > 1 and false discovery rate 
(FDR) < 0.05. And heatmaps and clustering of 
DEGs were visualized by the R package ‘pheat
map’ (https://CRAN.R- project.org/package = 
pheatmap). Then, the entire set of immune- 
associated genes was downloaded from 
ImmPort (https://www.ImmPort.org/) [21], 
which is the NIH-funded bioinformatics reposi
tory for the field of immunology. Finally, given 
that the two categories of gene-sets identified 
above, the overlapping genes were further 
selected as the immune-TME-related DEGs. In 
parallel, the DEGs among different groups were 
depicted with the R library ‘VennDiagram’ 
(ht tps : / /CRAN.R-  project .org/package  =  
VennDiagram).

Identification of the risk prognostic signature

To determine the association between immune- 
TME-related DEGs and prognostic, the univari
ate Cox proportional hazards regression analy
sis was employed. And genes, which were found 
to be considered significant with a cutoff of P <  
0.01, were suggested as candidates. Then, the 

weight of each gene was also generated via 
a stepwise multivariate Cox regression model. 
All analyses were executed by the function of 
coxph in the R ‘survival’ package (https://cran. 
r-project.org/package = survival). Moreover, the 
risk prognostic signature was constructed 
through the sum of each gene’s expression 
value multiplied with its respective Cox regres
sion coefficient.

Evaluation of the risk prognostic signature in 
TCGA-LUAD dataset

The RiskScore of each LUAD individual was 
calculated by the risk prognostic formula.

The RiskScore distribution curve, survival status 
scatter plot, and heatmap were drawn by the 
R language tool. All LUAD patients were split 
into a high-risk group and a low- risk group by 
the median RiskScore. Differences in the clinico
pathological parameters between the two groups, 
as mentioned above, were compared via Chi- 
square tests. Heatmaps were generated using the 
‘ComplexHeatmap’ package in R environment 
[22]. K-M survival curves coupled with Log-rank 
test were performed using the R packages ‘survival’ 
and ‘survminer’ (https://CRAN.R- project.org/ 
package = survminer). The specificity and sensi
tivity of the prognosis signature were assessed by 
time-dependent receiver operating characteristic 
(ROC) at 1-, 3- and 5-years using the R package 
‘timeROC’ [23]. Area under the curve (AUC) 
values were calculated. Additionally, in order to 
determine whether the RiskScore and clinical 
indices (such as age, gender, AJCC stage, and 
TNM stage) were independent predictors of 
LUAD prognostic, the proportional hazard model 
of Cox regression was conducted.

Validation of the performance of the risk 
prognostic signature in the GEO repository

The datasets from the GEO were externally vali
dated, accession number GSE26939 and 
GSE68465. The RiskScore specific to per LUAD 
patient was computed using the risk equation from 
the training dataset. The median RiskScore was 

BIOENGINEERED 7419

https://CRAN.R-%A0project.org/package%A0=%A0pheatmap
https://CRAN.R-%A0project.org/package%A0=%A0pheatmap
https://www.ImmPort.org/
https://CRAN.R-%A0project.org/package%A0=%A0VennDiagram
https://CRAN.R-%A0project.org/package%A0=%A0VennDiagram
https://cran.r-project.org/package%A0=%A0survival
https://cran.r-project.org/package%A0=%A0survival
https://CRAN.R-%A0project.org/package%A0=%A0survminer
https://CRAN.R-%A0project.org/package%A0=%A0survminer


a useful threshold for categorizing all patients as 
high- and low-risk groups. K-M plotter (Log-rank 
test) and time-dependent ROC curve were carried 
out for further verifying the generalization of the 
prognostic signature with R program 
(Version: 4.0.3).

Relationship between riskscore and the 22 kinds 
of tumor-infiltrating Immune cells (TIICs)

To identify whether the RiskScore could reflect the 
state of TME in cancerous tissue, we further ana
lyzed the relation of 22 TIICs with the RiskScore 
in the TCGA-LUAD dataset. First, the 
CIBERSORT deconvolution algorithm was utilized 
to determine the relative quantity of 22 TIICs with 
the whole RNA-seq expression profiles [24]. The 
results were mapped to the histogram and correla
tion matrix visually with the ‘corrplot’ package on 
R software [25]. Second, the degree of TIICs infil
tration was compared between risk groups by the 
Wilcoxon test. Violin plots were applied to show 
the distribution of the difference in diverse types 
of TIICs. Finally, the Spearman correlation test 
was implemented for estimating the association 
between the RiskScore and tumor-infiltrating 
immune components. When P values were both 
less than 0.05 in differences and correlations ana
lyses, TIICs were thought to be statistically signifi
cant and considerably associated with the 
RiskScore.

Assessment of the sensitivity of therapeutic 
agents

The sensitivity of multiple drugs among different 
risk groups was evaluated by 50% inhibitory con
centration (IC50). The IC50 of each drug was 
computed using ridge regression from the 
Genomics of Drug Sensitivity in Cancer (GDSC, 
https://www.cancerrxgene.org) pharmacogenomics 
database. Data analyses were done with the pack
age ‘pRRophetic’ in R [26]. The selected drugs, 
including cisplatin, paclitaxel, gemcitabine, and 
vinorelbine, are the first-line medication for the 
treatment of lung cancer in clinical practice. Apart 
from that, the immunotherapeutic effect of block
ade antibodies targeted PD1 and CTLA4 was also 
assessed by the Tumor Immune Dysfunction and 

Exclusion (TIDE) prediction score (http://tide.dfci. 
harvard.edu) [27,28]. The results in the form of 
box plots were charted by R package ‘ggplot2’ 
(https://ggplot2.tidyverse.org/) [29]. Differences 
were indicated significant at P-value < 0.05.

Results

In this study, we hypothesized that immunologi
cally relevant genes reflecting the status of TME 
could provide leads for predicting survival and 
immunotherapy response with LUAD patients. 
Therefore, we innovatively proposed an immune- 
TME-related signature that can not only stratify 
the risk of LUAD patients but also aid in clinical 
decision-making. Firstly, the ESTIMATE algo
rithm and immune-associated genes from the 
ImmPort database were employed to identify can
didate biomarkers. Secondly, a risk signature based 
on targeted markers was established and verified 
the predictive performance in terms of prognosis 
and drug sensitivity. It analyzed the correlation 
with immune cell infiltration in TME. Finally, the 
effectiveness of this signature was validated in the 
two additional datasets, GSE26939 and GSE68465.

The landscape of TME based on immunescore, 
stromalscore, and ESTIMATEScore

The distributions of demographic and clinical informa
tion for all datasets were presented in Table 1. TCGA- 
LUAD dataset contained 515 cases. A total of 594 
transcriptome sequencing data were obtained, 535 
(90.1%) came from tumor samples and 59 (9.9%) 
were derived from normal samples. First, the infiltra
tion levels of immune cells, the content of stromal cells, 
and the purity of tumor cells for each tumor sample 
were scored by the ESTIMATE computational method 
according to FPKM data of mRNA. And the population 
was dichotomized at the median scores, respectively. 
Then, the comparison of overall survival (OS) was 
performed by K-M analysis and Log-rank test. As 
shown in Figure 1, the patients in the high 
ImmuneScore/StromalScore subgroup had more favor
able outcomes than those in the respective low-score 
subgroup (both P < 0.05). The high ESTIMATEScore 
group, which meant the low content of tumor cells, 
show ed a positive correlation with the OS rate. Finally, 
to investigate whether the proportion of immune/ 
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stromal components was associated with clinical para
meters, we investigated the correlation among them. 
The results shown in Figure 2, ImmuneScore was 
related to patient gender, AJCC stage, T stage, and 
N stage. Remarkably, regarding the T stage, a higher 
level of ImmuneScore was found in patients with T1 
stage compared to T2, T3, and T4 stage, respectively (all 
P < 0.05). These suggested that the infiltration extent of 
immune cells in the early phase of LUAD was signifi
cantly greater than that in other phases. StromalScore 
was correlated with gender, AJCC stage, and M stage. 
Notably, compared with the M0 stage, StromalScore in 
the M1 stage was significantly decreased (P < 0.05). As it 
turned out, the tumor tissues with distant metastasis 
contained fewer stromal cells.

ESTIMATEScore was related to gender, AJCC 
stage, T stage, and M stage. Clinicopathologic 
variables, including gender, primary tumor, and 

distant metastasis, might affect the tumor purity 
of LUAD. Taken together, the presence of 
immune and stromal cell populations in TME 
plays a fundamental role during LUAD develop
ment, invasion, and metastasis.

Identification of the differentially expressed 
immunologically relevant genes that reflecting 
the LUAD microenvironment

A number of studies have shown that immune- 
associated genes might reflect the status of the TME, 
regulating tumor progression and maintenance 
[30,31]. A total of 2,483 immunologically relevant 
genes were downloaded. Among them, duplicate 
genes were deleted, leaving 1,793 unique genes. To 
identify TME-specific DEGs, differential expression 
analysis was conducted. In comparing high and low 
ImmuneScore groups, 613 genes were found to be 
upregulated in the high-score group, while 163 genes 
were downregulated. And in the comparison based on 
StromalScore, 678 upregulated and 114 downregu
lated genes were detected as well. Genes correspond
ing to the mentioned categories for both groups were 
displayed in the form of heatmaps (Figure 3(a-b)).

Moreover, the Venn diagram showed the inter
sectional analyses of sharing DEGs in ImmuneScore 
and StromalScore groups. Results were presented 
that 363 genes were filtered, in which 297 were 
upregulated and 66 were downregulated (Figure 3 
(c-d)). Subsequently, the 89 overlap genes between 
immune-associated and TME-specific were picked 
out as immune-TME-related DEGs for the following 
analysis (Figure 3(e)).

Construction of the risk predictive signature for 
the prognosis of LUAD patient

According to the previous findings, 9 out of 89 DEGs 
were highly related to survival status by univariate 
Cox proportional hazards regression analysis. 
Among these 9 genes, 6 genes with maximum prog
nostic value, including 3 beneficial (coefficient < 0) 
and 3 risky (coefficient > 0) genes, were further 
screened out using multivariate Cox analysis 
(Table 2). 6 genes were incorporated into the prog
nostic signature as variables. The RiskScore of each 
LUAD sample was computed referring to the follow
ing formula: RiskScore = (−0.325 × ExpPIK3CG) + 

Table 1. Summary of patients’ demographic and clinical char
acteristics in all datasets.

Features

Training dataset Validation dataset

TCGA-LUAD 
n = 515

GSE26939 
n = 116

GSE68465 
n = 462

Age at diagnosis, years
≤ 60 159 40 147
> 60 337 76 296
Unknown 19 NA 19
Gender
Female 276 63 220
Male 239 53 223
Unknown 0 0 19
AJCC stage
I 276 50 NA
II 121 16 NA
III 84 17 NA
IV 26 1 NA
Unknown 8 32 NA
T stage
T1 169 NA 150
T2 277 NA 251
T3 47 NA 28
T4 19 NA 12
Unknown 3 NA 21
N stage
N0 332 NA 299
N1 95 NA 88
N2 74 NA 53
N3 2 NA 0
Unknown 12 NA 22
M stage
M0 346 NA NA
M1 25 NA NA
Unknown 144 NA NA
Survival status
Alive 328 49 207
Dead 187 66 236
Unknown NA 1 19
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(−0.102 × ExpBTK) + (−0.095 × ExpVEGFD) + 
(0.005 × ExpINHA) + (0.010 × ExpINSL4) + 
(0.050× ExpPTPRC).

Analysis of the predictive efficacy of the 
prognostic signature

The median value of RiskScore calculated by the 
above equation was taken as a cutoff value. Of 
the 473 patients, 236 were in the high-risk group 
and 237 were in the low- risk group. The distri
bution of the RiskScore, survival status and 

expression patterns of 6 genes were revealed in 
Figure 4(a). As can be seen from the thermogram 
of relatedness (Figure 4(b)), the group with a low 
risk had a significantly greater proportion of 
female patients as compared to the group with 
a high risk (P < 0.001). And there were more 
patients in the low-risk group with AJCC stage 
I (P < 0.05) and T1 stage (P < 0.01), while those 
of the high-risk were in the middle-advanced 
stage. It further illustrated the major of low-risk 
patients were at an early stage of tumor progres
sion. RiskScore was helpful to stratify patients 

Figure 1. K-M analyses showing the predictive capability of three types of scores with the prognosis of LUAD patients. (a) 
comparison of OS rate in high versus low ImmuneScore groups. (b) comparison of OS rate in high versus low StromalScore groups. 
(c) comparison of OS rate in high versus low ESTIMATEScore groups.

Figure 2. Scatter plots represent the association between the three scores of TME and clinical indicators (age, gender, AJCC stage, 
T stage, N stage, and M stage). (a-f) The distribution of ImmuneScore. (g-l) the distribution of StromalScore. (m-r) the distribution of 
ESTIMATEScore.
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with high or low risk. K-M survival analysis (Log- 
rank test) obviously showed that, unlike the low- 
risk group, the high-risk patients were associated 
with a worse prognosis (P < 0.001). The 5-year 
survival rate was 32.6% (95% confidence interval 
[CI] = [24.9–42.6%]) for the high-risk group ver
sus 49.7% (95% CI = [39.6–62.4%]) for the low- 
risk group. In addition, the predictive power of 
this risk prognostic signature was measured by 
the time-dependent ROC. The AUC values of 
0.794, 0.727, and 0.760 were displayed at the 1-, 
3-, and 5-year, respectively (Figure 4(c)). Next, we 
examined that the RiskScore could view as an 
independent prognostic indicator for LUAD 
patients irrespective of other clinical characteris
tics using the Cox proportional hazards model. 
The HR was roughly 1.7 (P < 0.001). More spe
cifically, univariate Cox analysis implied that the 
clinical factors (tumor AJCC stage, T, and 

N stage) were also associated with the prognosis 
of LUAD (Figure 4(e-f)). Collectively, the 
RiskScore had the greatest influence on predicting 
the survival rate, indicating that the six-gene- 
based risk signature could better predict the 
LUAD patient’s prognostic status.

The validation of the prognostic signature in the 
external dataset

To ensure the feasibility and accuracy of this sig
nature, it was applied to the GEO database. 
GSE26939 dataset contains 116 patients with 
LUAD, but one patient (GSM663361) was 
excluded due to missing survival information. 
The GSE68465 dataset comprises a total of 462 
samples, where 19 samples are normal and the 
rest are LUAD tumor samples. One LUAD patient 
(GSM1672389) was also ruled out because of the 

Figure 3. The display of DEGs among different groups. (a, b) heatmaps revealed DEGs by comparing high- and low-score groups in 
ImmuneScore and StromalScore, respectively. The abscissa represents the ID of patient samples, and the ordinate represents the 
name of DEGs. The top 50 DEGs were listed. (c, d) venn diagrams were depicted for upregulated and downregulated DEGs based 
on shared genes in ImmuneScore and StromalScore groups, respectively. (e) venn plot showed the overlap of immunologically 
relevant genes and TME-specific genes.
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same reason as described above. Subsequently, the 
K-M analysis curve (Log- rank test) implied that 
survival time was significantly shorter in the high- 
risk group than in the low-risk group (both P <  
0.01). The time-dependent ROC analysis results 
revealed that the AUC at 1-, 3- and 5-year OS of 
the GSE26939 and GSE68465 were 0.710, 0.663, 
0.665, 0.719, 0.630, 0.618, respectively (Figure 4 
(d)). In general, these results further illustrated 
that the prognostic signature based on immune- 
TME-related DEGs was robust in predicting the 
survival rates of patients with LUAD.

Correlation between the RiskScore and the 
proportion of TIICs

We quantified the relative composition of multiple 
immune cell subpopulations infiltrating the TME 
by CIBERSORT and drew 22 kinds of TIICs pro
files from the RNA-seq data of each patient 
(Figure 5(a)). The results from the analysis showed 
there were no infiltration fraction of T cells CD4 
naïve in all samples. So, we removed this cell type, 
leaving 21 TIICs for follow-up evaluation. 
Meanwhile, a heatmap of the correlation matrix 
between 21 types of TIICs was also displayed 
(Figure 5(b)). By combining difference and corre
lation analyses (Figure 5(c-d)), a total of 15 TIICs 
were tightly linked to the RiskScore. Among them, 
7 kinds of TIICs, including mast cells activated, 
macrophages M1, macrophages M0, T cells folli
cular helper, T cells CD8, T cells CD4 memory 
activated, and NK cells activated, were positively 
correlated with RiskScore. In contrast, the remain
ing 8 kinds of TIICs, including macrophages M2, 
mast cells resting, dendritic cells resting, T cells 
CD4 memory resting, B cells memory, monocytes, 
neutrophils, and eosinophils, were negatively cor
related with RiskScore. Hence, it demonstrated 
that the RiskScore might reflect the immune cell 
infiltration status of the TME in LUAD tissue.

The treatment response of different drugs

We have calculated the value of IC50 of four 
therapeutic drugs in all TCGA-LUAD patients 
using the pRRophetic algorithm and investigated 
between-group differences. The observed differ
ence in the IC50 value of cisplatin did not reach Ta
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statistical significance (Figure 6(a), P = 0.53). 
Then, three drugs (paclitaxel, gemcitabine, and 
vinorelbine) had lower IC50 for high-risk patients. 
It hinted that the high-risk group was more sus
ceptible to the above-mentioned drugs (all 
P < 0.05, Figure 6(b-d)). Also, the TIDE score 
could predict the effectiveness of anti-PD1 and 
anti-CTLA4 in immunotherapy. Quantifications 
were presented below in box plots. It was found 
that patients from the low-risk group had higher 
TIDE scores compared to those of the high- risk 
group (P < 0.05, Figure 6(e-f)). It was shown that 

high-risk patients were likely to profit more from 
anti-PD1/CTLA4 with the lower potential of 
tumor immune dysfunction and immune escape.

Discussion
At present, it is strikingly challenging to tailor 
treatment schemes for malignancies owing to 
tumor heterogeneity and tumorigenesis mechan
isms involving complicated genetic backgrounds. 
Particularly, in the era of personalized medicine, 
accurate prognostic assessment is greatly 

Figure 4. Evaluation and validation of the risk prognostic signature. (a) RiskScore distribution, survival overview, and heatmap for 
patients in the TCGA-LUAD dataset assigned to high- and low-risk groups based on the RiskScore median. (b) heatmap of the 
correlation between the two groups and clinicopathological parameters. *: P < 0.05, **: P < 0.01, ***: P < 0.001. (c, d) K-M survival 
and time-dependent ROC analyses were performed to predict the prognosis and the efficiency of the risk signature for high-/low-risk 
groups in training and validation datasets, respectively. (e, f) univariate/multivariate Cox regression analyses showing the indepen
dent prognostic value of RiskScore in TCGA-LUAD.
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warranted for the clinical treatment and manage
ment of LUAD patients. On the one hand, 
a dynamic interaction between the tumor cells 
and other cells or extracellular components of its 
microenvironment could influence the balance in 
tumor proliferation and suppression. More 
recently, mounting evidence has indicated that 
the biological characteristics of TME are intimately 
linked to the prognosis of many types of cancer 
[32–34]. Studies about prognostic markers of 
LUAD microenvironment, Mo et al. found that 
the hypoxia-associated gene signature could inde
pendently deem as a potential prognostic predictor 

[35]. Zhang et al. reported that a novel model 
based on eight metabolism-related genes had the 
more vital predictive ability for LUAD diagnosis 
and prognosis [36]. Besides, the vascular prolifera
tion index (VPI), which was the ratio between 
proliferating vessel density and the overall micro
vessel density, had been established to be 
a significant prognostic marker [37].

On the other hand, cancer immunoediting 
could cause the dysregulation of the body’s 
immune system to result in the eventual escape 
of tumor cells from the host immune surveillance 
[38]. Therefore, we speculated that immunologi

Figure 5. The relationship between the RiskS of our prognostic signature and the proportion of TIICs in the training dataset. (a) 
histograms showing 21 kinds of TIICs profile for each LUAD patients. The lateral axis represents sample ID and the longitudinal axis 
represents the relative percent of different types of TIICs. (b) correlation matrix displaying the pairwise correlation between 21 kinds 
of TIICs. Color or number in each cell depicting the corresponding correlation and P-value between two kinds of TIICs, respectively. 
(c) violin plots visualizing the infiltration fractions of 21 kinds of TIICs between high- and low-risk groups. The horizontal and vertical 
coordinates represent the name and relative content of TIICs, respectively. (d) the correlation between the RiskScore and significantly 
different 15 types of TIICs.
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cally relevant genes that reflect the status of TME 
might gain a crucial role in the LUAD progression 
and prognosis.

The principal objective of our research was to 
explore and validate promising immune molecular 
characteristics that reflected the state of TME for 
LUAD patient’s risk stratification. We engineered 
a novel prediction signature based on specific can
didate genes using the publicly TCGA-LUAD 
high-throughput transcriptomic data as the train
ing dataset and the microarray data of GSE26939 
and GSE68465 from GEO as independent external 
validation datasets. First of all, all the immune 
genes were downloaded from the ImmPort data
base. Second, from the view of immune/stromal 
cell scores, the TME was quantified by the 
ESTIMATE algorithm in TCGA-LUAD tumor tis
sue. Our primary analysis showed that the cellular 
and the stromal composition of the TME could 
impact survival and have a great relevance with 
clinical features in LUAD patients. Afterward, the 
immune-TME-related DEGs were screened out 
and constructed a risk appraisal signature accord
ing to univariate/multivariate Cox regression. 
Eventually, taking a diversity of perspectives, the 
reliability of signature was evaluated by 
K-M survival (Log-rank test), time-dependent 

ROC curve, and other analytical methods. The 
validation datasets of GSE26939 and GSE68465 
were in good consistent prediction result with the 
TCGA-LUAD dataset. The RiskScore calculated 
the current risk signature was an independent 
predictor of survival in LUAD patients.

Moreover, patients with high RiskScore indi
cated worse survival outcomes. Our study’s find
ings went one step further, suggesting that the 
RiskScore was closely related with 15 kinds of 
TIICs by the CIBERSORT algorithm and had the 
predictive value for the sensitivity and availability 
of LUAD therapeutic drugs to some extent. In 
a word, our immune-TME-specific signature may 
be a useful, practical tool in clinical prognosis 
prediction and treatment decision-making for 
LUAD patients.

The predictive signature contained six genes 
selected by bioinformatical analysis, which were 
PIK3CG, BTK, VEGFD, INHA, INSL4, and 
PTPRC, respectively. Among these genes, 
PIK3CG, BTK, VEGFD were favorable prognostic 
factors, whereas INHA, INSL4, and PTPRC were 
considered the unfavorable prognostic factors in 
LUAD patients. PIK3CG (also termed PI3Kγ) is 
a protein-coding oncogenic driver gene that 
encodes a class I phosphoinositide 3-kinase 

Figure 6. The effectiveness analysis of different types of medication at high- and low-risk group in TCGA-LUAD patients.
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catalytic subunit gamma [39]. PIK3CG activation 
switches on immune stimulation or suppression in 
cancer and acute/chronic inflammation. And it 
could improve the survival of the tumor model 
in mice when it synergizes with checkpoint inhi
bitor therapy [40]. The rate of PIK3CG mutations 
was 0.7% by next-generation sequencing analysis 
in Swiss never-smoker LUAD patients [41]. 
Bruton tyrosine kinase (BTK) belongs to the non- 
receptor tyrosine kinase widely expressed in the 
hematopoietic lineage cells. Especially, the propa
gation of BTK signaling is important to B-cell 
maturation, proliferation, and differentiation [42]. 
Thus, it is recognized as an attractive drug target 
for multiple diseases, particularly autoimmune dis
eases and hematopoietic malignancies related to 
B lymphocytes [43,44]. It has been recently 
assumed that BTK might remodel TME to influ
ence the prognosis of LUAD patients based on 
TCGA data mining [45]. Vascular endothelial 
growth factor D (VEGFD, alias FIGF) encodes 
a secreted protein regulating lymphangiogenesis, 
angiogenesis, and endothelial cell growth as 
a member of the vascular endothelial growth fac
tor family [46]. The abnormal activity of VEGFD 
might lead to several types of diseases, such as 
lymphangioleiomyomatosis, pulmonary diseases, 
and cardiovascular diseases [47]. A gene signature 
containing VEGFD plus VEGFA and VEGFB is 
a prognostic indicator in early-stage non-small 
cell lung cancer (NSCLC) through detecting multi
ple gene transcription levels by quantitative poly
merase chain reaction [48]. Inhibin subunit alpha 
(INHA) acts as a member of the TGF-β super
family. The c.-124 G > A polymorphism of the 
INHA gene promoter region may cause male 
infertility in Pakistani [49]. Recent studies have 
implicated that the function of INHA is linked 
with androgen-independent metastasis of prostate 
cancer [50] and angiogenesis of ovarian tumor 
[51]. However, few reports regarding the relevant 
role and molecular mechanism of INHA have been 
described in LUAD. Insulin-like 4 (INSL4), 
belonging to the insulin superfamily, is 
a markedly placenta- specific expression [52]. 
High expression of INSL4 can promote breast 
cancer invasion and motility by influencing lateral 
Her2 signaling in vitro cell experiments [53]. 
Aberrant INSL4 signaling drove the growth and 

survival of LKB1-deficient lung cancer cells [54]. 
In an eight-gene-based signature, the expression of 
INSL4 contributes to 18 some predictive ability for 
prognostic of LUAD patients [55]. PTPRC (also 
known as CD45) is a transmembrane protein tyr
osine phosphatase and pivotal for T- and B-cell 
antigen receptor signal transduction [56]. The 
expression level of PTPRC has been reported to 
increase in head and neck cancer and has 
a protective effect for survival in ER-negative 
breast cancer [57,58]. PTPRC+ cells in the meta
static lymph nodes might be an independent pre
dictor of disease-specific survival of NSCLC 
patients [59].

Although our signature has been demonstrated 
that it had the significant predictive potential for 
LUAD patients’ survival outcome, there are some 
limitations to this investigation. First, our study 
was a retrospective analysis of available data from 
the gene expression profiling in TCGA and GEO. 
In order to exclude the inherent deficits of retro
spective analysis, large-scale prospective research 
from more centers is needed to evaluate and vali
date the reliability of the signature. Second, given 
that only bioinformatics and computational 
approaches were applied in our study, further 
molecular biological experiments in vivo and 
in vitro were required to probe the functional 
characterization of the six selected genes and ela
borate the possible pathogenesis of LUAD. Finally, 
whether this prognostic signature can predict the 
survival rate of immunotherapy with other ICBs 
except for anti-PD1/PDL1 and anti- CTLA4 anti
bodies, there has still been a great deal of extensive 
work to be done in the future.

Conclusion

Taken as a whole, we developed and validated 
a six-gene signature based on immunologically 
relevant genes that can reflect not only the 
immune status of the TME but also stratified 
LUAD patients into two risk categories, ranking 
as high-risk and low- risk. In clinical practice, this 
signature could provide a basis for prognostic 
information and sensitivity of different therapeutic 
medications to the LUAD patients to a certain 
extent. Broadly, our findings might offer the 
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potential molecule biomarkers and facilitate treat
ment individualization in LUAD patients.
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