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Abstract

Introduction

The closed testing principle provides strong control of the type I error probabilities of tests of

a set of hypotheses that are closed under intersection such that a given hypothesis H can

only be tested and rejected at level α if all intersection hypotheses containing that hypothesis

are also tested and rejected at level α. For the higher order hypotheses, multivariate tests

(> 1df) are generally employed. However, such tests are directed to an omnibus alternative

hypothesis of a difference in any direction for any component that may be less meaningful

than a test directed against a restricted alternative hypothesis of interest.

Methods

Herein we describe applications of this principle using an α-level test of a surrogate hypothe-

sis ~H such that the type I error probability is preserved if H ) ~H such that rejection of ~H
implies rejection of H. Applications include the analysis of multiple event times in a Wei-

Lachin test against a one-directional alternative, a test of the treatment group difference in

the means of K repeated measures using a 1 df test of the difference in the longitudinal

LSMEANS, and analyses within subgroups when a test of treatment by subgroup interaction

is significant. In such cases the successive higher order surrogate tests can be aimed at

detecting parameter values that fall within a more desirable restricted subspace of the global

alternative hypothesis parameter space.

Conclusion

Closed testing using α-level tests of surrogate hypotheses will protect the type I error proba-

bility and detect specific alternatives of interest, as opposed to the global alternative hypoth-

esis of any difference in any direction.

PLOS ONE | https://doi.org/10.1371/journal.pone.0219520 July 12, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lachin JM, Bebu I, Larsen MD, Younes N

(2019) Closed testing using surrogate hypotheses

with restricted alternatives. PLoS ONE 14(7):

e0219520. https://doi.org/10.1371/journal.

pone.0219520

Editor: Zhongxue Chen, Indiana University

Bloomington, UNITED STATES

Received: March 18, 2019

Accepted: June 25, 2019

Published: July 12, 2019

Copyright: © 2019 Lachin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data from the

Prevention of Events With Angiotensin-Converting

Enzyme Inhibitor Therapy (PEACE) study were

provided by the National Heart, Lung and Blood

Institute’s Biologic Specimen and Data Repository

Information Coordinating Center (BioLINCC)

https://biolincc.nhlbi.nih.gov/home/. ClinicalTrials.

gov Identifier for PEACE study: NCT00000558.

Funding: This work was partially supported by

grant U01-DK-098246 from the National Institute

of Diabetes, Digestive and Kidney Diseases

(NIDDK), NIH (https://www.niddk.nih.gov/) for the

http://orcid.org/0000-0001-9838-2841
https://doi.org/10.1371/journal.pone.0219520
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219520&domain=pdf&date_stamp=2019-07-12
https://doi.org/10.1371/journal.pone.0219520
https://doi.org/10.1371/journal.pone.0219520
http://creativecommons.org/licenses/by/4.0/
https://biolincc.nhlbi.nih.gov/home/
https://www.niddk.nih.gov/


Introduction

The closed testing principle of Marcus, Peritz and Gabriel [1] provides strong control of the

type I error probability, the so-called family-wise error rate (FWER), over a set of tests of mul-

tiple hypotheses. The basic principle is that a given elemental null hypothesis can be tested and

rejected at level α if all higher order intersection hypotheses containing it have also been tested

and rejected at level α. In this case the type 1 error probability for the set of hypotheses, both

elemental (i.e. simple) and joint (i.e. intersections), will be protected at level α provided that

each hypothesis is tested using an α-level test, meaning that the type 1 error probability associ-

ated with a given test of a given hypothesis is no greater than α, multiple testing aside. Hsu [2]

describes various applications. Henning and Westfall [3] provide a review of historical and

recent developments.

The most common application of closed testing is pairwise tests of group differences in a

multiple K> 2 group trial in which we wish to test the equality of the K groups by conducting

K(K − 1)/2 pairwise comparisons with strong control of the type I error probability for the set

of tests. Let μj denote the expected value of the outcome (mean, proportion, etc.) for the jth
group 1� j� K. Consider the case of K = 4 groups with 6 pairwise tests. In this case we start

with a test of the joint null hypothesis H0,1234: μ1 = μ2 = μ3 = μ4 (the highest order interaction

hypothesis) against the alternative H1,1234: μj 6¼ μk for at least one pair of groups among 1� j<
k� K = 4.

Closed testing can also be applied to tests of the difference between two groups for multiple

outcomes. Let θj refer to the difference between the two groups for the jth outcome and assume

that we wished to test the individual hypotheses H0,j: θj = 0, j = 1, . . ., K, with control of the

type I error probability for the set of K tests. Consider a test of the hypothesis H0,1: θ1 = 0. This

hypothesis can be rejected at level α if it and all intersection hypotheses containing it are also

rejected at level α. This entails testing the set of hypotheses presented in Table 1 starting with

the K-level intersection hypothesis. This is a simple testing tree.

For K = 4 outcomes, the parameter estimates θ̂ ¼ ½ŷ1 ŷ2 ŷ3 ŷ4�
T

are jointly asymptotically

normally distributed with expectation θ and a consistently estimable covariance matrix S.

Then the order 4 hypothesis H0,1234: θ = 0 could be tested using a T2-like test of the form

X2
1234
¼ θ̂ 0Σ̂ � 1θ̂ ð1Þ

that is asymptotically distributed under H0,1234 as chi-square on 4 df. Then an order 3 joint

Table 1. Intersection hypotheses containing H0,1: θ1 = 0 in the context of testing the joint null hypothesis of no dif-

ference between groups in the means of K = 4 outcome measures. Also shown are the equivalent hypotheses in terms

of joint tests of specific mean values. In order to reject H0,1 at level α, all of these hypotheses must be nominally statisti-

cally significant at level α.

Intersection Hypotheses Equivalent Hypothesis

Order 4: H0,1 \ H0,2 \ H0,3 \ H0,4 H0,1234: θ1 = θ2 = θ3 = θ4 = 0

Order 3: H0,1 \ H0,2 \ H0,3 H0,123: θ1 = θ2 = θ3 = 0

H0,1 \ H0,2 \ H0,4 H0,124: θ1 = θ2 = θ4 = 0

H0,1 \ H0,3 \ H0,4 H0,134: θ1 = θ3 = θ4 = 0

Order 2: H0,1 \ H0,2; H0,12: θ1 = θ2 = 0

H0,1 \ H0,3; H0,13: θ1 = θ3 = 0

H0,1 \ H0,4; H0,14: θ1 = θ4 = 0

Order 1: H0,1: θ1 = 0 H0,1: θ1 = 0

https://doi.org/10.1371/journal.pone.0219520.t001
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null hypothesis, such as H0,123, could be tested using a T2-like test of the form

X2
123
¼ θ̂ 0CðC0Σ̂CÞ� 1C0θ̂ ð2Þ

using a matrix such as

C0 ¼

1 0 0 0

0 1 0 0

0 0 1 0

2

6
6
6
4

3

7
7
7
5

ð3Þ

that is asymptotically distributed as chi-square on 3 df under the joint null hypothesis H0,123.

Similar tests can be applied to each order 2 hypothesis. Then the elementary hypotheses, such

as H0,1, could be tested using a simple t- or Z-test. Thus, H0,1 would be rejected if the tests of

H0,1234, H0,123, H0,124, H0,134, H0,12, H0,13, H0,14 and H0,1 were all nominally significant at level

α. A similar table of hypotheses and rejection criteria would apply to the closed testing for the

other 3 elementary hypotheses H0,2, H0,3, and H0,4.

In addition to the hierarchy of T2-like tests as above, Lehmacher, Wassmer and Reitmeir

[4] also describe application to other tests of the differences between means for multiple quan-

titative outcomes, such as the O’Brien [5] Ordinary Least Squares (OLS)-based test based on

the sum of the mean differences over the set of K measures. These and other α-level tests are

also shown to provide strong control of the type I error probability. Wassmer et al. [6] also

provide an overview of procedures for analysis of multiple, principally quantitative, outcomes

that contrasts omnibus versus directional alternatives.

More generally, consider that we wish to test a set of K null hypotheses H closed under

intersection, i.e. if H;K 2 H, then H \ K 2 H as well. Let HT 2 H denote the subset of true

null hypotheses, HT , where rejecting any hypothesis in HT is a type I error. Then let H?
T be the

intersection of all true elemental hypotheses in HT , i.e. the highest order true null intersection

hypothesis to be tested, where the rejection region ensures that Pr ðrejectH?
TÞ � a. Also, let H

be another true null hypothesis H 2 HT where H 6¼ H?
T . Then the order constraint above

ensures that H?
T will precede H in the testing order. Since the testing of H is conditional on the

rejection of H?
T , then

Pr ðrejectHÞ ¼ Pr ðrejectH \ rejectH?
TÞ � Pr ðrejectH?

TÞ � a: ð4Þ

Since H?
T is always the first true null to be tested, and since Pr ðrejectH?

TÞ � a, the cumula-

tive probability of all further type I errors cannot exceed α.

Closed testing typically employs an efficient (e.g. UMP) test of each null hypothesis against

a global alternative hypothesis such as the T2-like test H0,1234: θ = 0 of joint equality against the

alternative H1,1234: θ 6¼ 0 that the group difference for at least one of the outcomes is unequal

to zero. However, from (4), the only requirement for closed testing to control the family-wise

error rate at the desired level α is that each test employed be an α-level test [3], meaning that

the type I error probability of a test does not exceed the desired level α under that null hypothe-

sis. Thus, closed testing can also be applied using a test directed towards a restricted alternative

hypothesis, such as the one-directional or one-sided alternative hypothesis H1,1234: θ> 0

where positive values of θ are considered beneficial. In this case the test is directed to a

restricted alternative hypothesis that represents a region of the parameter space of greater

interest than would be provided by the usual multiple df omnibus test of H0.

More generally, closed testing can also be employed using a surrogate test of a surrogate
hypothesis. Let H be a null hypothesis of interest. We will say that a hypothesis ~H is a surrogate
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hypothesis for H if it satisfies

H ) ~H ð5Þ

where rejection of ~H implies rejection of H. For example, consider a test of H0,12: θ1 = θ2 = 0 in

Table 1 against the alternative H1,12: θ1 6¼ 0 and/or θ2 6¼ 0. A surrogate test could be conducted

using ~H 0;12 : y1 ¼ y2 against the alternative ~H 1;12 : y1 6¼ y2. Clearly H0;12 )
~H 0;12 and rejection

of ~H0;12 implies rejection of H0,12. Even though the efficiency of the test of ~H may differ from

that of the usual test of H, ~H is still is an α-level test and this testing strategy preserves the type

I error probability at� α for the set of tests closed under intersection.

We now present specific applications, starting with the analysis of multiple event-time out-

comes (e.g. MACE in a cardiovascular trial) following a one-directional Wei-Lachin multivari-

ate test of a combination of outcomes, with a computational example. This is followed by a

description of tests of treatment group differences in means of K repeated measures over time

where the tests of intersection hypotheses are conducted using tests of the longitudinal

LSMEANS rather than T2-like MANOVA omnibus tests. We then describe testing the treat-

ment difference between two groups within multiple subgroups following a test of treatment

by subgroup interaction (i.e. homogeneity). This is accompanied by the computation of the

operating characteristics of the traditional closed testing and the surrogate closed testing for

this application.

Components of the MACE composite outcome

We first apply closed testing using surrogate hypotheses to the assessment of the significance

of treatment group differences for elements of a composite time-to-event outcome such as a

Major Adverse Cardiovascular Event (MACE) using the times to one or more of a set of possi-

ble component events such as cardiovascular (CV) death, non-fatal myocardial infarction

(MI), non-fatal stroke or non-fatal congestive heart failure, so called 4-point MACE. Herein

we compare traditional closed testing using T2-like “MANOVA” omnibus tests on multiple df
to surrogate closed testing using Wei-Lachin [7] 1 df tests against one-directional restricted

alternatives, and also to the commonly used time-to-first-event analysis.

Let βj denote the log hazard ratio for treatment versus control for a Cox PH model

analysis of the time to the jth of K different types of events including multiple types for a

given patient, e.g. time to the first non-fatal MI and time to CV death for a patient who

experiences both types of event. The K separate models generate a vector of coefficient

estimates β̂ ¼ ðb̂1 . . . b̂KÞ
T

that is asymptotically normally distributed with expectation

β = (β1. . . βK)T and with a covariance matrix S with elements

s2
j ¼ Vðb̂ jÞ; j ¼ 1; . . . ;K

sjk ¼ Covðb̂ j; b̂kÞ; 1 � j < k � K:
ð6Þ

Estimates of the covariances fŝ jkg can be provided by partitioning the model-based infor-

mation sandwich as described in Lachin and Bebu [7], or using the method of Wei, Lin and

Weissfeld [8] that employs the Lin and Wei [9] estimate of the observed information that is

robust to departures from the proportional hazards assumption. Both approaches may also be

adjusted for other covariates, and provide the estimate of the joint covariance matrix Σ̂ of the

treatment group coefficients.

Typically, traditional closed testing of the group differences for the K outcomes would start

with a test of the global K-order null hypothesis versus the global or omnibus alternative
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hypotheses:

H0: β ¼ 0 versus H1O: β 6¼ 0 ð7Þ

that tests for any difference or combination of differences between groups in any direction,

such as where the treatment is beneficial for some outcomes but harmful for others. Using a

consistent estimate Σ̂, the T2-like Wald test of H0 versus the global alternative H1O is provided

by

X2
O ¼ β̂ 0Σ̂ � 1β̂ ð8Þ

that is asymptotically distributed as chi-square on K df. If this K-order test is significant at level

α, then one can continue to conduct the K − 1 order tests, etc. The traditional closed testing

structure would entail tests of the set of hypotheses presented in Table 1.

Alternately, surrogate closed testing of such a multivariate or composite outcome could be

conducted using a test that is directed to a one-directional alternative hypothesis. Assume that

βj< 0 represents a beneficial effect of treatment for the jth outcome. For the K-order test the

one-directional alternative hypothesis specifies that

H1<: fðb1 � 0Þ \ ðb2 � 0Þ \ . . . \ ðbK � 0Þg and
PK

j¼1
bj < 0: ð9Þ

This surrogate hypothesis specifies that the experimental treatment has a beneficial or neu-

tral effect on each component event (βj� 0) and is superior for one or more outcomes

ð
PK

j¼1
bj < 0Þ. Thus, this restricted alternative hypothesis is directed to regions in the K-

dimensional parameter space where there is a preponderance of benefit for the set of K out-

comes, though not necessarily to the same degree, with no overt harm for any outcome.

Recently, Lachin and Bebu [7] described the application of the 1 df Wei-Lachin robust one-

directional test to such data. The test is based on the simple sum, or equivalently the

unweighted mean, of the Cox PH model coefficients, or log hazard ratios representing the

treatment group difference for each component event, where different types of events in the

same subject are included in the analysis of the different outcomes.

The K-order Wei-Lachin test is provided by

ZS ¼
J 0β̂
ffiffiffiffiffiffiffiffiffi
J 0Σ̂J

p ¼
J 0β̂=K
ffiffiffiffiffiffiffiffiffi
J 0Σ̂J

p
=K
¼

�̂b
ffiffiffiffiffiffiffiffiffiffiffi

Vð�̂bÞ
q ð10Þ

where J = (1. . .1)T. Asymptotically ZS* N(0, 1) under H0 and the test rejects H0 in favor of

~H1 ¼ H1< in (9) when ZS� Zα at level α one-sided, or using |ZS|� Z1−α/2 at level α two-sided.

Frick [10, 11] showed that this test is maximin efficient provided that J 0Σ̂ > 0 which will

almost always apply. Then, the joint null hypothesis in (7) can be replaced by the surrogate

hypothesis ~H 0 : �b ¼ 0, thus satisfying the conditions in (5).

For an intermediate order test the unit vector J is modified to only include a 1 for those

components tested, 0 otherwise. For example, if K = 4 and we wish to test the 2-order hypothe-

sis H0,24, the test would employ the corresponding vector J24 = (0 1 0 1)T in the like expressions

ZS;24 ¼
J 0

24
β̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J 0
24
Σ̂J24

q ¼
�̂b 24ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð�̂b 24Þ

q ð11Þ

where �̂b24 is the mean of the coefficients tested. Then let D24 = diag (J24). The corresponding
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maximin condition is J 0
24
ðD0

24
Σ̂D24Þ > 0 for those elements with a corresponding value 1 in

J24.

Then the elemental hypothesis for the first component H0,1: β1 = 0 would be rejected if the

tests of ~H 0;1234: �b1234 ¼ 0; ~H 0;123: �b123 ¼ 0; ~H 0;124: �b124 ¼ 0; ~H0;134: �b134 ¼ 0; ~H 0;12: �b12 ¼ 0;

~H0;13: �b13 ¼ 0; ~H0;14: �b14 ¼ 0; and H0,1 were all nominally significant at level α. A similar test-

ing tree would apply to the other elemental hypotheses.

For illustration we use data from the Prevention of Events with Angiotensin Converting

Enzyme Inhibition (PEACE) study [12] that assessed whether treatment with ACE inhibition

with trandolapril (ACEi, n = 4158) versus placebo (n = 4132), when added to standard therapy,

would reduce the risk of cardiovascular outcomes.

Table 2 presents the numbers of subjects (cases) with each type of event, the hazard ratio,

the two-sided confidence limits and p-value, nominally, with no adjustment for multiple tests.

There is a slight benefit with ACEi versus placebo for CV death, but none for non-fatal MI.

However, there is a barely non-significant (two-sided) benefit with ACEi for non-fatal stroke,

and a barely significant benefit for congestive heart failure. This pattern of differences between

groups represents the type of results that would fall under the one-directional alternative

hypothesis (9).

The traditional closed testing procedure would start with a T2-like omnibus K-order test as

in (8). For the set of 4 PEACE study outcomes, this yields X2
O ¼ 7:39 on 4 df with p = 0.117

and no difference between groups can be declared to reach significance.

Table 3 then presents the surrogate closed testing (two-sided) using the Wei-Lachin test for

orders 2 through 4. Test results that do not reach significance at the 0.05 level, or are included

Table 2. Numbers of subjects (cases) with each type of cardiovascular event, the ACEI versus placebo HR, 95% confidence interval and nominal two-sided p-value,

not adjusted for multiple tests.

# Cases

ACEi Placebo A:P Nominal Nominal

Outcome (n = 4158) (n = 4132) HR 95% CI p
CV death 146 152 0.951 0.758, 1.194 0.667

Non-fatal MI 222 220 1.000 0.830, 1.205 1.0

Non-fatal stroke 55 75 0.724 0.511, 1.026 0.070

CHF 105 134 0.773 0.599, 0.998 0.049

https://doi.org/10.1371/journal.pone.0219520.t002

Table 3. The sequence of tested hypotheses for the components of the MACE + CHF outcomes for the ACEI versus

placebo groups with the mean HR, two-sided 95% confidence limits and two-sided p-value from the Wald test of

the group difference in a Cox PH model. All other tests not shown are not significant at the 0.05 level. All surrogate

hypotheses ~H are tested using the Wei-Lachin test.

A:P two-sided

Order Hypothesis (NF = non-fatal) HR 95% CI p =

4 ~H 0;1234: CV death, NF MI, stroke and CHF 0.854 0.740, 0.986 0.032

3 ~H 0;123: CV death, NF MI and NF stroke 0.911 0.810, 1.024 0.118

~H 0;124: CV death, NF MI and CHF 0.926 0.829, 1.035 0.174

~H 0;134: CV death, NF stroke and CHF 0.854 0.751, 0.972 0.017

~H 0;234: NF MI, stroke and CHF 0.865 0.763, 0.981 0.024

2 ~H 0;34: NF stroke and CHF 0.865 0.774, 0.966 0.011

1 H0,3: NF stroke 0.923 0.846, 1.006 0.070

H0,4: NF CHF 0.938 0.880, 0.999 0.049

https://doi.org/10.1371/journal.pone.0219520.t003
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in an interaction hypothesis that is not rejected, e.g. H0,12, are not shown. The order 4 initial

test is significant at p� 0.05. Of the four order 3 hypotheses, ~H 0;123 and ~H 0;124 are not signifi-

cant. Since these two hypotheses include intersections of all four elementary hypotheses, then

no elemental hypotheses can be rejected, i.e. all are considered non-significant.

However, hypotheses ~H 0;134 and ~H 0;234 are each significant at p = 0.017 and 0.024 respec-

tively. These are the two order-3 hypotheses that include intersections with ~H0;34. This hypoth-

esis can then be tested and indeed is significant at p = 0.011, indicating a treatment group

difference in the joint (bivariate) event-time distributions of non-fatal stroke and CHF. Thus,

by surrogate closed testing we can conclude that ACEi significantly reduced the risk of non-

fatal stroke and CHF jointly, but are not able to demonstrate a beneficial effect on either out-

come separately. In addition, neither would be significant had the Holm or Hochberg proce-

dure been applied to the set of 4 component tests.

The most common method of analysis of such a composite outcome is a simple 1 df test of

the difference between the treatment versus control groups using a logrank or Cox PH model

test of the time to the first event (TTFE). This could also be viewed as providing a test of a dif-

ferent surrogate hypothesis that the distribution of the minimum event time does not differ

between groups. This approach, however, does not include other events following the initial

event, such as a CV death that occurs after an initial non-fatal MI. Lachin and Bebu [7] also

show that the Wei-Lachin test can be more powerful than the TTFE analysis.

For the PEACE study, the analysis of the MACE + CHF composite outcome using the

TTFE yields an estimated hazard ratio of 0.90 with a 95% confidence interval of (0.79, 1.02)

with p = 0.12 two-sided. Thus, closed testing of the PEACE outcomes using either the omnibus

or the TTFE test fails to declare any significant difference between groups.

Further, a note of caution. Bebu and Lachin [13] also show that the TTFE may not provide

an unbiased α-level test of the joint null hypothesis that the hazard or survival functions do not

differ between groups, i.e. of H0: β = 0. Let ~b denote the log (HR) for the time-to-first event.

They show that the distribution of the estimate ~̂b can differ substantially among groups even

when H0 in (7) is true, and conversely that there may be no difference between groups in the

distribution of ~̂b even though H0 is false. These discrepancies occur when there is a difference

between groups in the correlation structure of the component event times. Unfortunately, there

is no general method to assess this difference in correlations; however, Bebu and Lachin [13]

describe an estimate of the correlation of event times under a bivariate exponential distribution.

Longitudinal repeated measures

Consider the case of K repeated measures over time where it is desired to conduct a test of the

difference between the group means at each of the K points in time, post-randomization. Let

μij denote the mean of the observations in the ith group at the jth time, and θj = μ1j − μ2j denote

the mean difference at the jth time. The K differences could be tested using a Bonferroni-type

procedure, such as that of Holm. Alternately, a traditional closed testing procedure could be

conducted starting with an overall omnibus K df “MANOVA” test using a T2-test, with succes-

sive sub-order T2 tests.

However, another possible order-K test is the overall group effect on 1 df in a longitudinal

model that compares the “LSMEANS” of the two groups, these being the model-estimated

average of the means over time in the two groups. Again, consider the case of K = 4 where

ŷJ ¼ m̂1J � m̂2J and the m̂iJ in the ith group at the jth time are obtained from a repeated mea-

sures longitudinal model. Then the estimated LSMEAN of the 4 repeated measures combined

in the ith group is the unweighted mean �̂mi;1234 and the estimated LSMEAN difference is
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�̂y1234 ¼ �̂m1;1234 � �̂m2;1234. Thus, at order K, the 1 df test of the difference in the LSMEANS of

the K repeated measures is employed that provides a test of the surrogate hypothesis

~H0;1234 : �y1234 ¼ 0. At order K − 1, the LSMEANS of a given set of K − 1 means is employed,

such as a test of ~H 0;123 : �y123 ¼ 0; and so on. Then at order 1 the difference between groups in

the means at the jth time could be tested using a simple t-test provided that all of the intersec-

tion hypotheses of LSMEANS containing the jth mean difference are significant at level α. This

approach would be directed to alternative hypotheses where the mean differences over time

were all in the same direction, i.e. the mean profiles did not cross, analogous to the alternative

hypothesis in (9).

For example, an analysis of the group differences in K = 4 repeated measures can be con-

ducted using SAS PROC MIXED with a nested model using statements such as

PROC MIXED METHOD = ML;
class id time group;
model = X time group(time);
repeated / type = un subject = id;
lsmeans group(time) / pdiff cov;

where X is the baseline value, time is a class variable with 4 levels and group is a class variable

with 2 levels. The group(time) estimated coefficients are the differences in the group means at

each time. Then an estimate of the difference between the group LSMEANS over the K points

in time ð�̂y1234Þ is obtained using an estimate statement such as

estimate ‘4Level’ group(time) 0.25 -0.25 0.25 -0.25 0.25 -0.25
0.25 -0.25;

that also provides a 1 df test of the group difference in LSMEANS. Then, for example, a test of

the group differences at times 1, 2 and 4, and the estimate of the average group difference over

these times ð�̂y124Þ, would be provided by a statement such as

estimate '3Level 1.2.4' group(time) 0.3333 -0.3333 0.3333
-0.3333 0 0
0.3333 -0.3333;

A set of such statements can then provide tests of all the intersection hypotheses for the K
repeated measures.

Also note that since the test of the LSMEANS is a test of the unweighted average of the

time-specific means, then this is the same as a Wei-Lachin one-directional test. Lachin [14]

also describes the details of the application of the Wei-Lachin test to multiple mean differences.

This test is efficient when the groups tend to differ in the same direction, but not necessarily of

the same magnitude, over time.

To illustrate, consider an analysis of the systolic blood pressure values recorded every 6

months over the first 2 years of follow-up in the subset of 1371 subjects with diabetes in the

PEACE study. Had the full cohort of 8290 subjects been employed, virtually every method of

analysis would produce extremely significant differences. The following are the treatment

group within time LSMEANS and the LSMEAN differences (placebo—ACEi):

LSMEAN

Month ACEi Placebo Di. S.E. p-value

6 131.8 136.0 4.2 0.87 <0.0001

12 131.7 135.1 3.4 0.93 0.0002

18 131.7 134.0 2.3 0.93 0.0134

24 132.5 134.5 2.2 0.97 0.0383

https://doi.org/10.1371/journal.pone.0219520.t004
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Table 4 then shows that all tests of the higher order intersection hypotheses are significant

at the 0.05 level so that the elementary hypotheses can also be tested at the 0.05 level and all are

significant.

In comparison, had the 4 elementary hypotheses been tested using the Holm procedure, all

would also have been significant at the 0.05 level, the adjusted p-values for months 6, 12, 18

and 24 (ranked in that order) are<0.0004, 0.0006, 0.0268 and 0.0383.

Subgroup analyses

Closed testing of group differences within subgroups

Consider the case where pre-specified analyses of the differences between groups are con-

ducted within K = 2 subgroups of the study population defined by a subgroup factor, such as

the comparison of treatment group differences separately among men and among women

(later generalized to K� 2 subgroups). It is generally recommended that analyses within sub-

groups only be conducted when a test for a group by subgroup factor interaction, or a test for

homogeneity of effects among subgroups, is significant [15], such as a test that the treatment

group difference among males equals that among females. If significant, then the tests of signif-

icance within each subgroup often employ an alpha adjustment for the 2 tests, such as a Bon-

ferroni correction (or its generalizations). However, a correction is unnecessary under the

surrogacy principle described above.

Let {θj} denote the treatment group difference within the j th subgroup, j = 1,2, defined by

the gender of each subject, where θ1 is the treatment group difference among males and θ2 the

difference among females. Then θ̂ ¼ ðŷ1 ŷ2Þ
T

is asymptotically normally distributed with

expectation θ = (θ1 θ2)T and with a covariance matrix Σ ¼ diagðs2
1
s2

2
Þ with covariance σ12 = 0

since the two subgroups are independent.

The objective is to determine whether the treatment group difference within either sub-

group is statistically significant when there is heterogeneity of the treatment group differences

among the two subgroups. Thus, the elemental null hypotheses to be tested are H0,1: θ1 = 0 and

Table 4. The sequence of tested hypotheses for the longitudinal analysis of systolic blood pressure in the subset of

diabetic subjects in the PEACE study. The model is adjusted for the baseline systolic blood pressure and the group

differences tested using a t-test with 1288 df. Shown is the tested hypothesis for each intersection hypothesis, (�y), the

difference in the LSMEANS for placebo minus ACEi, the SE and the two-sided p-value for the test of the difference

between groups. For example, the test of �y124 is testing that the average of the group means at visits 1, 2 and 4 (6, 12 and

24 months) is the same in the two groups.

Diff. two-sided

Hypothesis P-A SE p-value

�y1234 ¼ 0 2.9668 0.6444 <0.0001

�y123 ¼ 0 3.2881 0.6755 <0.0001

�y124 ¼ 0 3.1895 0.6659 <0.0001

�y134 ¼ 0 2.8178 0.6796 <0.0001

�y234 ¼ 0 2.5708 0.7014 0.0003

�y12 ¼ 0 3.7837 0.7255 <0.0001

�y13 ¼ 0 3.2261 0.7372 <0.0001

�y14 ¼ 0 3.0782 0.7218 <0.0001

�y23 ¼ 0 2.8555 0.7574 0.0002

�y24 ¼ 0 2.7076 0.7647 0.0004

�y34 ¼ 0 2.1499 0.7816 0.0060

https://doi.org/10.1371/journal.pone.0219520.t005
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H0,2: θ2 = 0. One approach is to use a Bonferroni correction for the two tests. Another is to use

traditional closed sequential testing that would start with a T2-like Wald test of the joint null

hypothesis H0,12: θ1 = θ2 = 0 against the global or omnibus alternative H1,12: θ1 6¼ 0 and/or θ2 6¼

0 of a group difference in either direction within either subgroup. With a consistent estimate

Σ̂, this order 2 test is provided by

X2
O ¼ θ̂ 0Σ̂ � 1θ̂ ¼ Z2

1
þ Z2

2
where

Zj ¼ ŷ j=ŝ j; j ¼ 1; 2:
ð12Þ

Under H0,12, X2
O is distributed as chi-square on 2 df. If significant at level α, each of the ele-

mental hypotheses H0,1 and H0,2 are rejected if the corresponding Z-test values are likewise sig-

nificant at level α.

However, the alternative hypothesis parameter space (H1,12) for this order 2 test includes

cases where θ1 = θ2 6¼ 0, i.e. where there is a homogeneous non-zero treatment group differ-

ence within the two subgroups. Such values do not represent any heterogeneity among sub-

groups or a treatment by subgroup interaction. Thus, the order 2 omnibus test is not

specifically directed to detecting cases where there is a treatment by subgroup interaction.

Rather, we only wish to assess the treatment effect within subgroups when there is evidence

that the variation among subgroups is greater than would be expected by chance, i.e. a treat-

ment by subgroup interaction exists. So in this case we are interested in first testing the surro-

gate null hypothesis ~H0;12 : y1 ¼ y2 against ~H 1;12 : y1 6¼ y2. A simple test is provided by

ZS ¼
ŷ1 � ŷ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

1
þ ŝ2

2

p : ð13Þ

Asymptotically ZS* N(0, 1) under ~H 0;12 and the test rejects ~H 0;12 in favor of ~H 1;12 when

ZS� Z1−α for an upper-tail one-sided test at level α, or when abs(ZS)� Z1−α/2 at level α two-

sided. If that test is significant, we can then test the treatment difference within each subgroup

at level α (two-sided) with strong control of the type 1 error probability, without the need for a

correction for two tests.

Again, note that H0;12 )
~H 0;12 and rejection of ~H 0;12 ) rejection of H0,12. In this case, the

order 2 joint hypothesis (H0,12) of no difference in both subgroups implies that both subgroups

have the same null effect ð ~H 0;12Þ. However, if we reject ~H0 this implies that the no-interaction

hypothesis H0,12 is false because θ1 6¼ θ2 implies that θ1 and θ2 cannot both equal zero.

This can also be generalized to the case of more than 2 subgroups. Suppose K = 3 with the

vector of estimated treatment group differences within the three subgroups θ̂ ¼ ½ŷ1 ŷ2 ŷ3�
T
.

Since the subgroups are independent, the covariance matrix of the treatment group estimates

within the three subgroups is Σ̂ ¼ diag½ŝ2
1
ŝ2

2
ŝ2

3
�: In this case the traditional 3-order test of

H0,123 would be replaced by a 2 df test of homogeneity of the three subgroups differences

~H0;123 : y1 ¼ y2 ¼ y3 using a T2 -like statistic of the form in (2) with contrast matrix

C0 ¼
1 � 1 0

1 0 � 1

" #

ð14Þ

with subgroup 1 as the reference for the 2:1 and 3:1 pairwise subgroup differences. Then the

test of the elemental hypothesis H0,1, for example, would be declared significant at level α if it

and the intersection hypotheses ~H 0;12, ~H 0;13, and ~H 0;123 were all rejected at level α. The other
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elemental hypotheses can likewise be tested at level α provided that the relevant higher order

intersection hypotheses are also rejected at level α.

Numerical computations

Computations were conducted for the case of two (independent) subgroups to compare the

operating characteristics of the traditional closed testing approach for subgroup analyses ver-

sus analyses using the test of the surrogate hypothesis of homogeneity. Computations also

included tests within 2 subgroups using a Holm (improved Bonferroni) correction that were

virtually identical to the traditional closed testing and are omitted herein. To simplify, we

assume that the variance of the observations is 1 with sample size n per treatment group in

both subgroups so that the standard error of the mean difference within each subgroup is

ŝ j ¼
ffiffiffiffiffiffiffiffi
2=n

p
.

The traditional closed testing approach employs a 2 df omnibus T2-like test of the order-2

hypothesis H0,12: θ1 = θ2 = 0 shown in (12). Under H0,12 the test statistic X2
O ¼ Z2

1
þ Z2

2
has a

large-sample central Chi-square distribution with 2 df. The null is rejected at the α = 0.05 level

if the statistic is greater than the distribution’s 95th percentile. If significant, both H0,1 and H0,2

can be tested at the 0.05 level, either one or two-sided. Herein all tests are conducted two-sided

at the 0.05 level.

Alternately, at order 2 we could employ the 1 df test of the surrogate hypothesis of homoge-

neity ~H 0;12 : y1 ¼ y2. Under ~H 0;12, the contrast test statistic ZS ¼ ðŷ1 � ŷ2Þ=
ffiffiffiffiffiffiffiffi
2=n

p
from (13)

has a large-sample standard normal distribution. If this test of homogeneity is significant at

level α two-sided, then both H0,1 and H0,2 can be tested at level α = 0.05 one or two-sided.

Figures describe the difference between the traditional and surrogate testing procedures.

Fig 1 illustrates the rejection region for the traditional method starting with the 2 df omnibus

test of H0,12: θ1 = θ2 = 0 at level α = 0.05, followed by 1 df tests of H0,1 and H0,2, two-sided. The

omnibus test rejection region at α = 0.05 consists of points ðŷ1; ŷ2Þ outside of the circle. If this

test is significant, the hypotheses H0,1: θ1 = 0 and/or H0,2: θ2 = 0 for each subgroup may be

rejected at α = 0.05 (two-sided) when |Zj| exceeds Z1−α/2 = Z0.975, j = 1, 2. For the test of H0,1

the rejection region falls outside a vertical band with a small crescent piece removed from the

left and right sections. These represent values that fail to reject the joint hypothesis for which

H0,1 is not tested. Likewise, the rejection region for the test of H02 falls outside a horizontal

band with a small crescent removed from the upper and lower sections. Also note that there

are 4 small triangular areas that fall within the rejection region for the joint test but for which

the test of H0,1 or H0,2 would not be significant.

Fig 2 illustrates the rejection region for the surrogate test method starting with the 1 df con-

trast test of homogeneity of the subgroup mean differences ~H0;12 : y1 ¼ y2 at level α = 0.05

two-sided, followed by 1 df tests of the difference within each subgroup, two-sided. The 1 df
test of homogeneity rejects null hypothesis for points ðŷ1; ŷ2Þ outside of a diagonal band about

the line of equality ŷ1 ¼ ŷ2. Outside of this band the difference between ŷ1 and ŷ2 is large

enough to reject ~H 0;12. Then the hypothesis H0,1 for the first subgroup mean difference is

rejected at α = 0.05 (two-sided) when jŷ1j exceeds Z1−α/2 = Z0.975. This corresponds to a vertical

band symmetric about θ1 = 0. Likewise, for the test of θ2 there would be a horizontal band

intersecting the diagonal band that defines the rejection region. For example, the point

ðŷ1; ŷ2Þ ¼ ð5; 1Þ falls outside of the diagonal band and therefore would indicate rejection of

the test of homogeneity (rejection of ~H0;12 : y1 ¼ y2). Then the test of significance of H0,1: θ1 =

0 would be declared significant but not the test of H0,2: θ2 = 0. Also, the two small triangular
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areas represent values that would lead to rejection of the surrogate hypothesis of homogeneity

but for which neither test within subgroups would be significant.

Table 5 then presents the operating characteristics (rejection probabilities) for tests using

traditional closed-testing and surrogate closed-testing for illustrative values of θ1 and θ2 with

sample sizes of n = 25 or 50 within each cell. These were computed using numerical integra-

tion, see the Appendix. Scenarios include values of θ1 and θ2 satisfying H0,12 and/or ~H0;12 and

the respective alternatives.

For each sample size, under the joint null hypothesis H0,12: θ1 = θ2 = 0 in scenario 1, all tests

have a type I error probability� 0.05, with that for the surrogate tests within each subgroup

being less (more conservative) than traditional closed testing. Under the surrogate joint null

hypothesis ~H 0;12 : y1 ¼ y2 ¼ 0:5 or 1.0 (scenarios 2-3), the rejection probabilities for the surro-

gate tests of the elementary hypotheses, the type I error probability for these tests, is� 0.05.

However, scenarios 2 and 3 also fall under the global alternative H1,12 for which, as would be

Fig 1. Rejection regions for traditional closed testing. Plot of rejection regions for tests under the traditional closed testing

procedure. The omnibus two degree-of-freedom test of H0,12: θ1 = θ2 = 0 will reject the null hypothesis at level α for values (ŷ1; ŷ2)

outside the circle. If the omnibus test is significant at level α, the test of H0,1: θ1 = 0 then rejects outside of the green bar, and that of

H0,2: θ2 = 0 rejects outside of the red bar. Note the four small near-triangles in which the omnibus test is rejected but neither test of

the two elementary tests is significant.

https://doi.org/10.1371/journal.pone.0219520.g001
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expected, the traditional closed testing procedures provide increasing power as the common

value for θ increases. This is also reflected by the power of the 2 df test of H0,12 under the joint

null compared to the nominal type I error probabilities of the 1 df test of the surrogate hypoth-

esis ~H0;12.

Scenarios 4-6 fall under both the global alternative hypothesis H1,12 and the surrogate alter-

native hypothesis ~H 1;12 where 0� θ1 < θ2. In scenarios 4 and 5 where θ1 = 0, all procedures

preserve the type I error probability for the test of H0,1 and the traditional closed testing proce-

dure provides slightly greater power for the test of H02 than does the surrogate test (*0.996

versus 0.942 when θ2 = 1.0 for n = 50). However, in scenario 6 where θ1 = 0.5 and θ2 = 1.0,

since the difference between subgroups is smaller than scenario 5 (0.5 versus 1.0), the surrogate

test of ~H 0;12 is less powerful than the traditional omnibus test of H0,12 (0.424 versus nearly 1.0

for n = 50), and as a result, the tests of the elementary hypotheses are less powerful under the

surrogate versus traditional closed testing.

Fig 2. Rejection regions for surrogate closed testing. Plot of rejection region for tests under the surrogate closed testing procedure.

The test of homogeneity ~H 0;12 : y1 ¼ y2 will reject the null hypothesis at level α for values (ŷ1; ŷ2) outside of the black diagonal band.

If the surrogate test is significant at level α, the test of H0,1: θ1 = 0 then rejects outside of the green bar, and that of H0,2: θ2 = 0 rejects

outside of the red bar.

https://doi.org/10.1371/journal.pone.0219520.g002
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Note that scenarios 2-3 fall under the global alternative H1,12 whereas they fall under the

surrogate null hypothesis ~H 0;12. Thus, the traditional tests have greater “power”. Scenarios 4-6

fall under both alternatives. In all cases the traditional closed tests have higher rejection proba-

bilities. That is because they are rejecting H0,12 in situations that do not fall in the surrogate

alternative ~H 1;12 parameter space.

To show this consider the following 2×2 table for scenario 4 and n = 50 that displays the

joint and marginal probabilities that the elementary test within stratum 2 would be significant

at the 0.05 level using either the traditional or the surrogate closed testing procedures.

Traditional Test

Surrogate Test
+ ¡

+ 0:374 0:212 0:586
¡ 0:021 0:393 0:414

0:395 0:605 1:0

ð15Þ

Marginally, the traditional closed testing procedure has a higher rejection probability than

does the surrogate closed testing (0.586 versus 0.395). However, the probability that both reject

is 0.374 meaning that the probability is 0.212 that the traditional test would reject in cases

where the surrogate test does not, or in cases where the test of homogeneity is not significant.

Further, significance of the surrogate test (with probability 0.395) is highly concordant with

that of the traditional test (probability 0.374), meaning that the probability of the traditional

test failing to be significant when the surrogate test is significant is small (0.021).

In summary, all procedures preserve the type I error probability under the null for either or

both elementary tests (scenarios 1-3). Under the surrogate alternative ~H 1;12 (scenarios 4-6), the

traditional testing procedure provides greater “power” than the surrogate testing owing to a

higher probability of rejection in cases where ~H0;12 is true, i.e. the treatment group differences

are dissimilar. Thus, the rejection regions for the traditional versus surrogate closed testing

procedures differ, as well as the probabilities of rejection over the parameter space.

Table 5. Probabilities of rejection of the Order-2 gate-keeping tests and the tests of the elemental hypotheses using the traditional closed-testing procedure and the

extended surrogate closed-testing procedure for n of 25 or 50 per group within each subgroup and with homogeneous or heterogeneous treatment effects θ1 and θ2

within each of the two subgroups. All tests at the 0.05 level two-sided.

Closed Surrogate

θ1 θ2 H0,12 H01 H02 ~H 0;12
H01 H02

n = 25

1 0.0 0.0 0.0500 0.0249 0.0249 0.0500 0.0169 0.0169

2 0.5 0.5 0.6027 0.3825 0.3825 0.0500 0.0247 0.0247

3 1.0 1.0 0.9965 0.9419 0.9419 0.0500 0.0366 0.0366

4 0.0 0.5 0.3335 0.0408 0.3069 0.2394 0.0230 0.1964

5 0.0 1.0 0.8962 0.0497 0.8921 0.7054 0.0267 0.6983

6 0.5 1.0 0.9523 0.4224 0.9254 0.2394 0.0189 0.2387

n = 50

1 0.0 0.0 0.0500 0.0249 0.0249 0.0500 0.0169 0.0169

2 0.5 0.5 0.8962 0.6917 0.6917 0.0500 0.0267 0.0267

3 1.0 1.0 1.0000 0.9988 0.9988 0.0500 0.0492 0.0492

4 0.0 0.5 0.6028 0.0469 0.5857 0.4240 0.0247 0.3954

5 0.0 1.0 0.9965 0.0500 0.9964 0.9425 0.0366 0.9423

6 0.5 1.0 0.9995 0.7056 0.9986 0.4240 0.1921 0.4239

https://doi.org/10.1371/journal.pone.0219520.t006
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To display this, the probability of rejection of the different tests was computed by numerical

integration for θ1 = −1(0.1)1 and θ2 = −1(0.1)1. The values of θ1 and θ2 for which power

equaled a specific value were then plotted (power contours). Fig 3 displays the power contours

over the parameter space for the tests of the elementary hypotheses H0,1 and H0,2, respectively,

for the traditional closed testing procedure for n = 50. These power contours are close to

straight vertical or horizontal lines, respectively, as would be the case for a simple test with no

adjustment for multiplicity.

Fig 4 then displays the power contours for these same tests using the surrogate closed test-

ing procedure. The regions in which the test of H0,1 has high power, such as 0.7 or greater, are

characterized by vertical lines in the upper left and lower right quadrants that “bend” away

from the diagonal acceptance region for the surrogate test of ~H 0;12. The same pattern is

obtained for the test of H0,2 when the labels of the axes are interchanged. Thus, these contours

describe regions of the parameter space where the θ1 and θ2 within the two subgroups differ

substantially, and where there is a high probability that a test of either θ1 and/or θ2 would also

be significant.

Fig 3. Power contours for traditional closed testing. Plot of power contours for the test of the elemental hypothesis H0,1 under the

traditional closed testing procedure. Power contours for the test of H0,2 are identical when θ2 is interchanged with θ1.

https://doi.org/10.1371/journal.pone.0219520.g003
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Discussion

Herein we describe applications of the closed testing principle using α-level tests of higher

order surrogate hypotheses that are directed to testing different null versus alternative hypoth-

eses than those employed in traditional closed-testing procedures. The type I error probability

is protected provided that all hypotheses are tested using an α-level test. We present three

applications directly relevant to the analysis of clinical trial results. Clearly there are others.

The advantage of the surrogate testing approach is that it provides a test that is directed to

detect specific alternatives of interest, as opposed to the global alternative hypothesis of any

difference in any direction.

The first two examples both employ surrogate hypotheses that are directed towards regions

of the parameter space where one group has a preponderance of benefit for the set of outcomes

considered, the so-called one-directional alternative hypothesis (9). This alternative is specified

in terms of one group being more beneficial than the other, such as the experimental treatment

being beneficial relative to placebo. However, there may be situations, such as a study of

Fig 4. Power contours for surrogate closed testing. Plot of power contours for the test of the elemental hypothesis H0,1 under the

surrogate closed testing procedure. Power contours for the test of H0,2 are identical when θ2 is interchanged with θ1.

https://doi.org/10.1371/journal.pone.0219520.g004
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comparative effectiveness, where it is of interest to determine whether either treatment A is

superior to B or vice versa, in which case a two-sided alternative hypothesis and two-sided test

would be employed. A two-sided analysis can also be employed to meet regulatory require-

ments to establish effectiveness in a placebo controlled trial.

Appendix

Since the statistics ŷ1 and ŷ2 are independent then the joint density of Z1 and Z2 is the product

of two normal densities ϕj(zj) with means mj ¼ yj

ffiffiffiffiffiffiffiffi
n=2

p
, j = 1, 2, and variances 1.0. Then for

given values (θ1, θ2) the expected value of some function of Z1 and Z2, say g(z1, z2), was com-

puted numerically as

E½gðz1; z2Þ� ¼

Z m1þ5

m1� 5

Z m2þ5

m2 � 5

gðz1; z2Þ �1ðz1Þ �2ðz2Þ dðz1Þ dðz2Þ

where d(z1) = d(z2) = 0.001. The functions herein are simple indicator functions with expecta-

tions being the probabilities of significance of specific tests of interest, such as
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2 df Omnibus IðX2
O � X2

2;1� a
Þ

Closed Z1 IðX2
O � X2

2;1� a
ÞIðZ1 � Z1� aÞ

Closed Z2 IðX2
O � X2

2;1� a
ÞIðZ2 � Z1� aÞ
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