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Abstract

Assessing species status and making classification decisions under the Endangered Spe-

cies Act is a critical step towards effective species conservation. However, classification

decisions are liable to two errors: i) failing to classify a species as threatened or endangered

that should be classified (underprotection), or ii) classifying a species as threatened or

endangered when it is not warranted (overprotection). Recent surveys indicate threatened

spectacled eider populations are increasing in western Alaska, prompting the U.S. Fish and

Wildlife Service to reconsider the federal listing status. There are multiple criteria set for

assessing spectacled eider status, and here we focus on the abundance and decision analy-

sis criteria. We estimated population metrics using state-space models for Alaskan breeding

populations of spectacled eiders. We projected abundance over 50 years using posterior

estimates of abundance and process variation to estimate the probability of quasi-extinction.

The decision analysis maps the risk of quasi-extinction to the loss associated with making a

misclassification error (i.e., underprotection) through a loss function. Our results indicate

that the Yukon Kuskokwim Delta breeding population in western Alaska has met the recov-

ery criteria but the Arctic Coastal Plain population in northern Alaska has not. The methods

employed here provide an example of accounting for uncertainty and incorporating value

judgements in such a way that the decision-makers may understand the risk of committing a

misclassification error. Incorporating the abundance threshold and decision analysis in the

reclassification criteria greatly increases the transparency and defensibility of the classifica-

tion decision, a critical aspect for making effective decisions about species management

and conservation.

Introduction

The goal of the Endangered Species Act (ESA) [1] is to protect and recover imperiled species

and the ecosystems upon which they depend so federal protection is not necessary for main-

taining viability of the species. Recovery plans for species listed under the ESA are developed
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to provide guidance regarding management actions and must include objective measurable

criteria to indicate when species reclassification (delisting or downlisting) is warranted. For

many species, the measurable criteria for reclassification are based on abundance, trend, and

extinction risk deemed appropriate by the species recovery team. Distinguishing when these

criteria are met is inherent in the concept of setting measurable objectives and has significant

implications for listed species and agencies tasked with their protection (e.g., U.S. Fish and

Wildlife Services [USFWS], National Marine Fisheries Service [NMFS]).

Recent surveys indicated spectacled eiders (Somateria fischeri), listed as threatened under

the ESA [2] have been increasing on one of their primary breeding grounds in Alaska, prompt-

ing the USFWS to consider population status relative to recovery criteria [3, 4]. The global

population (i.e., the species) of spectacled eiders is listed and includes three distinct breeding

populations in Arctic Russia, northern Alaska along the Arctic Coastal Plain (ACP), and west-

ern Alaska on the Yukon-Kuskokwim Delta (YKD) [5]. The species can be considered for

delisting from threatened status following an analysis of continuous threats based on five fac-

tors ([1]; section 4(a)(1)(A-E)] and when each of the three breeding populations meets the

quantitative criteria outlined in the species recovery plan [3, 4]. While the recovery plan sug-

gests that the three breeding populations meet the distinct population segment (DPS) criteria

[6], they were not formally designated as DPSs and thus, reclassification decisions must be

made for the entire species [2]. Based on aerial or nest surveys the populations can be assessed

by one of two sets of criteria: i) the minimum estimated breeding population size is� 6,000

breeding pairs (or 12,000 breeding birds) designated by the 95% lower credible interval, and

the overprotection loss exceeds the underprotection loss as determined by an analysis of trend

data (10–15 years with 1 survey/year) and where loss functions are symmetrical around popu-

lation growth r = 0 with zero loss for both functions when r = 0, or ii) the minimum population

size is� 10,000 breeding pairs over� 3 surveys or the minimum estimate of abundance

exceeds 25,000 breeding pairs in any survey (see Criteria for delisting from threatened

status pp. 36–38 in [6]). Here, overprotection refers to the process of providing a species pro-

tection when it is not warranted, and underprotection refers to failing to provide protection

when it is warranted [6]. Based on limited aerial surveys of the breeding and the wintering

areas, the Russian breeding population is large (> 100,000 breeding birds) and estimates sur-

pass the second criteria [7, 8]. By comparison, the two breeding populations in Alaska repre-

sent a smaller portion of the global population and their status relative to these criteria are

unknown [3, 4]. However, since listing, the YKD breeding population has increased in abun-

dance and may be close to meeting the first delisting criteria [3, 4, 6]. Determining if the Alas-

kan breeding populations have met the delisting criteria has wide-reaching implications for

the species conservation status.

Species classification decisions are liable to two possible errors: i) failing to classify a species as

threatened or endangered that should be classified (underprotection), or ii) classifying a species

as threatened or endangered when it is not warranted (overprotection) [9]. Decision theory pro-

vides a framework for linking statistical inference on population metrics to the risk of making a

classification error based on statistical results, expected consequences of the possible decisions

(i.e., loss), and prior beliefs about the system [9–11]. The link between statistical inference and

decision making occurs through the specification of a loss function that expresses the cost associ-

ated with the decision and the true state of nature [11, 12]. The spectacled eider classification

problem consists of three alternatives or decisions; i) to delist the species, ii) maintain current

(threatened) status, or iii) reclassify as endangered. Given the growth of the YKD population we

consider alternatives one and two to determine the optimal decision based on the quantitative

criteria. The analysis for considering reclassification from threatened to not warranted (i.e.,

delisting) is based on the specification of two loss functions which are symmetrical around a
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population growth of r = 0 (i.e., stable growth) as defined within the species recovery plan [6].

The symmetrical nature of these loss functions represents a choice made by the species recovery

team to minimize potential bias and represents a risk neutral approach for evaluating outcomes.

The first loss function represents the cost of underprotection and is calculated based on the risk

of the population falling below a quasi-extinction threshold in 50 years. This function is

grounded on the principle that species should be classified by the level of extinction risk. Extinc-

tion risk is nearly certain (1.0) when the population is declining rapidly and the risk of underpro-

tection decreases as the risk of extinction decreases and reaches 0 when the population is stable

or growing [6]. The second loss function represents the cost of overprotection and is simply the

mirror image of the first loss function. Thus, loss associated with this second function increases

as extinction risk decreases from 0, when the population is declining or stable, to its maximum

(1.0), when there is no risk of extinction. The risk of committing a misclassification error (i.e.,

under or over-protection) is therefore calculated as the risk associated with each loss function

integrated with the posterior distribution around the current population growth rate (r). For

spectacled eiders, the listing decision is based on the comparison of overprotection risk and

underprotection risk. Though alternative loss functions exist (see [9–12] for examples) the pri-

mary purpose of this study was to evaluate outcomes based on the established recovery criteria

to inform status decisions.

Our work focused on determining if the Alaskan breeding populations of spectacled eiders

have met the quantitative criteria outlined in the species recovery plan to consider delisting.

Thus, we constructed alternative population models to estimate population metrics required

to assess extinction risk, specifically, abundance, population growth rate, and process varia-

tion. Using these results, we conducted a decision analysis by calculating loss functions and

misclassification error related to a decision to delist or maintain the species threatened status.

We used alternative models to address concerns held by the USFWS about the effects of uncer-

tainty in detection and observation processes on the decision analysis. The results from this

study serve to inform classification decisions and conservation planning for Alaskan breeding

spectacled eiders. Our approach combining population models with loss functions and

accounting for uncertainty in observation processes is applicable to many species classification

decisions that require not only quantitative assessments of population status but also value

judgements and risk tolerance of decision makers.

Materials and methods

We went through the following steps when conducting this analysis and describe each step

in more detail in the sections below. First, we gathered detection adjusted abundance esti-

mates and standard errors from aerial surveys of the ACP and YKD breeding populations

of spectacled eiders from 2007 to 2019. We fit these data using Bayesian state-space models

to estimate abundance, population growth rate, and process variation for both populations.

We constructed 2 alternative models for the ACP breeding population and 4 alternative

models for the YKD breeding population to reflect uncertainties in detection and observa-

tion processes. As a first step to evaluate if the recovery criteria were met, we determined if

the lower 95% Bayesian credible interval (CRI) of abundance in 2019 was � 12,000 breed-

ing birds for each model. We then generated the loss function and calculated the probabil-

ity of committing a misclassification error based on expected loss and the posterior of

mean population growth rate. The results serve to provide managers with a robust and

transparent assessment of spectacled eider status that may be used to inform species con-

servation decisions. All data and code used for this analysis are available in Table 1 and the

S1 Appendix, respectively.
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Survey methods

Aerial surveys have been flown annually since the early 1990’s to monitor both breeding popu-

lations of Alaskan spectacled eiders [3, 13, 14]. In most aerial surveys of waterfowl during the

breeding season, waterfowl are recorded in such a way as to distinguish breeding birds from

non-breeding birds. We used the number of indicated breeding birds which includes observa-

tions of single birds and pairs [3]. When aerial surveys are flown, spectacled eiders have typi-

cally been in pairs and in very few cases have flocks been documented on either breeding area.

Following guidelines regarding the temporal scope for analysis in the recovery plan, and to

include data from the most consistent sampling period across both study sites, we used survey

data from 2007 to 2019 for both populations.

Arctic coastal plain breeding population surveys. The ACP spans approximately 90,000

km2 on the North Slope of Alaska bordering the Chukchi and Southern Beaufort Seas [13, 14].

USFWS Division of Migratory Bird Management conducts annual aerial surveys sampling

nearly 60,000 km2 of the ACP to monitor the distribution, abundance, and trend of bird spe-

cies. The ACP survey was flown annually following consistent methods from 2007 to 2019 [13,

14]. In 2015 and 2016, USFWS implemented double-observer techniques to estimate aerial

detection probabilities of spectacled eiders breeding on the ACP (for methodological details,

see [13]). We used detection-adjusted estimates of indicated breeding birds and error in our

analysis (Table 1).

Yukon-Kuskokwim delta breeding population surveys. The YKD of western Alaska

spans approximately 130,000 km2 and borders the Bering Sea [3, 4, 9]. Aerial surveys of specta-

cled eiders have been conducted over 12,832 km2 of YKD tundra wetland habitat annually

since 1988 [3] Additionally, ground-based surveys have been conducted annually on the YKD

since 1985 to estimate the numbers of nests for geese and eiders. This survey sampled ran-

domly selected plots within the core nesting area of spectacled eiders in the central coast zone

Table 1. Detection adjusted abundance estimates for Alaskan breeding populations of spectacled eiders (Soma-
teria fischeri) from 2007 to 2019 provided as data (ŷt^, the mean observed number of breeding birds and σ ŷt^

, the

estimated standard error for the number of breeding birds) in the observation model.

YKDa ACPb

Number of breeding birds Number of breeding birds
Year ŷt^ σ ŷt^ ŷt^ σ ŷt^

2007 12,527 1,045 6,555 961

2008 14,580 1,273 7,733 939

2009 15,562 1,232 7,072 1,226

2010 13,491 1,056 6,892 987

2011 NA NA 10,562 1,258

2012 14,696 1,279 6,228 679

2013 16,178 1,238 9,995 1,302

2014 13,152 1,075 9,651 1,382

2015 5,714 494 7,745 969

2016 14,481 1,086 5,696 892

2017 16,727 1,368 5,951 1,073

2018 15,544 1,241 6,418 1,276

2019 15,111 1,137 5,108 725

There were no surveys flown in 2011 and thus no estimates are provided.
a YKD metrics refer to the Yukon-Kuskokwim Delta breeding population.
b ACP metrics refer to the Arctic Coastal Plain breeding population.
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encompassing 716 km2 [3]. Estimates of nests and aerial observations among low, medium,

and high-density stratum on the YKD were used to calculate density-specific aerial visibility

correction factors (VCF) to account for incomplete detection on aerial surveys. Lewis et al. [4]

converted the aerial indices of spectacled eider abundance to annual estimates of breeding

abundance using the average density-specific visibility correction factors. The estimates gener-

ated for 2007–2019 were provided as observation data and error in our analysis (Table 1).

State-space models

Our first goal was to estimate mean population growth rate, �r , and process or temporal varia-

tion in population growth rate σr using detection adjusted abundance estimates from aerial

surveys of spectacled eiders on the YKD and ACP. We used Bayesian state-space models to

partition population dynamics into two components, the hidden state process and the observa-

tion model, and fit the process model to the time series of observations [15, 16]. State-space

models simultaneously account for both process variation and observation error caused by

partial observability on surveys [15, 16].

The spectacled eider recovery team was interested in understanding the effects of model

assumptions on population estimates and the decision analysis. Specifically, concerns were

raised about the use and effects of informative and noninformative priors on the model esti-

mates and decision analysis. Additionally, in 2015, a different observer conducted the eider

aerial surveys on the YKD. The abundance estimate for 2015 indicated that the population

dropped substantially from the previous year. However, upon closer inspection, the counts for

that year were significantly smaller than previous and following years [4] and estimates from

the nest counts for 2015 indicate no real decline in population size ([17], pg. 26 of report).

Finally, the detection-corrected population estimates were based on the mean detection across

years [4, 13]; thereby assuming that detection is constant. The observation of the 2015 data on

the YKD as well as a large literature on population estimation (e.g., [18]), suggests that detec-

tion is rarely constant across years. Ignoring latent observation processes has been shown to

bias estimates of demographic parameters [19]. Given these concerns, we fit a total of 6 mod-

els: 2 for the ACP population and 4 for the YKD population. Models ACP1 and YKD1

included all available years of data between 2007 and 2019 and were initialized with ‘informa-

tive’ priors based on the species’ biology and expert opinion (Table 2). Model YKD2 included

all years of data between 2007 and 2019 and was initialized using noninformative priors

(Table 2). Model YKD3 was fit by excluding the 2015 population estimate and initializing the

model with informative priors. Finally, models ACP2 and YKD4 allowed for a latent observa-

tion process and used informative priors to provide estimates of VCF variance and an observer

effect (Table 2). Model parameters and prior distributions are described in Table 2. We worked

closely with the eider recovery team throughout all stages of the analysis including, but not

limited to considerable discussion regarding the choice of priors and alternative models. Sub-

sequently, informative priors were based on species biology and informally elicited expert

opinion from the recovery team.

We modeled the log initial abundance as the log of the point estimate for abundance in

2007 the first year of our time series, with a standard Normal prior either 0.1 or 0.5 to generate

an informative or noninformative distribution, respectively. The prior for mean population

growth rate (r) is Normal with mean 0 with standard deviation is 0.1 or 0.5 for models with

informative or noninformative priors, respectively (S1 Fig in S2 Appendix). The standard devi-

ation for informative priors for initial abundance and population growth rate were based on

the initial abundance estimate and input from species experts. The prior distribution for tem-

poral variation in population growth (here, process variance) was Gamma distributed and

PLOS ONE Assessing spectacled eider recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0253895 July 1, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0253895


based on shape and rate parameters with a range of values between approximately 0.005 and 1

for models using informative priors and a range of values between 0.005 and 10 for models

using noninformative priors (S2 Fig in S2 Appendix). Comparisons of the informative and

noninformative priors with their respective models’ posterior distributions for r and process

variance are included in the supplementary material (S2 Appendix) for transparency (S3 and

S4 Figs in S2 Appendix). Descriptions of the priors for latent observation processes are

described in further detail in the text below.

Each of the six state-space models described population growth as

logðNtþ1Þ ¼ logðNtÞ þ rt ð1Þ

where Nt is the number of breeding birds in year t, rt is population growth rate, and

rt � Normalð�r; s2

r Þ: ð2Þ

The observation model relates the true population size Nt to the observations correspond-

ing to the detection-adjusted abundance indices for each breeding area. For models ACP1 and

YKD1, YKD2, and YKD3, our observation process was

ŷt � NormalðNt; ŝ ŷt
Þ ð3Þ

Table 2. Model descriptions, parameters, and prior distributions used to model population dynamics of spectacled eiders (Somateria fischeri) breeding on the Arc-

tic Coastal Plain (ACP) and Yukon-Kuskokwim Delta (YKD).

Model Model Description Parameters Prior

Distributions

ACP1 Informative priors based on expert opinion and species biology log(N2007) Normal (8.78, 0.1)

�r� Normal (0, 0.1)

s2
r Gamma (3, 20)

ACP2 Informative priors (see above) and includes latent variation in the observation process log(N2007) Normal (8.78, 0.1)

�r� Normal (0, 0.1)

s2
r Gamma (3, 20)

σd Gamma (1, 10)

YKD1 Informative priors based on expert opinion and species biology log(N2007) Normal (9.43, 0.1)

rt Normal (0, 0.1)

s2
r Gamma (3, 20)

YKD2 Noninformative (diffuse) priors log(N2007) Normal (9.43, 0.5)

�r� Normal (0, 0.5)

s2
r Gamma (3, 2)

YKD3 Informative priors with 2015 observation removed log(N2007) Normal (9.43, 0.1)

�r� Normal (0, 0.1)

s2
r Gamma (3, 20)

YKD4 Informative priors and includes latent variation in the observation process in the form of random effects and includes a

fixed effect for the new observer in 2015

log(N2007) Normal (9.43, 0.1)

�r� Normal (0, 0.1)

s2
r Gamma (3, 20)

σd Gamma (1, 10)

Β Gamma (15.5, 0)

Here, we describe each model, the relevant parameters, and the respective prior distributions. The parameters include, N2007– population size in 2007, �r� – mean

population growth rate, s2
r – process variance, s2

d – standard deviation of annual VCF, and β –the fixed effect of a new observer. For the Normal distributions we report

the mean and the standard deviation on the log scale. The Gamma distributions are reported with the shape and rate parameters. For the process variance parameter

(s2
r ) we report the prior distributions for the standard deviation.

https://doi.org/10.1371/journal.pone.0253895.t002
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where the observations, ŷt , were the detection-adjusted abundance point estimates of specta-

cled eiders from the aerial surveys on the respective breeding grounds (i.e., ACP and YKD) [3,

14] (Table 1). Annual observation error from aerial survey sampling (ŝ ŷt
) was provided as data

(see similar approach in [20]) (Table 1).

An alternative observation model was required to account for the latent observation pro-

cesses for models ACP2 and YKD 4. For the ACP, we simply added a multiplicative random

effect (dt) to population size (Nt) and the associated prior for the variance of this effect (σd) in

the observation model

ŷt � Normal
Nt

dt
; ŝ ŷ t

� �

ð4Þ

logðdtÞ � Normalð0; sdÞ ð5Þ

sd � Gammað1; 10Þ: ð6Þ

In this model, dt is the (unmeasured) year-specific deviation in the VCF. Positive deviations

mean that fewer birds were observed (ŷt ) relative to the population (Nt). For the YKD, we

modeled the observation process with the same random effect but added a fixed effect for the

new observer in 2015

logðdtÞ � Normalðbxt; sdÞ ð7Þ

where xt is an indicator equal to zero in all years except 2015, when it is 1, and β is a fixed effect

regression parameter for the effect on VCF in 2015 due to a new observer. We used a prior for

β informed by our knowledge of the number of eider nests estimated from ground-based sur-

veys in 2015 [17].

b � 1 � Gammað15:5; 9Þ ð8Þ

We derived the parameters for this distribution by matching the mean and standard devia-

tion based on the ratio of twice the estimated nests reported for 2015 (e.g., the expected num-

ber of breeding birds, 15,584 ± 2,472, [17]) to the estimate of indicated breeding birds derived

from the VCF-corrected aerial data for 2015 (5,714 ± 494) which results in a ratio with mean

2.73 and standard deviation 0.49. With this information, we generated a Gamma prior for β−1

with the shape parameter 15.5 and rate parameter 9 which has a mean of 1.72 and standard

deviation of 0.44 to limit the range of expected values from this ratio on the log scale.

The prior for σd in both the ACP and YKD models was chosen to reflect a belief that annual

deviations in detection are most likely small but could be large with low probability. Combin-

ing Eqs (5) and (6) results in a prior distribution for the VCF deviations, dt, where 50% of |dt|
< 0.04 and 99% are < 0.44. This is an extremely informative prior and implies most deviations

are small but large deviations (> 0.04) can occur and very large deviations (>0.44) very rarely

occur. In the absence of direct measures of annual VCFs, we believe this is a reasonable prior.

We fit the state-space models in a Bayesian framework implementing Markov chain Monte

Carlo methods (MCMC, [21]) to sample the posterior distributions in JAGS 3.3.0 ([22], using

the jagsUI package in R [23]). We ran three MCMC chains for 100,000 iterations, set thin to 2,

discarded 70,000 iterations as burn-in, and ran 5,000 iterations in the JAGs adaptive phase.

We checked convergence using the Gelman-Rubin statistic [24] and all results were satisfac-

tory (all R̂ <1.01).
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Decision analysis

The basic elements in statistical decision analyses include θ, the state of nature which affects

the decision process, and Θ is the set of all possible states of nature [11, 12]. The decisions or

actions are denoted by a, and all possible actions considered may be denoted A. The loss func-

tion, L(θ, a) describes the loss associated with taking action a for each θ state of nature and the

function is defined for ðy; aÞ 2 Y �A. Following Berger [12] and Williams and Hooten [11],

the general notation for Bayesian expected loss is:

EyjyLðy; aÞ ¼
Z

Y

Lðy; aÞ½yjy� dy: ð9Þ

In this analysis we consider two possible states of nature based on the recovery criteria, the

first is that the population is declining (r<0) and the second is that the population is stable or

increasing (r�0). Additionally, there are two alternative actions (a) which refer to delisting or

maintaining the threatened status. The recovery team chose symmetric loss functions around

r = 0 to represent equivalent loss associated with providing too little (underprotection) or too

much (overprotection) protection to the species based on the classification of threatened or not

warranted [6, 9]. The loss functions refer to the decision to delist when the population is declining

(i.e., underprotection) and for the decision to maintain the threatened status when the population

is stable or increasing (i.e., overprotection). The loss associated with delisting spectacled eiders is

equivalent to the probability of reaching a quasi-extinction threshold of 250 breeding birds within

50 years, given a projection using the abundance and process variation estimates from the state

space model(s) over a range of population growth rates with a zero-loss occurring once r = 0.

Loss is set to zero once r = 0 because the recovery team decided that the decision to delist is cor-

rect when the population is stable or increasing. Based on the decision to equalize errors we set

the loss function for overprotection to reflect the underprotection loss function as specified by

the USFWS [6] and described in Taylor et al [9]. The overprotection loss function is thus the loss

incurred when the decision is to maintain the threatened status and the population is stable or

increasing and there is zero loss when the population is declining because the decision to main-

tain the status is correct. In classification decisions, expected loss (e.g., under or over-protection

loss) is also known as the conditional risk of committing a classification error. For this classifica-

tion decision, expected loss or risk of committing a classification error is conditional on the pos-

terior distribution of mean population growth rate generated from the state-space model(s).

We generated the underprotection loss function by projecting abundance for 50 years over all

possible values of population growth denoted rs (all possible values of the state of nature, Θ). The

range of rs was set from -0.4 to 0.4 because the posterior distribution of mean r produced from

the state-space models fell within these limits. First, initial abundance is chosen from the poste-

rior distribution of N2019 (see Table 3 for values); (ii) process variance σr is selected from the pos-

terior distribution generated in the state-space model; (iii) r0 is pulled from N(rs, σr) for each year;

(iv) the population is projected forward for 50 years, when N falls below 250 breeding birds the

run is assigned a 1 and if it does not reach this threshold within 50 years the run is assigned a 0;

and (v) steps i-iv are repeated 10,000 times, and the number of times N falls below the quasi-

extinction threshold is saved. The probability of committing a classification error is calculated as

the sum of the expected loss for the decision to delist (underprotection loss) for r<0 and for the

decision to maintain status (overprotection loss) for r�0 multiplied by the probability of that

value of r from the posterior distribution on mean population growth. This results in a single

value (i.e., loss or the risk of committing a classification error) for each decision (i.e., to delist or

maintain threatened status). Based on the specification of our loss functions and decision criteria,

the optimal decision minimizes underprotection loss in favor of maximizing overprotection loss.
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Results

Our results indicate that estimates of abundance and misclassification error are sensitive to

uncertainty, but conclusions broadly remain consistent. Specifically, in each case the YKD

population met the recovery criterion, whereas the smaller ACP population did not meet

either the abundance threshold or the requirements for misclassification error (Table 3, Figs 1

and 2). The low abundance estimate combined with a highly variable and slightly decreasing

population growth rate at the posterior mean for the ACP breeding population increase the

risk of quasi-extinction. For the ACP breeding population, an underprotection error is more

likely if the decision is to delist than an overprotection error if the decision is to maintain

threatened status. The YKD breeding population is larger than the ACP population, and for

each alternative model the lower 95% CRI of the 2019 abundance estimate met the threshold

of 12,000 breeding birds. However, similar to the ACP population results, the posterior of

mean population growth rate for the YKD was uncertain and centered nearly at zero for each

model (Table 3). While overprotection loss for the YKD population is larger than underprotec-

tion loss for each alternative model, there is still considerable uncertainty in population met-

rics when the low estimate from 2015 is included in the data and detection is assumed

constant (Models YKD1, YKD2).

Arctic coastal plain population

Analysis of the ACP data indicates the population has not met any of the recovery criteria

(Table 3). When assuming constant detection, estimated posterior mean abundance for the

ACP population in 2019 was 5,355 breeding birds (95% CRI 4,106–6,589; Model ACP1,

Table 3. Posterior estimates of population metrics and misclassification error for both Alaskan breeding populations of spectacled eiders (Somateria fischeri).

ACP1a ACP2a YKD1b YKD2b YKD3b YKD4 b

Abundance

Posterior mean 5355 6401 15054 15047 15388 16113

Posterior SD 629 1510 1104 1118 908 2249

95% CRI 4106–6589 3766–9750 12903–17212 12863–17253 13595–17175 12313–21352

Population growth rate ‘r’

Posterior mean -0.016 -0.005 0.009 0.013 0.013 0.016

Posterior SD 0.043 0.043 0.068 0.137 0.023 0.037

95% CRI -0.103–0.072 -0.092–0.082 -0.124–0.0143 -0.263–0.287 -0.035–0.062 -0.065–0.091

Process variation

Posterior mean 0.158 0.142 0.323 0.479 0.073 0.123

Posterior SD 0.061 0.064 0.064 0.137 0.038 0.073

95% CRI 0.057–0.293 0.039–0.288 0.219–0.468 0.284–0.814 0.017–0.161 0.026–0.305

Loss

Underprotection 0.181 0.108 0.145 0.282 0.0002 0.011

Overprotection 0.072 0.088 0.218 0.357 0.0061 0.068

Here, we report the mean (posterior mean), standard deviation (posterior SD), and 95% Bayesian credible intervals (95% CRI) for each parameter and model.

Consideration for reclassification from threatened to recovered requires that both populations must reach or exceed the abundance threshold (N� 12,000 breeding

birds), and overprotection loss must be greater than underprotection loss. Abundance estimates and misclassification error rates for the ACP population do not support

the decision to delist. Alternatively, all four models for the YKD population support delisting based on population metrics meeting the reclassification criteria in the

species recovery plan.
a ACP metrics refer to the Arctic Coastal Plain breeding population.
b YKD metrics refer to the Yukon-Kuskokwim Delta breeding population.

https://doi.org/10.1371/journal.pone.0253895.t003
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Table 3, S5 Fig in S2 Appendix). When we allowed detection to vary across years, estimated

mean abundance in 2019 was 6,401 (3,766–9,750; Model ACP2, Table 3, S5 Fig in S2 Appen-

dix). Based on estimated abundance in 2019 for either model, the ACP population has not met

Fig 1. Posterior estimates of abundance for spectacled eider populations breeding on the Arctic Coastal Plain (ACP) and Yukon-Kuskokwim Delta (YKD) of

Alaska. We fit 2 alternative models for the ACP breeding population and four alternative models for the YKD breeding population. Models ACP1 and YKD1 included

all available years of data between 2007 and 2019 and were initialized with ‘informative’ priors based on the species’ biology and expert opinion. Model YKD2 included

all years of data between 2007 and 2019 and was initialized using noninformative priors. Model YKD3 was fit by excluding the 2015 population estimate and initializing

the model with informative priors. Finally, models ACP2 and YKD4 allowed for a latent observation process and used informative priors to provide estimates of VCF

variance and an observer effect. Gray circles represent the annual mean abundance and gray ribbons represent the 95% credible interval (CRI). The black dashed line is

the population threshold of 12,000 breeding birds identified in the species recovery plan.

https://doi.org/10.1371/journal.pone.0253895.g001
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Fig 2. Loss functions and posterior distributions of population growth rate (r) generated from state-space models of abundance for spectacled eiders breeding on

the Arctic Coastal Plain (ACP) and Yukon Kuskokwim Delta (YKD). Loss functions were generated using the probability of quasi-extinction given population size,

growth rate, and process variation. The dotted line represents the under-protection loss function (i.e., loss if decision were to delist given negative population growth)

and the solid line is the over protection loss function (i.e., loss if the decision were to maintain status given positive population growth). Gray distributions show the

posterior density of population growth rate (r) estimated by a Bayesian state-space model for the time series from 2007 to 2019. As part of the recovery criteria,

spectacled eiders will be considered for delisting if overprotection (value in solid line box) is greater than underprotection (value in dashed line box). Greater

overprotection error indicates that we are more likely to provide too much protection to the species than we are to provide too little protection to the species.

https://doi.org/10.1371/journal.pone.0253895.g002
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the abundance threshold (95% CRI ¼ N̂ � 12,000 breeding birds) (Fig 1). The posterior mean

for mean growth rate of the ACP population was negative (�r ¼ � 0:016 or -0.005) with wide

credible intervals (95% CRI: -0.103 to 0.072; -0.092 to 0.082) for models assuming constant

and variable detection, respectively (Table 3). Furthermore, underprotection loss for the ACP

population was greater than overprotection loss in both models (Table 3, Fig 2).

Yukon-Kuskokwim delta population

We fit four alternative models to the YKD breeding population data. In each case, estimates

of abundance exceeded the decision threshold and overprotection loss exceeded underpro-

tection loss, indicating the population has met the recovery criteria. Model YKD1 includes

all data points between 2007 and 2019 and was initialized with informative priors (see State-

space models section in Materials and methods). Estimated posterior mean abundance

from model YKD1 in 2019 was 15,054 breeding birds (95% CRI 12,903 to 17,212) (Table 3).

The 95% lower CRI of abundance in 2019 is above 12,000 breeding birds indicating the

YKD breeding population met the abundance threshold criterion (Fig 1 and S6 Fig in S2

Appendix). The posterior mean for mean population growth rate of the YKD population

was �r = 0.009 with a wide credible interval (95% CRI -0.124 to 0.143) (Table 3, Fig 2). Over-

protection loss was 1.5 times that of underprotection loss based on the YKD1 model

(Table 3, Fig 2).

Model YKD2 included all data points between 2007 to 2019 and was initialized with non-

informative priors. Estimated posterior mean abundance for 2019 from model YKD2 was

15,047 (95% CRI 12,863 to 17,253), which exceeds the abundance threshold (Table 3, Fig 1

and S6 Fig in S2 Appendix). The posterior mean of mean population growth rate was �r =

0.013 and 95% CRI of -0.263 to 0.287. The posterior mean for process variation in this

model was 0.479 (95% CRI of 0.280 to 0.801). Both the posterior mean growth rate and pro-

cess variance are larger than those produced when using biologically realistic informative

priors (Fig 2). Overprotection loss again exceeded underprotection loss and the risk of com-

mitting an overprotection error was 1.26 times that of the risk of committing an underpro-

tection error.

Model YKD3 was initialized with informative priors and the 2015 data point was removed

from the time series and treated as a missing data point similar to 2011 when no survey was

conducted. The abundance estimate for 2019 from model YKD3 was also above the threshold,

with a posterior mean of 15,388 and 95% CRI of 13,595 to 17,175 (Table 3, Fig 1 and S6 Fig in

S2 Appendix). The posterior of mean population growth rate was substantially more precise

than posterior distributions produced by YKD1 and YKD 2. The posterior mean of mean pop-

ulation growth was 0.013 with 95% CRI of -0.035 to 0.062 (Fig 2). The posterior mean process

variation was only 0.073 (95% CRI of 0.017 to 0.161), significantly lower than estimates from

YKD1 and YKD2 (Table 3). Overprotection loss exceeded underprotection loss, however, in

this case the risk of committing an overprotection error was 30.5 times that of the risk of com-

mitting an underprotection error for model YKD3.

Finally, Model YKD4 included all data, informative priors for all parameters and latent vari-

ation in VCF. The posterior mean abundance for YKD4 in 2019 was 16,113 (95% CRI of

12,313 to 21,352) just satisfying the abundance threshold and substantially wider than the

other models (Table 3, Fig 1 and S6 Fig in S2 Appendix). The posterior mean of mean popula-

tion growth rate was 0.016 and 95% CRI of -0.065 to 0.091. For process variation, the posterior

mean for YKD4 was 0.123 and 95% CRI of 0.026 to 0.305. Overprotection loss exceeded

underprotection loss and the risk of committing an overprotection error given model YKD4

was 6.18 times that of the risk of committing an underprotection error.
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Discussion

We constructed a series of models to assess the status of two breeding populations of specta-

cled eiders in Alaska and determine if the populations had met the species recovery goals. Our

results demonstrated that the ACP population of spectacled eiders has not met the quantitative

criteria required to consider delisting; however, the YKD breeding population has met the

recovery criteria. Our application of a decision analysis in conjunction with a population

assessment is an example of a robust methodology for informing species classification deci-

sions based on population estimates in addition to value judgements and risk tolerance. Fur-

thermore, our approach including alternative models offered an opportunity to explore the

effects of uncertainty not only on population estimates but also on the risks associated with

species classification decisions.

When using population metrics (abundance, trends, demographic rates, etc.) for species

classifications, harvest regulations, or other management actions, it is important to consider

the accuracy and precision of those estimates and the influence those estimates may have on a

decision [25]. A considerable portion of variation in the YKD population growth rates and

process variation can be attributed to the negative bias introduced by the 2015 data and assum-

ing constant VCFs across years (Tables 1 and 2, Fig 2). Beginning in 2015, a new observer was

assigned to conduct the aerial surveys and VCF values tended to be elevated in years with new

observers which in conjunction with low counts biased the abundance estimate low [4]. Fur-

thermore, the VCF accounted for nesting density and spatial variation but did not account for

temporal variation in detection or a fundamental change in study design (i.e., a new observer).

Removing the biased abundance estimate from 2015 (model YKD3) or accounting for tempo-

ral variation in detection (model YKD4) had a considerable effect on the precision of popula-

tion metrics and on the risk of committing an overprotection error. There is considerable

information to suggest that the perceived decline in 2015 was the result of an unaccounted-for

change in observation process and not a true decline in population size or growth rate. In addi-

tion to the abnormally low counts and the evidence of unmodeled variation in observation

processes from this analysis, estimates from the YKD nest plot survey estimated greater than

7,000 nests (14,000 breeding birds) in 2015 ([17], pg. 26 of report). This analysis highlights two

important points: (i) in models where we use a constant VCF and do not account for temporal

variation or observer changes, residual variation in the data is captured by the process varia-

tion term [26, 27] and it is biased high related to the year-specific variance in the VCF; there-

fore, (ii) the extinction risk, loss functions, and risks of committing a misclassification error

reported here are also biased high. By extending the analysis to consider multiple models and

assumptions, we explicitly incorporated the effects of uncertainty into the decision analysis

and population assessment and provide decision makers with transparent results. Importantly,

we note that the results consistently showed that the ACP population did not meet the recov-

ery criteria and the YKD population did meet the recovery criteria, regardless of the underly-

ing model assumptions.

By fitting models ACP2 and YKD4 that included year-specific variation in detection (VCF)

as a random effect (both models) and fixed effects for systemic changes in study design (e.g.,

novice observers; model YKD4) we were able to account for latent variation in observation

processes. In the context of N-mixture models, Zhao and Royle [19] found that assuming con-

stant detection when in fact detection varied annually caused biased estimates of demographic

parameters. They also found that fitting a model with latent random effects for detection even

with only one survey replicate per year reduced bias in demographic estimates. This is consis-

tent with our state-space models using the eider data and latent effects for detection where we

found that when a greater proportion of variation is attributed to the latent observation
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process, it results in a lower estimate of process variance, more precise estimates of mean

growth rate, and reduced precision of the population estimates (Models ACP2 and YKD4,

Table 3, S5 and S6 Figs in S2 Appendix). The results of Zhao and Royle [19] and our explora-

tions suggest that not accounting for such variation in detection, either by direct measurement

or by modelling the effect through a latent process, may cause abundance estimates to be too

precise and our demographic parameters to be biased; thus, biasing population viability analy-

ses. The former leads to overconfidence in the population estimate and incorrect decisions

based on abundance thresholds, and together, both lead to biased estimates of extinction risk.

While further research and consideration of how to treat this type of data when year-specific

detection is not measured may be warranted, using informed priors based on expert judge-

ment or auxiliary data for unmeasured processes seems a reasonable approach to improve con-

servation decisions. In any case, measurement of year-specific detection probability would

increase the ability to appropriately account for uncertainty in both the observation and popu-

lation process; thereby, leading to less biased population parameters and better management

decisions.

We followed the decision analysis approach outlined in the spectacled eider recovery plan

and in Taylor et al. [9] to quantitatively assess spectacled eider populations against recovery

criteria. These criteria include the loss associated with a listing decision and an abundance

threshold based on the lower 95% credible interval (i.e., 2.5 percentile) of the posterior distri-

bution of abundance. Certain properties of the current recovery criteria, however, might be

reevaluated as the recovery plan is revised to ensure that they reflect the current risk values of

the decision makers. First, using loss has been proposed for endangered species listing deci-

sions and other natural resource management problems, but has not yet been widely adopted

[10, 11, 28]. We agree with this approach as it offers a transparent and logically coherent

framework for making species classification decisions [11, 12]. However, we wonder if the

choice of symmetrical loss functions around zero mean population growth with zero loss at

r = 0 and a shape determined by a population viability analysis directly reflect the risk values of

the decision makers. Loss functions can take many shapes that represent risk attitudes but can

be difficult to elicit [11], and we suggest that the current loss functions might be improved or

at least reevaluated. Second, setting loss equal to zero when r = 0 does not accurately reflect the

extinction risk of the population which predicates the underprotection loss function. Specifi-

cally, when r�0 there is still a non-zero risk of the population declining below the quasi-

extinction threshold within the 50-year period and this risk is not accounted for in the current

calculation of loss. Third, the abundance threshold criteria seem redundant to a criterion

based on population viability because viability is based on growth rate, stochasticity in growth

rate (here process variance), and current abundance. Importantly, the abundance threshold

criteria is sensitive to the posterior variance in abundance, and in the absence of year-specific

detection estimates, we may be greatly underestimating this variance. Furthermore, choosing

an abundance threshold implies a loss function for abundance. The current 2.5 percentile

threshold (the lower bound of a 95 percent credible interval) implies that overestimates are 39

times worse than underestimates of abundance under a linear loss function (see Table 2 of

[11]). While it is certainly reasonable that overestimating a listed species’ abundance is worse

than underestimating, using the same threshold as is widely used for statistical hypothesis test-

ing, which is often devoid of any applied decision context, might be reconsidered. Even though

the abundance threshold might seem simple and value-free, there is an implied value judgment

for risk tolerance of the decision maker. If the variance in the abundance estimate is much

larger than previously thought, it could influence decisions regarding status.

Decision-makers are often tasked with choosing conservation or management actions

despite uncertainty. The methods employed here provide an example of accounting for
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uncertainty in such a way that incorporates both science and value-based judgements to

inform decision-makers about the risk of committing a misclassification error [28]. Account-

ing for the uncertainty in population dynamics and observation processes in the population

assessment and decision analysis allowed us to explore the impacts of those uncertainties in a

robust and transparent manner. The combined strengths in these approaches provide a robust

framework for formally linking ecological inference to conservation and management deci-

sions under considerable uncertainty [9–11, 29]. We believe our approach is a reasonable

method for capturing risk of listing decision alternatives with careful thought and explicit defi-

nitions of the loss functions and risk tolerance. Future applications may consider explicitly

modeling the effects of different decisions on future population outcomes and incorporate

these predictions with loss functions thereby representing decision makers’ risk tolerances to

better inform listing status decisions. This analysis adds to the growing support for decision-

theoretic approaches in applied ecology and conservation, and further emphasizes the impor-

tance of exploring the effects of uncertainty on making endangered species classification

decisions.
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16. Kéry M, Schaub M. Bayesian population analysis using WinBUGS: A hierarchical perspective. Boston,

MA: Academic Press; 2012.

17. Fischer JB, Williams AR, Stehn RA. Nest Population Size and Potential Production of Geese and Spec-

tacled Eiders on the Yukon- Kuskokwim Delta, Alaska, 1985–2016.: 47.

18. Williams BK, Nichols JD, Conroy MJ. Analysis and management of wildlife populations. San Diego,

CA: Academic Press; 2001.

19. Zhao Q, Royle JA. Dynamic N-mixture models with temporal variability in detection probability. Ecol

Model. 2019; 393:20–4.

20. Rotella JJ, Link WA, Nichols JD, Hadley GL, Garrott RA, Proffitt KM. An evaluation of density-depen-

dent and density-independent influences on population growth rates in Weddell seals. Ecology. 2009;

90(4):975–84. https://doi.org/10.1890/08-0971.1 PMID: 19449692

21. Gelfand AE, Smith AFM. Sampling-Based Approaches to Calculating Marginal Densities. 2021;13.

22. Plummer M. JAGS versions 3.3.0 [Internet]. 2012. Available from: http://sourceforge.net/projects/

mcmc-jags/files/Manuals/

23. Kellner K. A wrapper around “rjags” to streamline “JAGS” analyses: Package “jagsUI” version 1.4.9.

[Internet]. 2015. Available from: https://github.com/kenkellner/jagsUI

24. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992; 7

(4):457–511.
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