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Abstract: Carbon nanotubes (CNTs) are considered a promising candidate for the detection of toxic
gases because of their high specific surface area and excellent electrical and mechanical properties.
However, the detecting performance of CNT-based detectors needs to be improved because covalently
bonded CNTs are usually chemically inert. We prepared a nitrogen-doped single-wall CNT (SWCNT)
film by means of gas-phase fluorination followed by thermal annealing in NH3. The doped nitrogen
content could be changed in the range of 2.9–9.9 at%. The N-doped SWCNT films were directly
used to construct flexible and transparent gas sensors, which can work at a low voltage of 0.01 V. It
was found that their NO2 detection performance was closely related to their nitrogen content. With
an optimum nitrogen content of 9.8 at%, a flexible sensor had a detection limit of 500 ppb at room
temperature with good cycling ability and stability during bending.

Keywords: single-wall carbon nanotube; nitrogen doping; flexible sensor

1. Introduction

NO2 is one of the major atmospheric pollutants as a byproduct of coal combustion
and petroleum refining. It causes acid rain, photochemical smog, and irritation in the
human respiratory system. Therefore, the development of flexible sensors capable of
sensitively detecting NO2 is highly desired in the fields of wearable electronics [1–3],
healthcare [4,5] and military detection [6]. A high-performance sensing material should
be robust enough to sustain stable electrical performance over medium to long periods of
time, yet sensitive enough to detect small changes in the surrounding environment. Carbon
nanotubes (CNTs) are considered a promising candidate because of their large surface
area and unique electrical and mechanical properties [7]. In particular, single-wall CNTs
(SWCNTs) can be semiconducting or metallic depending on their chirality and have a large
specific surface area that provides numerous adsorption sites. The adsorption of NO2 gas
onto pure SWCNTs without any chemical functionalization has been shown to produce
a sensing response [8–11]. When target gases are adsorbed on the surface of a SWCNT
with an applied voltage, the current increases (or decreases) because of the change in the
concentration of hole carriers [12]. Because of this, gas sensors based on semiconducting
SWCNTs have a higher response [13–15]. However, the difficulty in obtaining high-purity
semiconducting SWCNTs has limited their commercial applications.

High-quality SWCNT networks show potential for the fabrication of flexible, sen-
sitive, low-power gas sensors as wearable electronics [12,16–18]. However, due to the
inertness of the sp2 hybridized SWCNTs, doping or functionalization is generally required
to introduce active sites in CNTs to improve their sensing performance. There have been
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several approaches to increase the sensitivity of SWCNT films to gases, and these can be
classified into introducing nanoparticles [19–21], noncovalent functionalization [22–24] and
covalent functionalization [25,26]. Nitrogen doping, a covalent functionalization method,
is considered an efficient way to controllably change the structure and properties of CNTs.
It can be realized in two different ways, i.e., doping during synthesis [27–29] and a doping
post-treatment [30,31]. Compared with the former, the latter can achieve a higher doping
level, and the range of doping sources is broader. To obtain a high doping level, vacancies
are usually created in the graphitic lattice of CNTs, resulting in the destruction of their
original structure. Because of this, a major challenge is to develop an efficient doping
method that produces a high level of nitrogen, while simultaneously retaining the flexibility
and structural integrity of the CNT network.

With the coming of the Internet of Things (IoT) era, the development of high-performance
portable and wearable gas sensors able to work at room temperature has attracted great
research interest. As an important part of IoT devices, a new generation of gas sensors
requires low power consumption ensuring potential use in smart phones and wireless
sensor platforms [32]. As far as we know, this issue has rarely been addressed.

We prepared a nitrogen-doped single-wall CNT (SWCNT) film by gas-phase fluo-
rination followed by NH3 thermal annealing. A high nitrogen content of up to 9.9 at%
was achieved, and most of the doped nitrogen was in the form of pyridine N, which is
highly active for NO2 sensing [10,27]. A gas sensor consisting of a nitrogen-doped SWCNT
film on a PET substrate showed excellent flexibility and a high light transmittance of 86%,
which has promise for use in portable or wearable detection devices for low concentrations
of NO2.

2. Experimental Section
2.1. Preparation of Flexible and Transparent SWCNT Films

Flexible and transparent SWCNT films were prepared by a floating catalyst chemical
vapor deposition (FCCVD) method [33]. The growth temperature was 1100 ◦C, and hydro-
gen was used as a carrier gas. A solution of toluene (10 g), ferrocene (0.3 g), and thiophene
(0.045 g) acting as carbon source, catalyst precursor, and growth promoter, respectively,
was injected into the reactor by a syringe pump at a rate of 0.24 mL/h, while 11 sccm of
C2H4 gas as a carbon source was also introduced. SWCNT films were collected on a porous
cellulose filter membrane (0.45 µm diameter pores; collection area, 100 mm × 100 mm)
placed at the outlet of the reactor. As shown in Figure S1, the as-collected SWCNT film
shows a good uniformity.

2.2. Preparation of N-Doped SWCNT Films
2.2.1. Fluorination of SWCNT Films

The prepared flexible and transparent SWCNT films were transferred onto a Teflon
frame of size 1.2 cm × 1.6 cm, and this together with a certain amount of XeF2 were
placed in a 300 mL Teflon container. The container was placed in an oven and heated
to 100 ◦C where it was kept for 1, 2, 4, or 8 h to obtain fluorinated SWCNT (F-SWCNT)
films. The detailed fluorination parameters of 6 samples are summarized in Table S1. We
used sample #4 to elucidate the structural characteristics in the following work unless
otherwise mentioned.

2.2.2. Synthesis of N-Doped SWCNT Films by Ammoniation

The prepared F-SWCNT film was placed in a quartz boat and then put into a tubular
furnace and heated to 500 ◦C, and then kept in an 80 sccm ammonia gas flow for 1 h. Finally,
the furnace was naturally cooled to room temperature under the protection of an argon
flow. The sample obtained is denoted N-SWCNT.
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2.3. Fabrication of Flexible N-SWCNT-Based Sensors

We fabricated a two-electrode flexible sensor using the prepared N-SWCNT film.
Briefly, gold stripes with a separation of 0.8 cm were deposited on a PET substrate by
magnetron sputtering for use as the electrodes. The N-SWCNT film was then transferred
onto the PET substrate covered by the Au electrodes. Ethanol was then dripped on and
spread over the film to cause the N-SWCNT film to make tight contact with the gold
electrodes. Figure S2 shows typical optical images of the constructed N-SWCNT sensor,
from which we can see that the device is highly flexible and transparent.

3. Results and Discussion
3.1. Characterization of the N-SWCNT Films

The nitrogen-doping process of the SWCNT films is schematically shown in Figure 1a.
When the SWCNTs are exposed to F2 produced by the decomposition of XeF2, some C-F
bonds are formed in the SWCNT lattice, and an F-SWCNT film was obtained (Figure 1a).
When this film was heated at 500 ◦C in an ammonia atmosphere, defluorination occurred
due to the instability of the C-F bonds, and vacancies were formed in the lattice structure of
SWCNTs [30,31]. In the ammonia atmosphere, nitrogen atoms occupied the vacant lattice
sites in the SWCNTs, yielding a N-SWCNT film.
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Figure 1b shows a typical scanning electron microscope (SEM) image of the N-SWCNT
film. Numerous randomly entangled filaments (SWCNT bundles) are observed, which
provide well-connected electron transport paths in the film. Compared to the original
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SWCNT and the F-SWCNT films (Figure S3a,b), no obvious morphology change was
detected (Figure S3b). Figure 1c is a typical TEM image of the N-SWCNTs, showing
small bundles with a mean diameter of ~10 nm, confirming that the fluorination and
ammonization processes do not change the bundle structure and exposed surface area,
compared to the original SWCNT samples (Figure S4a,b). During annealing, N atoms
occupy the vacancies left by defluorination to form a high density of pyridinic active sites
that stimulate the recovery of the graphitic lattice structure. The structural recovery of the
N-SWCNT is confirmed by the Raman spectra shown in Figure 2a. It can be seen that the
IG/ID value, which is a benchmark for evaluating the crystallinity of SWCNTs, increased
from 1.72 to 2.72 after the heat treatment. A good crystallinity of the N-SWCNT enables
fast electron transport, which improves the gas sensing performance.
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The surface elemental composition and bonding configuration of the SWCNTs were
investigated using X-ray photoelectron spectroscopy (XPS, Figure 2b). A strong F 1 s
peak was detected in the F-SWCNT sample, and the F content reached 8.35 at% (Table S1).
Compared to the original SWCNT film, the high-resolution C 1 s spectra of the F-SWCNT
film show obvious additional peaks at 286.4 eV, 288.4 eV, and 289.6 eV, which are assigned
to C-F bonding (Figure 2c). After defluorination, the C-F peak disappeared, as shown
in Figure 2b. Unexpectedly, a nitrogen signal was also detected in the F-SWCNT film
(Figure 2b). The adsorbed N2O can be desorbed with ~200 ◦C heat treatment, as shown in
Figure 2d. Secondary ion mass spectroscopy (SIMS) (Figure 3a) showed that the nitrogen
in the F-SWCNT films was mainly N2O absorbed on the F-SWCNT bundles, which is
consistent with the XPS measurements (Figure 3b).
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After defluorination at 500 ◦C, the F 1 s peak disappeared while an obvious N 1 s
peak was detected. The N 1 s spectrum of the N-SWCNT film shown in Figure 3c was
deconvoluted into three peaks of pyridinic N (398.6 eV, N-6), pyrrolic N (400.3 eV, N-5), and
graphitic N (401.1 eV, N-Q). Furthermore, auxiliary energy dispersive X-ray spectroscopy
(EDS) elemental analysis (Figure S5) shows that nitrogen is homogeneously distributed
in the SWCNT bundle. The content of pyridinic N in the N-SWCNT film (Figure 3c) was
then calculated to be as high as 68.8% (Table S2). Furthermore, the N 1 s peak intensity of
the N-SWCNT films increased with an increased degree of fluorination (Figure S6). The
dependence of the N-doping level on the fluorine content of the SWCNT films is shown in
Figure 3d. It can be seen that the content of doped nitrogen can be controlled over a wide
range of 2.9~9.9 at% by changing the degree of fluorination.

3.2. N-SWCNT Film Based NO2 Sensor

We constructed gas sensors using the N-SWCNT films with N contents of 2.9 at%,
6.4 at%, and 9.8 at%. For simplicity, the resulting sensors are, respectively named 2.9-sensor,
6.4-sensor, and 9.8-sensor. The sensing measurements were conducted using a DGL-III gas
distribution system, consisting of a chamber with a separate gas inlet and outlet. Mass flow
controllers were used to control the flow rates, and argon was used as the carrier gas [15]
The relative change in the resistance of the sensors and NO2 concentration was monitored
by a CGS-MT mini-multi-functional probe station. The responsivity of the sensors is defined
as the relative change in resistance. We first investigated the responsivities of N-SWCNT-
based sensors with different N contents after exposure to 10 ppm NO2 for 30 min at 90 ◦C,
followed by desorption of the N using UV illumination in an argon atmosphere. The
sensors were tested at constant voltages of 0.2 V or 0.01 V. As shown in Figures S7 and 4a,
the responsivity of the sensors constructed with N-doped SWCNTs is much higher than
that of pure SWCNTs, and it increases with the increase in N-doping content. The improved
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sensing performance can be attributed to the enhanced charge transfer induced by NO2
interactions, which is closely related to the density of N active sites [34,35].

The 9.8-sensor had a high responsivity of 27.7% upon exposure to 10 ppm NO2, which
is among the best of previously reported values [12,16]. As shown in Figure 4a the recovery
time of the sensors increased with the N content of the SWCNT film. It also increased
1.2 times when the N-doped content increased from 2.9 at% to 6.4 at%. It took 53 min for the
9.8-sensor to recover. These results indicate that the NO2 molecules have strong chemical
bonding with the pyridinic/pyrrolic active sites of the N-doped SWCNT films [10,27]. The
influence of NO2 concentration on the reversibility of the sensors was also tested. As shown
in Figure 4b–d, the relative changes in the resistance of the three sensors increased with
increasing NO2 concentration. Furthermore, a similar recovery behavior (Figure 4b–d) was
observed except for the 9.8-sensor (Figure 4d) exposed to 100 ppm NO2, where desorption
was not complete after 3 hours, even with the aid of UV light irradiation.
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Sensitivity is also a very important parameter for real applications. We show the
responses of the three sensors upon exposure to NO2 with different concentrations in
Figure 5. As shown in Figure 5a, the sensitivity increased with the N-doping level. The
9.8-sensor showed the highest responsivity and sensitivity, with a detection limit of 500 ppb
(Figure S8). We also tested the bending stability to prove that the gas senor can be used as a
flexible device. The 9.8-sensor was bent into a roll with a radius of curvature of 2 mm for
30 times (Figure S9a). As shown in Figure S9b,c, the total relative change in the resistance
was only 0.067 % when the sensor was bent into a curve with a radius of curvature of
4.5 mm. As shown in Figure 5b, the sensor had similar responses before and after bending.
The responsivity and sensitivity only decreased slightly, which shows the excellent stability
of our gas sensor during bending (Figure S9). Furthermore, the 9.8-sensor after bending
had a high sensitivity of 1.29 over 0.5 ppm to 10 ppm NO2 exposure, which is 2.6 times
higher than that reported in the literature [16].
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The rapid cycling performance of the 9.8-sensor with the highest responsivity and
sensitivity was measured by exposure to various concentrations of NO2 (from 10 ppm
to 500 ppb) at room temperature. We performed quick-cycling experiments by exposing
9.8-sensor to NO2 gas for 1 min, which was then completely desorbed with the aid of UV
irradiation. As shown in Figure 5c, the sensor showed a gradually decreased response
with the decrease in NO2 concentration. Furthermore, this characteristic is well maintained
even when the 9.8-sensor was placed in air for 10 months (9.8-sensor-10), verifying a good
stability. We further measured the quick-cycling ability of 9.8-sensor-10 in 1 ppm NO2
for 40 cycles. As shown in Figure 5d, the 9.8-sensor-10 shows a stable performance over
40 cycles without observable loss of responsivity.

Our sensor also showed a good light transmittance of 86% under a 550 nm laser and no
significant baseline drift or performance decay after continuous measurement, which could
be very important in the design of wearable chemical sensors for practical applications.

4. Conclusions

We have prepared N-SWCNT films with nitrogen doping up to 9.9 at% by gas-phase
fluorination followed by thermal annealing in NH3. Flexible and transparent NO2 gas
sensors were constructed using the N-SWCNT films. The detectors had the ability to detect
extremely low NO2 concentrations of ppb level. We attribute this low detection limit to the
high content of pyridinic- and pyrrolic-N active sites introduced in the N-SWCNT film by
nitrogen doping. With a combination of low power consumption (operated at 0.01 V), high
transparency and flexibility, our SWCNT film-based sensors have great potential for use in
various portable sensing devices.
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