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Abstract
Objective: This study estimated the effect of BMI on circulating metabolites in young 
adults using a recall- by- genotype study design.
Methods: A recall- by- genotype study was implemented in the Avon Longitudinal 
Study of Parents and Children. Samples from 756 participants were selected for un-
targeted metabolomics analysis based on low versus high genetic liability for higher 
BMI defined by a genetic risk score (GRS). Regression analyses were performed to 
investigate associations between BMI GRS group and relative abundance of 973 
metabolites.
Results: After correction for multiple testing, 29 metabolites were associated with 
BMI GRS group. Bilirubin was among the most strongly associated metabolites, with 
reduced levels measured in individuals in the high- BMI GRS group (β = −0.32, 95% 
CI: −0.46 to −0.18, Benjamini- Hochberg adjusted p = 0.005). This study observed as-
sociations between BMI GRS group and the levels of several potentially diet-related 
metabolites, including hippurate, which had lower mean abundance in individuals in 
the high- BMI GRS group (β = −0.29, 95% CI: −0.44 to −0.15, Benjamini-Hochberg 
adjusted p = 0.008).
Conclusions: Together with existing literature, these results suggest that a genetic 
predisposition to higher BMI captures differences in metabolism leading to adiposity 
gain. In the absence of prospective data, separating these effects from the down-
stream consequences of weight gain is challenging.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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INTRODUC TION

Despite the extensive focus in the literature, the full downstream 
impact of high BMI and the potential causal mechanisms by which 
BMI impacts a large number of noncommunicable diseases remain 
unclear (1). Through a combination of large- scale observational stud-
ies and intervention designs, BMI has been established as a major 
risk factor for many common complex diseases, including type 2 dia-
betes mellitus, hypertension, myocardial infarction, stroke, and can-
cer (2- 4). Although the precision of effect estimates describing the 
association between BMI and disease (and our confidence in them) 
has increased with greater sample sizes and independent replication, 
observational studies are limited by confounding, bias, and reverse 
causation. Meanwhile, intervention studies (e.g., weight- change pro-
tocols) designed to circumvent these conventional limitations have 
their own challenges, notably a limited ability to alter BMI to the 
extent required to quantify an effect and the necessarily short- term 
and small- scale nature of such interventions.

In response to these challenges, and following developments 
in understanding genetic contributions to BMI, methods from 
applied genetic epidemiology are now being used to dissect the 
relationship between BMI and health. One approach in which ge-
netic variants act as an approximation to instrumental variables 
to evaluate the causal effect of an exposure (adiposity) on an out-
come (disease) is Mendelian randomization (MR). In MR, genetic 
variation fulfills the role of an instrumental variable (5), in which 
the presence of variance in BMI explained by genotype is (in prin-
ciple) orthogonal to confounding factors and genotype is assumed 
to exert an effect on health outcome only through BMI. Despite 
validating the likely causal nature of the relationship observed be-
tween BMI and disease, these studies do little to explain how risk 
is delivered.

Metabolomics uses various techniques to measure low- 
molecular- weight metabolites across body fluids and tissues and can 
be used to provide a functional readout of an individual’s health. Its 
use in epidemiological studies is increasing and it has the potential 
to help elucidate the mechanisms linking obesity and associated 
comorbidities, as well as to identify biomarkers to facilitate inter-
vention and treatment. To date, studies have shown BMI- associated 
changes across a range of metabolite classes, including sex steroids, 
branched- chain and aromatic amino acids, acylcarnitines, and lipids 
(6). But with much of the existing literature on the metabolomic im-
pact of adiposity being based on observational analyses, gaps remain 
in our understanding of the biology underpinning the development 
and direct pathophysiological consequences of obesity.

We aimed to integrate the use of genetic predictors for BMI with 
in- depth intermediate phenotyping to explore the relationship be-
tween BMI and metabolic health. Recall by genotype (RbG) is a study 

ac.uk/alspac/external/documents/grant-
acknowledgements.pdf). This research 
was funded in whole, or in part, by the 
Wellcome Trust (202802/Z/16/Z). For the 
purpose of open access, the author has 
applied a Creative Commons Attribution 
(CC BY) public copyright license to any 
author accepted manuscript version arising 
from this submission.

Study Importance

What is already known?

► Metabolomics, defined as the measurement and study 
of circulating small molecules that are the substrates 
and products of cellular metabolism, is increasingly used 
by epidemiologists to provide a functional readout of 
bulk cellular activity and a proxy for individual current 
health. This approach also provides insight into biologi-
cal pathways linking exposure and disease.

► In observational studies, elevated BMI has been as-
sociated with a wide range of circulating metabolites. 
Researchers are now looking to genetic epidemiologi-
cal methods, such as Mendelian randomization, to offer 
insight into potential causal relationships.

What does this study add?

► We identified 29 metabolites for which relative abun-
dance varies with a genetic predisposition to higher 
BMI.

► Bilirubin, a key component of the heme catabolic path-
way and a potent antioxidant, showed the strongest 
association.

How might these results change the direction of 
research or the focus of clinical practice?

► Results of both Mendelian randomization and recall- 
by- genotype studies need to be combined with alter-
native study designs to distinguish biomarkers that 
are intermediates on the pathway to BMI from those 
reflective of metabolic changes that result from in-
creased BMI.

► Separating causal from noncausal biomarkers of adipos-
ity is important because only the former are relevant 
to treatment and prevention, whereas both could be 
informative with respect to prediction and the down-
stream consequences of high BMI.

https://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
https://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
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design in which participants (or samples) are selected from a preex-
isting cohort based on genetic variation either at single variants or 
in the form of a genetic risk score (GRS) (7). In this way, RbG exploits 
the concept of MR (i.e., the random assortment of genetic variants 
in offspring), enables greater power for a given number of samples 
analyzed as compared with random selection, facilitates deep phe-
notyping, and is less prone to confounding and reverse causality (7). 
The aim of this RbG study was to examine the effect of BMI (the 
exposure) on circulating metabolites (the outcome) using a GRS de-
scribing a high versus low predisposition to higher BMI.

METHODS

In this study, metabolomics data were derived from plasma samples 
collected from a selection of participants of the Avon Longitudinal 
Study of Parents and Children (ALSPAC). An overview of the study 
design is shown in Figure 1.

Study participants

ALSPAC is a prospective birth cohort of 14,541 pregnant women 
residing in the former region of Avon (UK) with expected dates of 
delivery from April 1, 1991, to December 31, 1992 (see Supporting 

Information Methods for a cohort summary) (8- 10). A total of 13,988 
children of the initial pregnancies who were alive at 1 year of age 
(Generation 1 [G1]) have been followed up with questionnaires and 
phenotypic assessments carried out during clinic visits. The study 
website contains details of all the data that are available through 
a fully searchable data dictionary and variable search tool (http://
www.brist ol.ac.uk/alspa c/resea rcher s/our- data/). Our analysis in-
cluded plasma samples and phenotype data from a subset of G1 
participants and selected phenotype data for their parents. Ethical 
approval for the study was obtained from the ALSPAC Ethics and 
Law Committee and the local research ethics committees (http://
www.brist ol.ac.uk/alspa c/resea rcher s/resea rch- ethic s/). Consent 
for biological samples was collected in accordance with the Human 
Tissue Act (2004). Informed consent for the use of data collected via 
questionnaires and clinics was obtained from participants following 
the recommendations of the ALSPAC Ethics and Law Committee at 
the time.

Genotyping and sample selection

A subset of ALSPAC G1 participants (N = 8,953) were genotyped using 
the Illumina HumanHap550 quad chip and data imputed to the 1000 
Genomes reference panel (Phase 1, Version 3; full details in Supporting 
Information Methods). A weighted GRS was calculated using PLINK 

F I G U R E  1  Study overview. This study involves the first- generation offspring in the Avon Longitudinal Study of Parents and Children 
(ALSPAC) multigenerational cohort, in which 14,541 pregnant women, resident in the South West of England, were recruited in the 1990s. 
First, we constructed a genetic risk score (GRS) for BMI for all first- generation offspring. Under the recall- by- genotype study design, we 
recalled the plasma samples (collected at the age- 24- years clinic) of individuals with a low-  (yellow) or high-  (blue) BMI GRS for further 
analysis. Then metabolites in those plasma samples were quantified by Metabolon. Finally, we performed statistical analysis to compare the 
metabolite levels between the two BMI GRS groups. Our results are relevant to understanding the role of metabolites both as intermediates 
on the pathway to BMI and from BMI to disease. [Color figure can be viewed at wileyonlinelibrary.com]

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
https://www.wileyonlinelibrary.com
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(version 1.9) for all G1 participants with genetic data using a previously 
published set of 940 near- independent genome- wide significant BMI- 
associated single- nucleotide polymorphisms and their effect estimates 
(11). Following cross- matching against those G1 participants with data 
and samples collected at the age- 24- years clinic visit, those within the 
top and bottom 30% of the GRS distribution were selected for inclu-
sion in the study. In what follows, these GRS- derived groups will be 
referred to as the “high- ” and “low- ” BMI GRS groups, respectively. A 
total of 760 samples were sent for analysis, split equally between the 
high-  and low- BMI GRS groups. Further details of “GRS derivation” and 
“sample selection” are in the Supporting Information Methods.

Derivation of metabolite data

Fasted blood samples were collected at the age- 24- years clinic visit 
from all ALSPAC G1 individuals who provided informed consent (de-
tails in Supporting Information Methods). Plasma samples were as-
sayed by Metabolon, Inc. (Durham, North Carolina) using ultrahigh 
performance liquid chromatography- tandem mass spectroscopy 
(details in Supporting Information Methods). Metabolite screening 
identified 1,216 biochemicals, including 948 known (with the ma-
jority matched to purified standards) and 268 structurally unnamed 
biochemicals, as of December 2019 when data were generated (sub-
sequent library updates are described in Supporting Information 
Methods). Original scale data normalized in terms of raw area counts 
(as supplied by Metabolon) were used.

Phenotype data collection

In ALSPAC, regular clinic visits of subsets of G1 were carried out from 
4 months to 24 years of age, including assessment of anthropometric 
measures, collection of biological samples, and completion of ques-
tionnaires. To validate the performance of the GRS, BMI (kilograms per 
meters squared) and weight (kilograms) data were extracted from all 
available time points. To further characterize the high-  and low- BMI 
GRS groups, total body fat mass (kilograms), total body lean mass (kilo-
grams), waist- hip ratio, and traditional measures of cardiometabolic 
health were extracted from the age- 24- years clinic visit. To identify 
potential confounding due to (unmeasured) population structure, data 
were extracted for several phenotypic correlates of observed BMI to 
check for associations with GRS group and to evaluate their potential 
to act as confounders in the primary analysis. Selected variables from 
preexisting dietary preference data were extracted and used to proxy 
food intake in extended (post hoc) analyses. Details of phenotypic vari-
ables are in Supporting Information Methods.

Statistical analysis

In all analyses, the low- BMI GRS group was treated as the reference 
such that estimated effects represent the difference in the high- BMI 

GRS group relative to the low- BMI GRS group. All analyses were 
conducted in R Studio (12) using R version 4.0.2 (R Group) (13).

Metabolite processing

We processed the raw (original scale) data received from Metabolon 
(N = 760 samples) in preparation for statistical analysis using a pre-
release version of metaboprep (14). Data were filtered based on a 
series of quality metrics. Nonxenobiotic metabolites with >20% 
missing values were excluded from the analysis. After exclusions, 
missing data were imputed using the random- Forest- based miss-
Forest R package and imputed data transformed using a rank- based 
normal transformation. Xenobiotics (metabolites not produced by 
the human body) typically have a high level of missingness (or ab-
sence), which is both expected and biologically relevant given their 
(predominantly) exogenous origins. Therefore, xenobiotics with 
>20% missing were transformed to presence/absence (P/A) binary 
phenotypes. Xenobiotics present in <11 samples were excluded to 
ensure the robustness of downstream statistical analyses. A detailed 
description of this preanalysis processing is shown in Figure 2 and 
Supporting Information Methods.

Characterization of recall groups

Between- group differences in our phenotype of interest, BMI, the 
previously described adiposity and metabolic health traits, and po-
tential confounders (including technical covariates) were assessed. 
The normal distribution of continuous variables was checked by a 
Shapiro- Wilk test. Between- group differences of continuous vari-
ables were assessed primarily using a Student (two- sample, two- 
sided) t test assuming unequal variance; results from a two- sample 
Wilcoxon (Mann- Whitney) test are also presented for use in the case 
of non- normally distributed traits (Shapiro- Wilk W statistic < 0.90). 
A Fisher exact test for count data was applied to binary and categori-
cal variables. Between- group differences of BMI and weight were 
evaluated at different ages, ranging from 4 months to 24 years (when 
the samples were collected). Power calculations were performed 
using an online “Recall- by- Genotype Study Planner” application (7) 
as described in Supporting Information Methods.

Primary analysis: association of metabolites with 
recall group

To identify metabolite levels that differed between the low-  and 
high- BMI GRS groups, mean abundance was compared between 
groups using regression models. In Model 1, the postimputation 
rank- based normal transformation metabolites were analyzed 
using linear regression (metabolite ~ BMI.GRS.group). The R2 from 
the model was used to indicate the variance explained by GRS 
group. Log2 median fold change, calculated as the ratio of median 
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abundance (untransformed and unimputed) in the high- BMI GRS 
group divided by median abundance in the low- BMI GRS group, was 
used to indicate relative effect sizes.

In Model 2, metabolites in the xenobiotic class with high levels 
of missingness and previously transformed to P/A traits were an-
alyzed within a logistic regression framework (metabolite ~ BMI.
GRS.group). The variance explained by the model was estimated 
using the “rsq” function in the R package “rsq” (15). A Benjamini- 
Hochberg (BH) correction was applied to adjust the p values ob-
tained from each of these analyses (Model 1 and Model 2) for 
multiple testing.

Extended analyses

Several post hoc analyses were carried out to further characterize the 
associations between BMI GRS group and the associated metabolites 

(BH p < 0.05) from Model 1. Analyses are described in brief here and 
a full description given in Supporting Information Methods.

Firstly, Model 1 was extended to a multivariate model in which any 
potential confounder that had previously been shown to be associated 
with GRS group was fitted as an independent fixed effect alongside 
GRS group. Furthermore, to assess the reproducibility of the observed 
associations in the absence of an independent replication data set, we 
performed a two- step iterative resampling procedure based on that pre-
viously described in the context of genome- wide association studies (16).

Secondly, a hierarchical clustering approach was applied to the 
subset of associated metabolites to identify redundancy in the data 
(i.e., in which associated metabolites were highly correlated and 
likely representing the same biological signal). A reduced set of “rep-
resentative” metabolites was derived, forming the focus for the next 
steps.

Thirdly, linear regression analyses were conducted to evaluate 
the direct association between measured BMI (at the age- 24- years 

F I G U R E  2  Overview of statistical analysis. “Raw data” is the original scale data normalized in terms of raw area counts (as supplied by Metabolon). 
Data were prepared for statistical analysis by first filtering samples and metabolites based on a series of quality metrics and then applying imputation 
and rescaling procedures as appropriate. GRS, genetic risk score; QC, quality control. [Color figure can be viewed at wileyonlinelibrary.com]

https://www.wileyonlinelibrary.com
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visit) and the subset of BMI GRS group-associated metabolites with 
BMI GRS group, sex, and age fitted as covariates (metabolite ~ BMI 
+ BMI.GRS.group + sex + age). To investigate the consistency of the 
BMI effect across the two groups, the same model was also fitted 
with an interaction term (metabolite ~ BMI × BMI.GRS.group + sex 
+ age) and within each BMI GRS group separately (metabolite ~ BMI 
+ sex + age).

Finally, a series of hypothesis- driven analyses was conducted 
to investigate the potential impact of dietary differences on our re-
sults. Previously collected data on food preference (at age 25 years) 
were used with a focus on specific food groups, as informed by the 
primary association analysis results. We tested for an association 
between the low-  and high- BMI GRS groups using a two- sample 
Wilcoxon (Mann- Whitney) test and for correlations between spe-
cific food groups and metabolites using linear regression.

RESULTS

After filtering based on predefined quality metrics, the study sample 
consisted of samples from 750 individuals with abundance measures 
for 973 metabolites (905 continuous and 68 P/A traits). The pheno-
typic characteristics of all G1 individuals who attended the age- 24 
clinic visit as compared with the study sample (after quality control) 
are presented in Table 1. Both recall groups were consistent with the 
overall cohort in terms of age and sex distribution, whereas adipos-
ity traits showed expected differences.

Characterization of recall groups

At the age- 24 clinic visit when the samples were collected, the mean 
(SD) BMI of individuals in the low- BMI GRS group was 23.4 (3.7) kg/m2,  
falling within the “normal weight” range as defined by the World 
Health Organization (18.5 to <25 kg/m2). In contrast, the mean BMI 
of individuals in the high- BMI GRS group, 26.1 (5.2) kg/m2, fell within 
the “pre- obesity” range (25 to <30 kg/m2). Differences were also ob-
served in weight, total fat mass, total lean mass, and waist- hip ratio 
(Table 1). Several traditional measures of cardiometabolic health also 
showed differences across the groups, with the strongest association 
being observed in fasting insulin (Supporting Information Table S1). 
Temporal analyses showed that the between- group differences in BMI 
emerged at about 4 years of age and then increased rapidly until par-
ticipants reached around 13 years of age and somewhat more slowly 
thereafter (Figure 3 and Supporting Information Table S2); a similar 
pattern was observed in weight (Supporting Information Figure S1 and 
Table S2). BMI GRS group showed little association with most poten-
tial confounders tested and modest association with parental (mother’s 
and mother’s partner’s) social class (Supporting Information Table S3) 
but with no clear direction of effect across categories (Supporting 
Information Figure S2). Power calculations indicate that our RbG study 
is well- powered to detect metabolite differences in which the variance 
in metabolite explained by BMI is similar to that for insulin (R2 = 0.20, 

power = 94%). The minimum variance explained by BMI to achieve 80% 
power is R2 = 0.126.

Association of metabolites with recall group

Overall, we observed relatively small differences across a wide range 
of molecules with median log2 fold changes typically in the range −0.5 
to 0.5 and a slight bias toward decreased abundances in the high- BMI 
GRS group (Figure 4). Of the 905 metabolites tested in Model 1, 29 
were associated with BMI GRS group (BH p < 0.05), 25 of which had 
annotations available from Metabolon (as of February 2020) (Table 2; 
see Supporting Information Table S4 for full results). Twenty- five of 
twenty- nine (86%) had lower mean abundance in the high- BMI GRS 
group compared with the low- BMI GRS group. The four metabolites 
that showed the greatest evidence for association with BMI GRS group 
were bilirubin and bilirubin degradation products from the “Hemoglobin 
and Porphyrin Metabolism” pathway. A total of 11 metabolites assigned 
to this pathway appeared in the list of associated metabolites, including 
biliverdin. GRS group allocation explained 2.6% of the variation in the 
abundance of the most strongly associated bilirubin degradation prod-
uct. Four metabolites showed a positive association with the high- BMI 
GRS group, including two forms of sphingomyelin and metabolonic lac-
tone sulfate. For the 29 associated metabolites, within- group distribu-
tions of metabolite levels were visualized using box and whisker plots 
with the original (unimputed abundance) data after mean centering and 
scaling as input (Supporting Information Figure S3).

Of the 68 xenobiotic metabolites tested in Model 2, one metab-
olite, 2- acetamidophenol sulfate, had evidence for association with 
BMI GRS group. This metabolite was present less often in the plasma 
samples of individuals from the high- BMI GRS group (odds ratio = 
0.59; 95% CI: 0.44- 0.79; BH p = 0.03). For full results of 68 metabo-
lites from the logistic analysis, see Supporting Information Table S5.

Extended analyses

Characterization of the GRS groups indicated some association with 
mother’s and mother’s partner’s social class. Therefore, in sensitivity 
analyses, these variables were fitted alongside GRS group for the 
29 metabolites highlighted by the primary analysis. GRS group ef-
fect estimates from the multivariate model (Supporting Information 
Table S6) were similar to those from Model 1 (Pearson correlation, 
r = 0.99). In the two- step iterative resampling analysis, 7 out of the 
top 10 associated metabolites surpassed the suggested threshold 
for robust association of 20 discovery and replication instances 
(Supporting Information Table S6). The number of successful dis-
covery and replication instances was strongly correlated with the  
p value– based ranking from the primary association analysis.

Metabolite correlation analysis grouped the 29 metabolites output 
from Model 1 into 15 clusters, each with a representative metabolite 
(Table 2). The largest cluster consisted of 11 biochemicals, including 
two forms of bilirubin, seven bilirubin degradation products, biliverdin, 
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and succinimide. There were 12 single metabolite clusters. Of the 15 
representative metabolites, 12 were associated with measured BMI (p 
< 0.05) in a multivariate linear model with BMI and BMI GRS group 
fitted alongside age and sex, whereas 14 had effect estimates that 
were directionally concordant with their BMI GRS group association 
as derived in Model 1 (Supporting Information Table S7 and Figure S4).

Lower plasma levels of bilirubin degradation product 
(C16H18N2O5) (1), hippurate, perfluorooctanesulfonate (PFOS), 
tridecenedioate (C13:1- DC), and cortisone as well as higher levels 
of sphingomyelin (d18:2/16:0, d18:1/16:1) and metabolonic lactone 
sulfate were associated with higher measured BMI and showed 
the same direction of association with measured BMI in both re-
call groups, concordant with the BMI GRS group association from 
the main analysis (Figure 5 and Supporting Information Table S7). 
Fitting an interaction term (measured BMI × BMI GRS group) in the 
model provided some evidence to support a difference in the mea-
sured BMI effect by BMI GRS group for bilirubin degradation prod-
uct, C16H18N2O5 (1) (p = 0.048), and tridecenedioate (C13:1- DC) 
(p = 0.046). There was less evidence to support an association of 
measured BMI with levels of 3- hydroxy- 2- ethylpropionate, preg-
nenolone sulfate, O- sulfo- L- tyrosine, and glycocholenate sulfate 
(Supporting Information Figure S5 and Table S7).

Given the presence of potentially diet- related molecules in the 
list of associated metabolites, a post hoc analysis of dietary data 
was performed. We focused on preference for fruits and vegetables 
because of their proposed relationship with hippurate and on fish 
preference because of the potential accumulation of PFOS in fish 
and crustaceans. There was a weak association (p = 0.04) between 
fish preference and BMI GRS group, with those in the high- BMI GRS 
group showing a lower preference (Supporting Information Table 
S8A). Both fruit and vegetable preferences were associated with hip-
purate levels, including after adjustment for sex and BMI GRS group 
(Supporting Information Table S8B). Fish preference was associated 
with PFOS levels, but this association was attenuated on adjustment 
for sex and BMI GRS group (Supporting Information Table S8B).

DISCUSSION

In this study, we characterized the metabolic profile associated 
with low versus high genetic liability for higher BMI using an RbG 
framework. The mean difference in BMI between BMI GRS groups 
increased from early childhood, reaching a maximum of 2.8 kg/m2 
(95% CI: 2.1- 3.4 kg/m2) at time of sampling, when individuals were 

TA B L E  1  Characteristics of participants based on data collected at the age- 24- years clinic

All attendinga (n = 4,018) Low- BMI GRS (n = 373) High- BMI GRS (n = 377) Between- group differenceb

n Mean (SD) n Mean (SD) n Mean (SD) OR/mean (95% CI) p value

Sex, n (%)

Male 1,504 (37.4) 148 (39.7) 150 (39.8) 1.00 (0.74 to 1.36) 1.00

Female 2,514 (62.6) 225 (60.3) 227 (60.2)

Age

Male 1,504 24.5 (0.80) y 148 24.6 (0.80) y 150 24.5 (0.73) y −8.92 × 10−4 (−0.11 to 0.11) 0.99

Female 2,514 24.5 (0.82) y 225 24.4 (0.75) y 227 24.4 (0.81) y

BMI

Male 1,495 24.9 (4.44) kg/m2 148 23.8 (3.46) kg/m2 150 26.2 (4.66) kg/m2 2.78 (2.12 to 3.43) 3.79 × 10−16

Female 2,479 25.0 (5.42) kg/m2 222 23.1 (3.79) kg/m2 223 26.1 (5.62) kg/m2

Weight

Male 1,495 80.6 (15.3) kg 148 78.5 (12.6) kg 150 85.3 (17.1) kg 8.01 (5.72 to 10.3) 1.56 × 10−11

Female 2,481 68.8 (15.8) kg 223 63.4 (10.8) kg 223 72.1 (16.4) kg

Total fat mass

Male 1,459 20.6 (9.77) kg 146 18.6 (7.94) kg 144 23.4 (10.8) kg 5.67 (4.26 to 7.07) 1.17 × 10−14

Female 2,403 25.1 (11.1) kg 217 21.0 (7.79) kg 212 27.3 (10.9) kg

Total lean mass

Male 1,459 56.9 (7.55) kg 146 57.2 (7.05) kg 144 59.1 (8.20) kg 2.12 (0.60 to 3.63) 6.33 × 10−3

Female 2,403 41.2 (5.41) kg 217 40.0 (4.46) kg 212 42.1 (5.04) kg

Waist- hip ratio

Male 1,493 0.85 (0.06) 148 0.84 (0.05) 150 0.85 (0.06) 0.02 (0.01 to 0.03) 1.07 × 10−3

Female 2,471 0.77 (0.06) 222 0.76 (0.05) 222 0.78 (0.06)

Abbreviations: GRS, genetic risk score; OR, odds ratio.
aSummary statistics based on all those who attended the age- 24- years clinic.
bResults from a Student two- sample two- sided t test to compare (sex- combined) means in the high- BMI GRS group with those in the low- BMI group 
and expressed as an estimated difference in means. In the case of sex, a Fisher exact test was performed to test for a difference in the proportion of 
males vs. females in the two groups, and the results are presented as an OR.
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on average 24.5 years of age, reflecting differences in the ability of 
the GRS to capture variation in BMI at different ages, as shown pre-
viously (17). We identified 29 metabolites associated with BMI GRS 

group allocation. Most associated metabolites were seen at lower 
levels in the high- BMI GRS group, with the largest effects seen 
for bilirubin, hippurate, and tridecenedioate. Two sphingomyelin 

F I G U R E  3  Mean differences in BMI between the high-  and low- BMI GRS groups. Error bars represent the 95% confidence interval of the 
mean difference in BMI. Sample size ranges from 108 (at age 31 months) to 743 (at age 24 years). Test results are given for a Student (two- 
sample, two- sided) t test. ***p < 0.001; **p < 0.01. For full results see Supporting Information Table S2

F I G U R E  4  Volcano plot depicting the association between circulating metabolites and BMI genetic risk score (GRS) group. Points are 
colored by superpathway. Log2 median fold change calculated as the ratio of median abundance (untransformed and unimputed) in the 
high- BMI GRS group divided by median abundance in the low- BMI GRS group. P values used to derive −log10(p) are those from the linear 
regression analysis. All points above the dashed line have a Benjamini- Hochberg adjusted p < 0.05. Solid gray lines indicate the density of 
points. A representative selection of metabolites of known identity are labeled. *Indicates a compound that has not been confirmed based 
on a standard. [Color figure can be viewed at wileyonlinelibrary.com]

https://www.wileyonlinelibrary.com
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metabolites were seen at increased abundance in the high- BMI GRS 
group. The potential relevance of a selection of these metabolites to 
health and disease is explored in Supporting Information Table S9.

Conventionally, MR and RbG approaches attempt to isolate the 
causal contribution of modifiable exposures to chosen outcomes. 
However, when the outcome is also a biological intermediate that 

may itself be directly proxied by (elements of) the genetic predictor 
used to capture variance in the exposure, the assumptions underpin-
ning causal inference no longer hold. Seven scenarios, including both 
“real” GRS- to- trait associations and associations that represent po-
tential artifacts, may underpin observed associations between a GRS 
for disease and potential biomarkers (18). The scenarios, all of which 

TA B L E  2  List of identified metabolites associated with BMI GRS group

Metabolite Subpathway β (95% CI) BH p value Clustera

Bilirubin degradation product, 
C16H18N2O5 (1)b

Hemoglobin and porphyrin metabolism −0.32 (−0.47 to −0.18) 0.005 1c

Bilirubin (Z,Z) Hemoglobin and porphyrin metabolism −0.32 (−0.46 to −0.18) 0.005 1

Bilirubin (E,Z or Z,E)b Hemoglobin and porphyrin metabolism −0.31 (−0.45 to −0.17) 0.007 1

Bilirubin degradation product, 
C16H18N2O5 (2)b

Hemoglobin and porphyrin metabolism −0.30 (−0.44 to −0.16) 0.007 1

Biliverdin Hemoglobin and porphyrin metabolism −0.30 (−0.44 to −0.16) 0.007 1

Hippurate Benzoate metabolism −0.29 (−0.44 to −0.15) 0.008 2

Tridecenedioate (C13:1- DC)b Fatty acid, dicarboxylate −0.29 (−0.43 to −0.15) 0.010 3c

Sphingomyelin (d18:2/16:0, 
d18:1/16:1)b

Sphingomyelins 0.28 (0.14 to 0.42) 0.015 4c

3- Decenoylcarnitine Fatty acid metabolism (acyl carnitine, 
monounsaturated)

−0.28 (−0.42 to −0.13) 0.015 3

Perfluorooctane sulfonate (PFOS) Chemical −0.27 (−0.42 to −0.13) 0.015 5

O- Sulfo- L- tyrosine Chemical −0.26 (−0.41 to −0.12) 0.024 6

Sphingomyelin (d18:2/14:0, 
d18:1/14:1)b

Sphingomyelins 0.26 (0.12 to 0.40) 0.024 4

Bilirubin degradation product, 
C17H18N2O4 (2)b

Hemoglobin and porphyrin metabolism −0.26 (−0.40 to −0.12) 0.024 1

Bilirubin degradation product, 
C17H18N2O4 (3)b

Hemoglobin and porphyrin metabolism −0.26 (−0.40 to −0.12) 0.027 1

Bilirubin degradation product, 
C17H18N2O4 (1)b

Hemoglobin and porphyrin metabolism −0.26 (−0.40 to −0.11) 0.027 1

3- Hydroxy- 2- ethylpropionate Leucine, isoleucine, and valine metabolism −0.25 (−0.39 to −0.11) 0.031 7

Glycocholenate sulfateb Secondary bile acid metabolism −0.25 (−0.39 to −0.11) 0.032 9

Cortisone Corticosteroids −0.25 (−0.39 to −0.11) 0.033 10

3- Hydroxydecanoylcarnitine Fatty acid metabolism (acyl carnitine, hydroxy) −0.24 (−0.38 to −0.10) 0.040 3

Succinimide Chemical −0.24 (−0.38 to −0.10) 0.040 1

Bilirubin degradation product, 
C17H20N2O5 (1)b

Hemoglobin and porphyrin metabolism −0.24 (−0.38 to −0.10) 0.044 1

Bilirubin degradation product, 
C17H20N2O5 (2)b

Hemoglobin and porphyrin metabolism −0.24 (−0.38 to −0.10) 0.047 1

Metabolonic lactone sulfate Partially characterized molecules 0.23 (0.09 to 0.38) 0.049 12

3- Hydroxyoctanoylcarnitine (1)b Hemoglobin and porphyrin metabolism −0.23 (−0.37 to −0.09) 0.049 3

Pregnenolone sulfate Pregnenolone steroids −0.23 (−0.37 to −0.09) 0.049 14c

Note: Model fitted: metabolite ~ BMI.GRS.group (low- BMI GRS group as reference group). Model run on rank- based normal transformed metabolite 
data. β represents change in normalized SD units. Metabolites ordered by their BH adjusted p values from the lowest to the highest.
Abbreviations: BH, Benjamini- Hochberg; GRS, genetic risk score.
aMetabolite clusters assigned using an independent principal variables approach (clusters 8, 11, 13, and 15 contain a single unidentified metabolite 
each and are therefore not represented).
bIndicates a compound that has not been confirmed based on a standard.
cRepresentative metabolite for clusters consisting of more than one metabolite.
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could equally apply to the present study, include causal effects, re-
verse causality, associations due to biases or horizontal pleiotropy, 
and noncausal associations. Whereas others have concluded that the 
majority of metabolic perturbations seen in obesity are a response 
to increased adiposity itself (19), our results and those of Hsu et al. 
(20) suggest that differences in metabolism could also contribute to 
weight gain. Although both sets of metabolic pathways, cause and 
effect, may be informative with respect to predicting the risk of de-
veloping obesity- associated comorbidities, only the former is likely to 
be of therapeutic relevance for the prevention of obesity. It is within 
this context that we go on to discuss our findings in more detail.

Bilirubin showed the strongest association with BMI GRS group al-
location and, together with its degradation products, formed the larg-
est cluster of associated metabolites. Bilirubin, which presents mostly 
as unconjugated (indirect) bilirubin in the body, is a key component of 
the heme catabolic pathway and was found in lower abundance in the 
high- BMI GRS group. Circulating bilirubin has previously been found 
to be inversely associated with adiposity (19,21,22) and cardiovascu-
lar diseases (23- 25). Genetic studies of bilirubin- associated variants, 
including those in the UGT1A1 gene that encodes a liver enzyme that 
converts unconjugated bilirubin into conjugated (direct) bilirubin, have 
been conducted to investigate the relevance of this molecule to health 
and disease. Although some connections have been made between 
bilirubin levels and type 2 diabetes (26) and hepatic damage (27) for 
example, MR studies have typically failed to support a causal role for 
the metabolite (25,28). Recent experimental work supports an active 

role for bilirubin in improving cardiorenal and metabolic dysfunction 
potentially through activating nuclear receptors for burning fat (29) 
and reducing inflammation in adipose tissues (30).

Elevated levels of branched- chain amino acids (BCAAs; leucine, isole-
ucine, and valine) and their tissue metabolites have been consistently de-
tected in individuals with obesity (6). In this study, we saw little evidence 
for associations between BCAAs and BMI GRS group (Model 1 βs range 
from 0.015- 0.073 with unadjusted p values from 0.32- 0.84). Although 
this may seem at odds with previously identified correlations between 
BCAAs and adiposity, it is not totally unexpected given the level of incon-
sistency in observational and MR evidence (31,32). For instance, a bidi-
rectional MR study provided evidence for a causal effect of valine on BMI 
(20), although these results appeared to be instrument dependent, point-
ing to heterogeneity in the underlying biology. BCAA levels may also be 
influenced by dietary intake (33), and a link has been proposed between 
the obesity- related rise in circulating BCAA levels and a decline in their ca-
tabolism in adipose tissue (34), with further evidence suggesting that this 
could be tissue specific (35). Moreover, 3- hydroxy- 2- ethylproprionate (a 
product of isoleucine catabolism) was observed to associate with BMI 
GRS group but not with measured BMI. One potential explanation for 
this is the differences in lean mass between groups given previously re-
ported associations of 3- hydroxy- 2- ethylproprionate with muscle cross- 
sectional area (i.e., with body composition) (36). However, we are not 
well- powered to investigate this hypothesis within the current study.

We observed associations between BMI GRS group and the levels 
of potentially diet- related metabolites, including hippurate and PFOS. 

F I G U R E  5  Relationship between selected BMI genetic risk score (GRS) group– associated metabolites and measured BMI. Based on 
measured BMI at age- 24- years clinic visit. Yellow, low- BMI GRS group; blue, high- BMI GRS group. βoverall is the measured BMI effect  
(CI95% = 95% CI), extracted from multivariate linear model fitted in all individuals (metabolite ~ BMI + BMI.GRS.group + sex + age). Where 
there was evidence that including an interaction term improved the fit of the model, the measured BMI effect (adjusted for age and sex) is 
given for each BMI GRS group separately (βhigh.BMI.GRS, βlow.BMI.GRS). In the plots, solid lines denote the predicted univariate within GRS group 
relationship between BMI and metabolite with a 95% CI denoted by shading
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Hippurate is a glycine conjugate of benzoic acid, of which the benzoic 
acid component is derived mainly via microbial and mammalian co- 
metabolism of large polyphenolic molecules contained in, for example, 
fruits and vegetables (37). We observed lower levels of hippurate in indi-
viduals in the high- BMI GRS group, concordant with its previous identi-
fied associations with visceral body fat mass (22,38). Previous literature 
combining data on diet intake, visceral fat mass, and gut microbial pro-
filing suggests that the association of circulating (and urine- excreted) 
levels of hippurate with adiposity and related health outcomes (37) is 
likely to be the result of interactions between diet, microbiome com-
position, and adipose tissue function (22,39). Post hoc analyses here 
also suggest that plasma hippurate levels are positively associated with 
fruit and vegetable intake. Individuals in the high- BMI GRS group also 
had lower plasma levels of PFOS, an anthropogenic organic pollutant 
with chemical and thermal stability. PFOS has been detected in drinking 
water and the diet (especially in fish and crustaceans) worldwide and 
has a global toxic effect on human health. Although we see some evi-
dence for greater preference for fish in the low- BMI GRS group, sex also 
seems to be an important factor associated with PFOS levels. Several 
xenobiotics that showed between- group differences (albeit not meet-
ing our stringent threshold for association) may also be biomarkers of 
food consumption (e.g., acesulfame, betonicine, and theanine).

The associations observed between BMI GRS group and these 
metabolites suggest that at least some of the genetic predisposition to 
increased BMI may be conveyed either via dietary choices or through 
differences in nutrient metabolism. Many genes associated with high 
BMI appear to be highly expressed in the central nervous system (40) 
(e.g., through appetite regulation), which could be evidence that ge-
netic susceptibility to obesity is partly attributable to appetitive phe-
notypes (41). However, behavioral traits such as these are known to be 
particularly at risk from bias even in an MR (and likely RbG) setting (42), 
in which population stratification (43) or complex genetic effects (e.g., 
dynastic effects (44)) that are not accounted for can be problematic. 
In this study, the weak correlation between GRS group and parental 
social class suggests some residual confounding (owing to population 
stratification) may be present. However, given the consistency in the 
effect estimates after adjusting for parental social class, we believe the 
effects of any such confounding on our results to be small.

There are a number of limitations to the current study design that 
could usefully be addressed in future work. Here we evaluated the im-
pact of a genetic predisposition to a higher BMI on metabolite levels 
at a single point in time (early adulthood). This work could usefully be 
extended with longitudinal data to consider the extent to which these 
effects are consistent through the life course. The lack of gut microbi-
ome metadata here prevents further exploration into the impact of a 
higher genetic predisposition to having overweight or obesity on the 
regulation of metabolite catabolism through nonhost factors. Finally, 
as is typical for untargeted analyses, here we used relative abundance 
(peak area) data rather than exact metabolite concentrations. In order 
both to validate our results and to consider their clinical relevance, 
targeted studies using verified standards are needed.

In conclusion, we used an innovative RbG study design to iden-
tify metabolites for which relative abundance varies with a genetic 

predisposition to increased BMI. These differences may reflect gene- 
derived perturbations to biological pathways relevant to weight gain or 
they may be consequences of higher BMI itself. To answer this ques-
tion, results from different approaches with unrelated sources of bias, 
including challenge and/or intervention studies, need to be integrated. 
In doing so, we can begin to understand the role of different metabolic 
pathways in weight gain and related morbidity and partition metabo-
lites according to their relationship with increased adiposity.O
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