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Abstract 

Background:  High-throughput technologies have the potential to identify non-invasive biomarkers of liver pathol‑
ogy and improve our understanding of basic mechanisms of liver injury and repair. A metabolite profiling approach 
was employed to determine associations between alterations in serum metabolites and liver histology in patients 
with chronic hepatitis C virus (HCV) infection.

Methods:  Sera from 45 non-diabetic patients with chronic HCV were quantitatively analyzed using 1H-NMR spectros‑
copy. A metabolite profile of advanced fibrosis (METAVIR F3-4) was established using orthogonal partial least squares 
discriminant analysis modeling and validated using seven-fold cross-validation and permutation testing. Bioprofiles 
of moderate to severe steatosis (≥33 %) and necroinflammation (METAVIR A2-3) were also derived. The classification 
accuracy of these profiles was determined using areas under the receiver operator curves (AUROCSs) measuring 
against liver biopsy as the gold standard.

Results:  In total 63 spectral features were profiled, of which a highly significant subset of 21 metabolites were associ‑
ated with advanced fibrosis (variable importance score >1 in multivariate modeling; R2 = 0.673 and Q2 = 0.285). For 
the identification of F3–4 fibrosis, the metabolite bioprofile had an AUROC of 0.86 (95 % CI 0.74–0.97). The AUROCs for 
the bioprofiles for moderate to severe steatosis were 0.87 (95 % CI 0.76–0.97) and for grade A2–3 inflammation were 
0.73 (0.57–0.89).

Conclusion:  This proof-of-principle study demonstrates the utility of a metabolomics profiling approach to non-
invasively identify biomarkers of liver fibrosis, steatosis and inflammation in patients with chronic HCV. Future cohorts 
are necessary to validate these findings.
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Background
An estimated 185 million people worldwide are chroni-
cally infected with the hepatitis C virus (HCV) [1]. 
Chronic HCV carriers are at risk of progressive liver 
fibrosis, and up to 30 % can develop cirrhosis after dec-
ades of infection with significant risk of morbidity and 
mortality. Hepatic fibrosis occurs in the setting of liver 
injury from immune mediated chronic inflammation and 
hepatocyte cell turnover. This can ultimately lead to cir-
rhosis, manifested by architectural distortion of the liver 
and nodule formation [2]. Accumulation of the extracel-
lular matrix occurs following metabolic and synthetic 
impairment of hepatocytes.

Recently the HCV infection treatment landscape 
has changed with the advent of new oral directly act-
ing antiviral agents which offer >90  % successful treat-
ment response rates in patients with HCV genotype 1 
infection. Successful treatment is defined as a sustained 
virological response, SVR or undetectable HCV RNA by 
sensitive PCR assay 3 months after the end of anti-HCV 
treatment [3, 4]. The achievement of an SVR has been 
shown to correlate with reduced risk of liver disease pro-
gression and even reversal of liver fibrosis development. 
Thus, the currently approved antiviral therapy is recom-
mended in all patients with advanced fibrosis or cirrhosis 
who have the highest risk of HCV-related complications 
such as liver failure and hepatocellular carcinoma. How-
ever, treatment is costly and not widely available, espe-
cially in resource-limited countries. Thus accurate 
fibrosis staging, especially the diagnosis of cirrhosis, is 
needed in clinical practice to determine the urgency and 
need for anti-HCV antiviral therapy [5, 6].

The current gold standard for the diagnosis HCV-
related fibrosis and cirrhosis is liver biopsy. However 
biopsy is limited due to risk, invasive nature, technical 
issues (i.e., sample size, sampling error) and patient will-
ingness. A number of complementary non-invasive tools 
have been developed and validated to diagnose and mon-
itor liver fibrosis progression. The “physical approach” 
is characterized by the measurement of liver stiffness by 
diagnostic or ultrasound imaging techniques (i.e., Acous-
tic Radiation Force Impulse ultrasound imaging, and 
transient elastography; by FibroScan [7–11]. The “bio-
logical approach” focuses on serum biomarkers as well 
as developing profiles using high-throughput technolo-
gies such as genomics, transcriptomics, glycomics and 
metabolomics. Serum biomarkers include inexpensive 
tests such as the AST-to-Platelet Index (APRI), as well 
as the commercially developed FibroTest). Shaheen et al. 
reported that APRI under 0.5 could exclude significant 
fibrosis with 80 % accuracy [12]. It was however limited 
in accurately staging fibrosis in about 65 % of the patients 
in the study. Poynard et al. assessed the performance of 

Fibrotest and reported and area under the receiver oper-
ating characteristic curve of 0.80 (95 % confidence inter-
val 0.78–0.82) for the identification of significant fibrosis 
(Stage 2–4) [13]. These various tests may also be limited 
by sensitivity, specificity, as well as cost and availability. 
Consequently, there remains a need for complementary 
non-invasive biomarkers to assist in treatment decisions 
and to monitor the progression or resolution of liver 
fibrosis.

Metabolomics as a high-throughput platform offers 
to capture the metabolic alterations that are reflective 
of the disease process. For example, we have success-
fully characterized gastrointestinal tumor characteristics 
using serum metabolic profiles [14, 15]. Since the liver is 
involved in important metabolic processes, pathological 
process such as hepatic fibrosis manifests as metabolic 
alterations that can assist in understanding the disease 
processes. For example, in a recent study, Jimenez et al. 
were able to characterize serum metabolites using 1H-
NMR metabolomics in cirrhotic patients at risk of devel-
oping hepatic encephalopathy [16]. Recently, Baniasadi 
et  al. were able to discriminate between cirrhotic HCV 
patients who were at high risk for developing hepatocel-
lular carcinoma (HCC), from those who had already pro-
gressed to HCC using blood metabolite measurements 
[17]. Gao et al. were able to distinguish healthy controls 
when compared with serum samples from patients with 
liver cirrhosis and HCC [18], while HCV patients pre-
therapy have been shown to have elevated levels of tryp-
tophan in patients with SVR compared to those who were 
non-responders to antiviral therapy [19].

Despite this work in clinical populations, there is lim-
ited information specifically regarding the association of 
liver histology with clinically accessible metabolic profiles 
from blood or urine in HCV populations, the exception 
being a study examining HIV/HCV co-infection [20]. In 
the current study, patients with chronic HCV infection 
(>80  % genotype 1 infection) with varying degrees of 
fibrosis (F0–4), necroinflammation (A1–3) and steatosis 
were evaluated. We hypothesized that a metabolomics 
approach would be able to stratify HCV related liver his-
tological disease progression by analysis of patient sera 
samples using a quantitative NMR metabolomics profil-
ing approach. Using multivariate statistical analysis tools, 
we could identify non-invasive metabolite biomarkers 
that are capable to discriminate between various stages of 
fibrosis, necroinflammation and steatosis.

Methods
Study design
The study included patients chronically infected with 
the HCV seen at the Calgary Liver Unit, Viral Hepatitis 
Clinic, Department of Gastroenterology and Hepatology, 
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University of Calgary. Study inclusion criteria included 
(1) adult patients (≥18  years of age,) (2) presence of 
chronic HCV infection (positive anti-HCV antibodies 
and HCV RNA in serum), (3) biopsy diagnosis of fibrosis 
and necroinflammation, according to METAVIR classifi-
cation for HCV [21], (4) macrovesicular steatosis assess-
ment by histopathology and graded as none (0–5  %), 
mild (5–32 %), moderate (33–65 %) and severe (≥66 %) 
steatosis. The exclusion criteria included: (1) obvious cir-
rhosis based on radiological investigations (e.g. nodular 
liver, splenomegaly), or clinical features of decompen-
sated liver disease (e.g. jaundice, encephalopathy, ascites), 
(2) conditions that may alter the accuracy of biomarkers 
of fibrosis including extrahepatic obstruction, immu-
nosuppression (e.g. due to concomitant HIV infection, 
medication), pregnancy, and systemic inflammatory con-
ditions (e.g. sepsis, inflammatory bowel disease) [22], (3) 
excessive alcohol consumption defined as ≥40  g/d for 
men and ≥20  g/d for women in patients with HCV, (4) 
antiviral therapy for HCV within the previous 6 months. 
The study approval was obtained from the University of 
Calgary Conjoint Health Research Ethics Board (CHREB) 
and all study participants provided signed informed con-
sent for study enrolment according to the Declaration of 
Helsinki. Relevant C =  clinical and demographic infor-
mation collected included, gender, age, HCV genotype, 
serum alanine-aminotransferase (ALT) levels, and body 
mass index (BMI).

Peripheral blood samples were collected approximately 
24 h after liver biopsy was performed, after a 12-h fast. 
The isolated serum were immediately transferred to cry-
ovials and stored at −80 °C for subsequent metabolomics 
analysis. In total 45 study participants with chronic HCV 
infection were enrolled, for sera spectra analysis. Partici-
pants were divided into three groups based on liver histo-
pathology characteristics of fibrosis, necroinflammation 
and steatosis (Table 1).

Liver tissue sampling and histopathology evaluation
Percutaneous liver biopsy was performed under local 
anesthesia with an ultrasound guidance via the right 
coastal approach [23]. An 18 gauge (width 1.2 mm, cut-
ting depth 2.2 cm) spring loaded, cutting needle (Bard®, 
Monopty® Percutaneous biopsy instrument; C.R. Bard-
Inc., Billerica, MA) was used. If a sample less than 2.0 cm 
long was obtained after the first pass of the needle, an 
additional pass was performed. Following biopsy, patients 
were observed according to a standardized, 4 h protocol 
to observe for immediate complications [23]. The liver 
biopsy tissue was fixed, paraffin-embedded and stained 
with hematoxylin and eosin and Massaon’s trichome. 
All biopsies were examined by two hepatopathologists 
blinded to the clinical data. The size of biopsy, number of 

portal triads and fragmentation were recorded to account 
for the effect of these factors on the accuracy of the bio-
markers under study [24, 25]. Liver fibrosis was staged 
from 0 to 4 according to the METAVIR classification 
[21] and NALFD score [22]. Histopathological assess-
ment of fibrosis and necroinflammation were done using 
the METAVIR grading system. These classifications have 
excellent intra- and inter-observer agreement for liver 
fibrosis (kappa values >0.80) [21, 22].

The METAVIR scoring system assesses fibrosis in 
chronic HCV patients in accordance to a 5-stage classi-
fication, as previously published. Based on the percent-
age of involved hepatocytes, steatosis were divided into 
4 groups as none (0–5 %), mild (5–32 %), moderate (33–
65 %) and severe (≥66 %) steatosis.

1H NMR spectroscopy
1H NMR spectroscopy was performed using a proto-
col previously described [26]. For NMR analysis, serum 
samples were thawed on ice. 250 μl of serum sample were 
filtered through a prewashed Nanasep 3 K Omega Filter 
Eppendorf to remove high molecular weight (>3  kDa) 
compounds (e.g. large proteins, lipid complexes etc.). The 
filtrate was then centrifuged and buffered to a pH of 7.0 
for analysis. Regular one-dimensional proton NMR spec-
tra were obtained using a 600-MHz Bruker Ultrashield 
NMR spectrometer (Bruker Biospin, Milton, Canada). 
The spectra were acquired using a standard NOESY 1D 

Table 1  Patient demographics and  biopsy characteristics 
of  HCV patients with  fibrosis (F0–4) and  necroinflamma-
tion (A1–3) based on METAVIR scoring system

Patient characteristics

Age, years 46 (18–60)

Male gender 67 %

HCV genotype 1 80 %

ALT, U/L 147 (25–478)

BMI, kg/m2 26.7 (17.6–53.7)

Fibrosis (F0–4), %

 F0 9

 F1 20

 F2 38

 F3 13

 F4 20

Necroinflammation (A1–3), %

 A1 20

 A2 38

 A3 4

Biopsy quality

 Length, cm 2.0 (0.9–3.9)

 Number of portal triads 14 (3–29)
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pulse sequence that had good water suppression charac-
teristics and is commonly used for metabolite profiling of 
serum samples [27]. Relaxation delay of 1 s was used; t1 
was set to 4 μs and a 100 ms mixing time was employed. 
Initial samples for each batch were shimmed to ensure 
half-height line width of <1.1 Hz for the dimethyly-sila-
pentane-sulphonate peak, calibrated to 0.0 ppm. Spectra 
were acquired with 1024 scans, then zero filled and Fou-
rier transformed to 128 k data points using the Chenomx 
NMRSuite processor. Additional 2-dimensional NMR 
experiments were performed for the purpose of con-
firming chemical shift assignments, including homonu-
clear total correlation spectroscopy (2D 1H-1H TOCSY) 
and heteronuclear single quantum coherence spectros-
copy (2D 1H-13C HSQC), using standard Bruker pulse 
programs.

Data processing for statistical analysis
Raw data from 1H NMR was processed and profiled 
using ChenomX NMR Suite software 4.6 (Cheonomx 
Inc., Edmonton, Canada) to a library of 63 compounds. 
1H-NMR spectral data was evaluated using the strategy 
of “targeted profiling” [28]. This allowed quantification 
of metabolite concentrations in the serum samples. The 
data was subsequently log transformed, centered and 
unit variance scaled. Data analysis was done using multi-
variate statistical analytical software SIMCA- P +  (V12, 
Umetrics AB, Umea, Sweden). Firstly, a principal compo-
nent analysis (PCA) was performed to detect any group 
separation based on variation in NMR signals. PCA was 
also performed to check the unsupervised segregation of 
the metabolome.

Orthogonal projection least squares-discriminant 
analysis (OPLS-DA) was done which allowed us to dif-
ferentiate between the variables concerning the different 
stages of fibrosis. Model variance and predictive ability 
was assessed using R2 and Q2 values. The R2X and R2Y 
values were representative of the explained variation in 
the X and Y matrices respectively. The Q2Y value was 
indicative of the predictability of the model generated. 
Model significance was assessed using a cross-validated 
ANOVA based on seven-fold cross validation. Variables 
were selected according to the VIP (variables importance 
in projection) values, which were reflective of the correla-
tion of the metabolites towards different response. Model 
performance was assessed using AUROC (area under the 
receiver operator curve).

Pathway analysis
Preliminary metabolite function was assigned using the 
Human Metabolome Database [29]. Dataset of metabo-
lites that were differentially abundant in the NMR anal-
ysis were uploaded into the program. This was done 

independently for each comparison. Metabolite Set 
Enrichment Analysis (MSEA) [30] was used to elucidate 
the various biochemical pathways involved in HCV fibro-
sis, necroinflammatory disease and steatosis.

Results
Patients
In total 45 study participants with chronic HCV infec-
tion were enrolled, for sera spectra analysis. Participants 
were divided into three groups based on liver histopa-
thology characteristics of fibrosis, necroinflammation 
and steatosis (Table 1). These included participants who 
had fibrosis and necroinflammation (classified according 
to the METAVIR score [21] and patients with moderate 
to severe steatosis. One-third of the patients were scored 
with F3–4 fibrosis; 13 and 42 % had moderate to severe 
steatosis and inflammation, respectively.

Metabolomic analysis
Metabolite bioprofile of advanced HCV fibrosis (F3–4)
For 1H NMR spectral profiling, a total of 63 features were 
profiled. The results indicated that 21 metabolites were 
differentially abundant associated with advanced fibrosis 
(variable importance score >1 in multivariate modeling) 
(Table 2). The 1H NMR spectra of two patient’s sera, with 
F4 (cirrhosis) and F1 stage of fibrosis are represented in 
Fig. 1a. It illustrates the relative decrease in the concen-
tration of creatine in patients with cirrhosis (F4) in com-
parison with patients with F1 fibrosis, supporting the 
results indicated in the coefficient plot (Fig. 1b). The sera 
spectra of patients with F0-2 and F3-4 were well discrim-
inated with the OPLS-DA model (R2 =  0.673) (Fig.  1c). 
The predictive ability of the model was measured by sev-
enfold cross validation (Q2 = 0.285), and cross-validated 
ANOVAl indicates a significant model (p =  0.008). Fig-
ure  1e is reflective of biochemical pathways over-repre-
sented in advanced fibrosis, with metabolites shown in 
Fig. 1d being relatively decreased as a function of increas-
ing fibrosis, while those listed in Fig. 1f have been rela-
tively increased. 

Metabolite bioprofiles of necroinflammation (A2–3) 
and steatosis (>33 %)
Based on 1H-NMR profiling, patients with necroinflam-
matory activity classified as grade A2 and A3 (moder-
ate to severe activity) could be partially distinguished 
from patients graded as A1 (minimal activity). The sera 
of patients with necroinflammation (A2–3) were distin-
guished from the rest of the necroinflammatory samples, 
based on differences in 17 spectral features (Table 2) in an 
OPLS-DA model with a variation of R2 = 0.405, Q2 = 0.102 
and was weakly significant CV-ANOVA p = 0.10 (Fig. 2b). 
Of these metabolites that were identified, eight were shared 
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with the fibrosis model (Table 3). The coefficients plot rep-
resenting the differential abundance for each of the metab-
olites is illustrated in Fig. 2a.

Study participants were divided into 4 categories based 
on degree of liver steatosis (<5, 5–32, 33–65 and ≥66 %). 
A distinction in-group with ≥33  % was observed in 
OPLS-DA with a variation of R2 Y = 0.67, Q2Y = 0.166 
and weakly significant with a CV-ANOVA  =  0.11 
(Fig. 3b). Among the sixteen metabolites that were found 
to correspond to the patient sera samples with a steatosis 
of ≥33 %, four of those metabolites were common with 
the fibrosis model whereas seven were shared with the 
necroinflammation model (Table 3). Metabolites derived 
from the model and their respective differential abun-
dance are illustrated in Fig. 3a.

Clinical applicability of the fibrosis, necroinflammation 
and steatosis model
As an assessment of the possible applicability of the 
metabolites from each pathophysiological model, the 

relative overlap between metabolites from each model 
was assessed (Fig.  4). Of the total set of metabolites 
deemed to be discriminating in each case, three metabo-
lites were shared (methylsuccinate, creatine, and adeno-
sine). In addition, asparagine was shared between the 
fibrosis and steatosis models. A listing of the overlap-
ping metabolites is provided in Fig.  4b. Notably, a large 
subset of metabolites were unique to each model; twelve 
metabolites were discriminatory only in the fibrosis test-
ing. This result is encouraging as it suggests that clinical 
applicability is truly based on metabolic differences.

We further tested the predictive performance of discri-
minant model between sera of patients with stages F0–2 
and F3–4, A0–1 and A2–3 and steatosis (≥33 %) respec-
tively. This was done by constructing seven models with 
one-seventh of the data excluded from each of the seven 
models, with each sample excluded once. This method 
provided the predictive ability of the model.

For the identification of F3–4 fibrosis, the metabolite 
bioprofile had an AUROC of 0.86 (95  % CI 0.74–0.97) 

Table 2  Chemical classes and the associated metabolites identified with respect to the HCV patients with fibrosis (F3–4), 
necroinflammation (A2–3) and steatosis (≥33 %)

Outcome [#spectral features] Chemical classes (n) Metabolites

Fibrosis (F3–4) [21] Acyl Glycine (1) N-acetylglycine

Amino acids (10) Asparagine, creatine, glutamine, glycine, histidine, methionine, methylhistidine, 
N-acetylaspartate, threonine, tyrosine

Amino ketones (1) Urea

Dicarboxylic acid (1) Methylsuccinate

Fatty acids (2) Formate, propionate

Hydroxy acids (1) 2-Hydroxyisovalerate

Keto-acids (1) 2-Oxoisocaproate

Nucleoside Analogue (1) Adenosine

Polyamines (1) Methylguanidine

Purine/purine deivatives (2) 1,7-Dimethylxanthine, Caffeine

Necroinflammation (A2–3) [17] Acyl glycine (1) N-Acetylglycine

Alcohols (1) Ethanol

Aliphatic and aryl amines (1) Dimethylamine

Amino acids (6) Creatine, histidine, glutamate, phenylalanine, tryptophan, tyrosine

Dicarboxylic acid (3) Methylsuccinate, suberate, succinate

Quaternary amines (1) O-acetylcarnitine

Nucleoside analogue (1) Adenosine

Purine/purine derivatives (2) 1,7-Dimethylxanthine, caffeine

Tricarboxylic acid (1) Citrate

Steatosis (≥33 %) [16] Amino acids (6) Asparagine, creatine, creatinine, L-glutamate, SERINE, tryptophan

Carbohydrates (1) d-Mannose

Dicarboxylic acid (4) 2-Oxoglutarate, methylsuccinate, suberate, succinate

Hydroxy acids (2) 3-Hydroxybutyrate, lactate

Keto-acids (2) Pyruvate

Ketones (1) Acetone

Nucleoside analogues (1) Adenosine
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as seen in Fig.  5. Metabolite bioprofiling facilitated the 
discrimination of advanced HCV fibrosis (F3-4) using a 
cross-validation cut off >1.39 (sensitivity 80  %, specific-
ity 83 %, PPV 71 % and NPV 89 %) with an overall accu-
racy of 82  % (Fig.  2b). Similarly, the necroinflammation 
model, A2–3 yielded a metabolite bioprofile with an 
AUROC of 0.73 (95 % CI 0.57–0.89) (Fig. 5c). The steato-
sis model (≥33 %) produced a metabolite bioprofile with 
an AUROC of 0.87 (95 % CI 0.76–0.97) (Fig. 5d).

Pathway analysis
In the fibrosis model, metabolites including amino acids, 
nucleic acids, and short chain fatty acids indicative of 
protein synthesis and catabolism as well as nitrogen 
metabolism were identified (Table  2; Fig.  1d–f; Addi-
tional file  1: Table S1). Alterations in metabolites were 
not gender-related and little or no model variance could 
be explained by other patient characteristics (e.g. age, 
body mass index). Asparagine, histidine and methionine 

Fig. 1  Metabolite bioprofiling facilitates discrimination of advanced HCV fibrosis (F3–4). a Illustrates the relative decrease in concentration of cre‑
atine in HCV carrier with F4 fibrosis (cirrhosis) in comparison with a HCV carrier with Stage 1 (F1) liver fibrosis in the NMR spectra. b Represents the 
coefficient plot from the OPLS-DA analysis showing differences in serum metabolite concentration in the patients with HCV fibrosis (F3–4). C Shows 
OPLS-DA score plots of serum samples from HCV patients with fibrosis. Each data point is representative of the complete metabolite measurement 
from one HCV patient: blue square Stage 0–2, red square Stage 3–4. The x and y-axis represent the latent variable 1 and orthogonal component 2 
respectively. R2 is the explained variance; Q2 is the predictive ability of the model; Model significance was assessed using a cross-validated ANOVA 
based on seven-fold cross validation (R2 = 0.673, Q2 = 0.285, p = 0.008). Biochemical pathways involved in HCV advanced fibrosis (F3–4). d Illus‑
trates the metabolites that have been relatively decreased in the fibrosis group. e Indicates the biochemical pathways involved in fibrosis model; 
higher intensity with a higher association with the fibrotic group. f Represents the metabolites which have been relatively increased in the fibrotic 
group



Page 7 of 13Sarfaraz et al. Clin Trans Med  (2016) 5:33 

Fig. 2  Metabolite bioprofiling facilitates discrimination of HCV necroinflammation (A2–3). a Represents the coefficient plot from the OPLS-DA anal‑
ysis showing differences in serum metabolite concentration in the patients with necroinflammatory disease (A2–3). b Shows OPLS-DA score plots 
of serum samples from HCV patients with necroinflammation. Each data point is representative of the complete metabolite measurement from one 
HCV patient: blue square A1, red square A2–3. The t[1] value represent the score of each sample in principal component 1. R2 is the explained vari‑
ance; Q2 is the predictive ability of the model; Model significance was assessed using a cross-validated ANOVA based on seven-fold cross validation 
(R2 = 0.405, Q2 = 0.102, p = 0.10)
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are involved in protein biosynthetic pathways with 
asparagine was relatively decreased while histidine and 
methionine were relatively elevated with increasing fibro-
sis. Methionine is coupled to betaine, glycine and serine 
metabolism. Additionally asparagine is also involved in 
the ammonia-recycling pathway with glycine and glu-
tamine. Glutamine is a member of pathways such as urea 
cycle, glutamate and pyrimidine metabolism.

Similar analysis of necroinflammatory disease metab-
olites indicated a relative up regulation of six amino 
acids, three dicarboxylic acids and one tricarboxylic acid 
(Table  2, Additional file  1: Figure S1). Pathway analysis 
suggests only protein biosynthesis to be impacted by this 
model (Additional file 1: Table S2).

On the other hand, the hepatic steatotic model (stea-
tosis ≥33 %) included six amino acids, four dicarboxylic 
acids and two hydroxy acids (Table 2) over-representing 
several pathways related to energy and nitrogen metabo-
lism, primarily ammonia and alanine metabolism, as well 
as the glucose alanine cycle (Additional file  1: Table S3, 
Figure S2).

It is worth noting that the pathway analysis of hepatic 
steatosis and necroinflammation included metabolites 
involved in both convergent and divergent sets of meta-
bolic pathways. For example, in patients with steatosis 
several by-products of fat metabolism (e.g. acetone and 
3-hydroxybutarate) and glycolysis (e.g. pyruvate and lac-
tate) were up regulated (Fig. 3a). These compounds were 
not associated with fibrosis. At the same time, it is clear 
that nitrogen metabolism is central to all processes exam-
ined here.

Discussion
The presence of concomitant liver fibrosis, necroinflam-
matory activity as well as steatosis can only be reliably 
confirmed by liver histological analysis. However, liver 
biopsy is invasive and has risk of complications [31]. In 
addition, liver biopsy may be limited by the size of the 

specimen obtained as well as sampling, intraobserver, 
and interobserver variability [32]. Although liver biopsy 
is considered the gold standard for the evaluation of the 
grade of necroinflammation and stage of fibrosis [4, 33, 
34] many guidelines also state that transient elastography, 
in combination with noninvasive biomarkers (i.e., FIB-4, 
FibroTest), is highly useful to evaluate fibrosis in patients 
with chronic HCV. We propose that metabolomics is 
ideal to study the disease induced changes caused by 
any pathological process as it enables us to describe the 
full complement of metabolites present in in biofluids as 
well as tissues [3]. These metabolites represent the final 
downstream product of all transcriptional and transla-
tional processes within a cell. Alterations due to a dis-
ease process result in changes in groups of metabolites, 
which represents a pattern unique to the disease pro-
cess. This metabolomic profile can be studied in detail to 
understand the histological changes in the tissue, which 
eventually leads to disease progression. For example, 
Cassol et al. studied the metabolomic changes in patient 
population with HCV and HIV co-infection. It was noted 
that there was a direct relationship between elevation 
in plasma bile acids and non-invasive markers of liver 
fibrosis [20]. Patients who had recorded high scores on 
the FIB-4 and APRI scale also had increased levels of 
plasma GCA and TCA. Similarly, our analysis is reflec-
tive of increased bile acid synthesis, with glycine being 
down regulated in the advanced fibrosis model (Fig. 1b). 
This is illustrated in the cholesterol conjugation pathway, 
where the enzyme BA-CoA:amino acid N-acyltransferase 
(BAT), amidates BA-CoA with glycine to form tertiary 
bile acids such as GCA and TCA [35]. Interestingly, 
O-acylcarnitine, which is a marker of beta oxidation of 
long chain fatty acid, was elevated in the necroinflamma-
tion (A2–3) group (Additional file  1: Figure S1), a find-
ing that was supported by Cassol et al. [20], who noted a 
positive correlation between elevated bile acid levels and 
acylcarnitines.

Saito et al. [19] investigated the metabolomic response 
in HCV patients undergoing therapy in relation to their 
viral load. It was noted that patients with SVR had an 
elevated tryptophan levels before the initiation of treat-
ment. Although our study did not compare pre- and 
post-treatment changes in metabolites, an increase in the 
level of tryptophan was noted in both in the advanced 
necroinflammation (A2–3) and steatosis group (≥33  %) 
analyses. On histological examination, the advanced 
steatosis groups tended to have advanced inflammation 
characteristics as well explaining the overlap. Zhang et al. 
were able to identify twenty distinct urinary metabolites 
contributing to liver disease progression [36]. Thirteen 
of the identified metabolites were significantly increased 
whereas seven were decreased. Eleven of these urinary 

Table 3  The commonalities in  metabolite bioprofiles 
of  fibrosis (F3–4), steatosis (≥33  %) and  necroinflamma-
tion (A2–3)

Steatosis (≥33 %) 
and fibrosis (F3–4) 
N = 4

Fibrosis (F3–4) 
and necroinflamma-
tion (A2–3) N = 8

Necroinflammation 
(A2–3) and steatosis 
(≥33 %) N = 7

Asparagine
Creatine
Methylsuccinate
Adenosine

N-acetylglycine
Creatine
Histidine
Tyrosine
Methylsuccinate
Adenosine
1,7-Dimethylxanthine
Caffeine

Creatine
Glutamate
Tryptophan
Methylsuccinate
Suberate
Succinate
Adenosine
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metabolites were common to the metabolite findings in 
this study and included glycine, citrate, arginine, betaine, 
histidine, leucine, aspartic acid, succinic acid, carnitine, 

valine and tyrosine. In our study, citrate was differentially 
increased in the necroinflammation (A2–3) model and 
was involved in the citric acid pathway in the steatosis 

Fig. 3  Metabolite bioprofiling facilitates discrimination of HCV patients with steatosis (≥33 %). a Represents the coefficient plot from the OPLS-DA 
analysis showing differences in serum metabolite concentration in the patients with steatosis. b Shows OPLS-DA score plots of serum samples from 
HCV patients with steatosis. Each data point is representative of the complete metabolite measurement from one HCV patient: red triangle <5 %, 
green triangle 5–32 %, blue triangle 33–65 %, and black triangle ≥66 %. The x and y-axis represent the latent variable 1 and orthogonal component 2 
respectively. R2 is the explained variance; Q2 is the predictive ability of the model; Model significance was assessed using a cross-validated ANOVA 
based on sevenfold cross validation (R2 = 0.67, Q2 = 0.16, p = 0.11)
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(≥33 %) group. Histidine was upregulated in the fibrosis 
(F3–4), necroinflammation (A2–3) and steatosis (≥33 %) 
group. Carnitine, a urinary metabolite that was decreased 
in the patients with disease progression, was upregulated 
in the necroinflammation (A2–3) and steatosis (≥33  %) 
group. In the necroinflammation model, it was present 
in the form of O-acetylcarnitine participating in the 
glucose-alanine oxidation of branched chain fatty acids. 
However, in the steatosis (≥33 %) group, it was involved 
in gluconeogenesis, glutamate and tryptophan metabo-
lism. Tyrosine a urinary metabolite that was decreased 
in patients with disease progression was found to be up 
regulated in the fibrosis (F3–4) and necroinflammation 
(A2–3) group. In these models, it was involved in protein 
biosynthesis, catecholamine metabolism and phenylala-
nine and tyrosine metabolism pathways.

We can interpret the analysis to suggest that liver being 
a metabolically complex organ is representative of unique 
metabolomic alterations reflective of the disease process. 
Fibrosis, necroinflammation and steatosis of the liver 
are separate histological entities; the results of this pilot 
study suggest that we can uniquely identify metabolites 
that are distinctive of the three histological conditions. 
At the same time, certain metabolites are shared amongst 
three histopathological conditions, such as those in 
involved in urea and nitrogen metabolism (asparagine 
and histidine) that can be attributed to their involvement 
in the common metabolite pathways of amino acid, fatty 
acid and carbohydrate metabolism (Additional file 1: Fig-
ure S3).

Using 1H-NMR, we have demonstrated that serum 
metabolomic profiles of patients with chronic HCV differ 
in accordance to their histopathological state. However, 
larger studies will be needed to comprehensively validate 
the metabolic alterations associated with the histologi-
cal changes in chronic HCV patients. Factors that have 
limited our study include a small sample size and wide 
gender difference in patient groups. Information regard-
ing non-anti-viral drug use was not available. Despite 
these limitations, our study was stringent with respect to 
the standardized timing of sample collection and dietary 
intake (i.e., serum after a 12-h fast) as well as correlation 
with liver histological analysis. Although it can be argued 
that the metabolome is influenced by genetic variations 
and environmental factors, studies have indicated that a 
distinct metabolite signature is conserved in disease with 
a common etiological factor and pathophysiology [37].

Conclusion
In this paper, we have described a proof-of-principle 
study that demonstrates that metabolomic profile of the 
chronic HCV carriers varies in accordance with the liver 
histopathology. Our study is able to demonstrate different 
metabolic profiles in association with clearcut pathology 
changes. It emphasizes the significance of metabolomic 
profiling as a promising technology for the non-invasive 
assessment of HCV-related liver histology. However, fur-
ther experiments in the form of large-scale validation 
studies are required to develop our understanding of the 
histopathological contributions of the diseased liver site 

Fig. 4  Overall significant metabolites from models of fibrosis, necroinflammation and steatosis. a Venn diagram illustrating degree of overlap 
between metabolites changed with highest significance (VIP > 1) in each model. b Summary of metabolites by overlapping group
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and the host, on the alterations in the metabolomic path-
ways, in addition to confirming the metabolomic profiles 
observed.
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