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Abstract: Three new polyene compounds, talacyanols A–C (1–3), along with two known compounds,
ramulosin (4) and eurothiocin A (5), were isolated from the marine fungus Talaromyces cyanescens
derived from a seaweed Caulerpa sp. Structures of 1–5 were established by one-dimensional and two-
dimensional (1D/2D) NMR, HR-ESIMS, and the modified Mosher’s methods, as well as comparison
with previously reported literature data. All the compounds (1–5) were tested for their in vitro
cytotoxic and anti-neuroinflammatory activities. Among them, 1 showed moderate cytotoxic activity
against a panel of cancer cell lines (HCT-15, NUGC-3, NCI-H23, ACHN, PC-3, and MDA-MB-
231) with GI50 values ranging from 44.4 to 91.6 µM, whereas compounds 2 and 5 exhibited anti-
neuroinflammatory effect without cytotoxicity against all the tested cell lines.

Keywords: Talaromyces cyanescens; marine-derived fungus; polyenes; cytotoxicity; anti-neuroin-
flammatory

1. Introduction

Despite developing new therapeutic agents is a long, intricate, and costly process,
the discovery and development of the new drugs are urgently needed due to the increase
in the annual number of deaths caused by cancer, cardiovascular, respiratory, and neu-
rodegenerative diseases, as well as the emergence and rapid growth of multidrug resistant
pathogenic microbes [1,2].

Epiphytic and endophytic fungi have been known as potential sources of biologically
active compounds, which may both directly and indirectly be used as therapeutically
active substances against a wide variety of diseases [3–5]. Among them, the fungal genus
Talaromyces has been recognized to be the prolific producers of structurally diverse and
pharmacologically active secondary metabolites [6]. A large proportion of compounds,
including alkaloids [7], terpenoids [8], polyketides [9], lactones [10], and quinones [11]
demonstrated various bioactivities such as anticancer [12], antimicrobial [9], and antioxi-
dant activities [13].

Cancer and Alzheimer’s disease are the top leading causes of death worldwide, and
neuro-inflammation plays a crucial role in the pathogenesis of Alzheimer’s disease [14,15].
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Therefore, there is an urgent and continuous need to find new classes of anticancer and
anti-neuroinflammatory drugs. As a part of our continuing studies for novel marine fungal
agents with potent cytotoxic and anti-neuroinflammatory effects, we isolated three new
compounds possessing a polyene skeleton, talacyanols A–C (1–3), and two known com-
pounds ramulosin (4) and eurothiocin A (5) from the marine-derived fungus Talaromyces sp.
168ST-51.1 (Figure 1). In this paper, we describe the isolation and structure identification
of the secondary metabolites 1–5 and their in vitro cytotoxic and anti-neuroinflammatory
activities.
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Figure 1. Structures of compounds 1–5 isolated from Talaromyces cyanescens.

2. Results and Discussion
2.1. Structural Elucidation

Compound 1 was isolated as a colorless oil with a molecular formula of C11H16O3,
which was established from an HRESIMS peak at m/z 219.1002 [M + Na]+ (calcd. for
C11H16O3Na+, 219.0992). The 1H NMR spectrum displayed signals of an aldehydic proton
at δH 9.46 (H-1), five olefinic protons at δH 5.93–7.13, two oxymethine protons at δH 3.72
(H-7) and 4.09 (H-6), and two methyl groups at δH 1.14 (H3-8) and 1.54 (H3-11) (Table 1).
The 13C NMR data exhibited the presence of eleven resonances, which were assigned for
an aldehyde group at δC 196.0 (C-1), five protonated olefinic carbons at δC 150.2 (C-3), 146.0
(C-5), 132.5 (C-10), 128.8 (C-4), and 122.0 (C-9), a sp2 quaternary carbon at δC 139.1 (C-2),
two oxygenated methines at δC 77.0 (C-6), 71.4 (C-7), and two methyls at δC 18.7 (C-8), 15.7
(C-11) (Table 1). The above data suggested that 1 possesses an acyclic skeleton with an
aldehyde and three pairs of sp2 carbons, accounting for all four degrees of unsaturation in
accordance with its molecular formula.

Detailed analysis of 1H-1H COSY correlations determined the partial structures of 1
including two distinct spin systems from H-3 (δH 7.13) to H3-8 (δH 1.14), and from H-9
(δH 5.98) to H3-11 (δH 1.54). Furthermore, the linkages between the partial structures were
identified on the basis of the HMBC spectrum. The HMBC correlations of H-1 (δH 9.46),
H-4 (δH 6.66), and H-10 (δH 5.92) to C-2 (δC 139.1), and those of H-3, H-9 to C-1 (δC 196.0)
indicated that three parts of the compound were assembled via C-C bonds from C-2 to C-1,
C-3, and C-9. Thus, the planar structure of 1 was determined as shown in Figure 1. The
geometries of the ∆2,4,9-double bonds could be interpreted as 2E, 4E, and 9Z based on their
3JH,H coupling constants of H-4/H-5 (J = 15.3 Hz) and H-9/H-10 (J = 11.8 Hz), as well as
the strong NOESY correlations of H-3/H-1, H-3/H-5, and H-4/H3-11 (Figure 2).

The absolute configurations of four possible stereoisomers of the secondary 1,2-diols
could be unambiguously determined using the modified Mosher’s method (Figure 3A)
by comparing the 1H NMR data (∆δS-R) of their corresponding bis-(S)- and -(R)-MTPA
(α-methoxy-α-trifluoromethylphenylacetic acid) esters (Figure 3B) [16,17]. Therefore, com-
pound 1 was treated with R- and S-α-methoxy-α-(trifluoromethyl) phenylacetyl chloride
(MTPA-Cl) to give bis-S- and -R-MTPA esters (1a and 1b), respectively. As a result, the
∆δS−R values of 1a and 1b were interpreted, which were consistent with syn-1,2-diols
(Figure 3A) and the absolute configurations of the stereogenic centers were determined as
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6R and 7R. Thus, the structure of 1 was determined as (2E,4E,6R,7R)-6,7-dihydroxy-2-((Z)-
prop-1-en-1-yl)octa-2,4-dienal and named talacyanol A.

Table 1. 1H and 13C NMR data for 1–3 at 600 MHz and 150 MHz in CD3OD (δ in ppm, J in Hz), respectively.

Position
1 2 3

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

1 9.46, s 196.0 9.46, s 196.0 4.05, s 66.4
2 139.1 139.1 139.8
3 7.13 (d, 11.2) 150.2 7.13 (d, 11.2) 150.3 6.20 (d, 11.0) 126.6
4 6.66 (dd, 11.3, 15.3) 128.8 6.63 (dd, 11.2, 15.3) 128.6 6.33 (dd, 11.0, 15.3) 130.7
5 6.44 (dd, 5.6, 15.3) 146.0 6.49 (dd, 5.6, 15.3) 146.3 5.80 (dd, 7.0, 15.4) 134.1
6 4.09 (t, 5.5) 77.0 4.07 (t, 5.4) 77.0 3.93 (t, 5.5) 77.7
7 3.72, m 71.4 3.71, m 71.5 3.67, m 71.7
8 1.14 (d, 6.4) 18.7 1.17 (dd, 1.0, 6.4) 18.9 1.13 (d, 6.4) 18.6
9 5.98 (d, 11.8) 122.0 5.98 (d, 11.8) 122.0 5.90 (d, 11.5) 127.1
10 5.92, m 132.5 5.92, m 132.4 5.75, m 129.9
11 1.54 (d, 6.6) 15.7 1.54 (d, 6.6) 15.7 1.61 (dd, 1.8, 6.9) 15.4
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Compound 2 was isolated as a colorless oil with the same molecular formula of
C11H16O3 to that of 1, which was established from an HRESIMS ion peak at m/z 219.1003
[M + Na]+ (calcd. for C11H16O3Na+, 219.0992). The one-dimensionial (1D) and two-
dimensional (2D) NMR data of 2 were almost identical to those of 1. By detailed analysis of
NMR data, the planar structure of 2 was determined to be the same as that of 1 including
the geometries of the double bounds (Figure 1). The only difference between 1 and 2
was the absolute stereochemistry of the secondary 1,2-diols at C-6 and C-7 according to
their 1H NMR data in CDCl3 (δH-6 4.28 and δH-7 3.96 for 1; δH-6 4.04 and δH-7 3.72 for 2,
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Figure S23) and optical rotation values [α]25
D +76.6 (c 0.2, MeOH) for 1; [α]25

D −15 (c 0.2,
MeOH) for 2). By comparing 1H NMR data of bis-S- and -R-MTPA esters of 2, the absolute
configurations at C-6 and C-7 were assigned as 6S and 7R (Figure 3B), and the structure of
2 was determined as (2E,4E,6S,7R)-6,7-dihydroxy-2-((Z)-prop-1-en-1-yl)octa-2,4-dienal and
named talacyanol B.

Compound 3 was obtained as a colorless oil with a molecular formula of C11H18O3
based on its HRESIMS data m/z 221.1155 [M + Na]+ (calcd for 221.1148, C11H18O3Na+).
The 1H NMR spectrum of 3 was quite similar to that of 2, the only difference lies in the
chemical shift of the singlet proton H-1 (δH 9.46 in 2, δH 4.05 in 3), indicating that the
aldehyde group at C-1 in 2 was replaced by a hydroxy group in 3. Thus, the planar
structure of 3 was elucidated as shown in Figure 1 based on its 1D and 2D NMR data.

A literature search revealed that the planar structure of 3 was similar to pinophol
A, which was isolated from a plant endophytic fungus Talaromyces pinophilus by Zhao
et al. [18]. However, the absolute configurations at C-6 and C-7 of pinophol A had not been
determined yet and their relative configurations were reported as syn-1,2-diols (6R, 7R or
6S, 7S). Comparison of their optical rotation values ([α]25

D − 10 (c 0.2, MeOH) for 3 and
[α]26

D +32.6 (c 0.1, MeOH) for pinophol A) and 1H NMR data in CDCl3 of 3 and pinophol
A (δH-6 4.12 and δH-7 3.88 for 3 and δH-6 3.87 and δH-7 3.63 for pinophol A, Figure S22)
suggested that they could be a pair of diastereomers. By analyzing 1H NMR data of tri-S-
and -R-MTPA esters of 3, the absolute configurations of C-6 and C-7 were determined as 6S
and 7R (Figure 3B). Thus, the structure of 3 was determined as a new derivative of pinophol
A, (2E,4E,6S,7R)-2-((Z)-prop-1-en-1-yl)octa-2,4-diene-1,6,7-triol, and named talacyanol C.

Aliphatic aldehydes are easily reduced to the corresponding alcohols in high yield by
heterogeneous catalytic hydrogenation. To verify whether compound 3 is a true natural
product or an artifact arising from compound 2 by reduction of aldehyde during the
extraction process with ethyl acetate, we cultured the strain again and the culture broth
was extracted successively with dichloromethane and n-butanol. Compound 3 was found
in the butanol extract with a detectable concentration (Figures S31 and S32). Therefore, it
could be concluded that 3 is a true natural substance.

The structures of the known compounds were identified as ramulosin (4), and eu-
rothiocin A (5) by comparison of their spectroscopic data with those reported in the
literature [19–21].

2.2. Bioactivities

Over the past few decades, emerging evidence has shown that many marine natural
products, such as cytarabine, eribulin mesylate, brentuximab vedotin, and trabectidine
exhibit beneficial effects in the prevention and treatment of cancer [22]. Furthermore, acyclic
polyene polyols are a wide group of polyketides, and many of them display cytotoxicity
against various cancer cell lines [17,23]. Therefore, compounds 1–5 were screened for
in vitro cytotoxicity against six different cancer cell lines (stomach NUGC-3, colon HCT-15,
lung NCI-H23, breast MDA-MB-231, prostate PC-3, and renal ACHN), the most common
cancers in Korea [24]. Notably, compound 1 displayed moderate cytotoxicity against all
the cancer cell lines with GI50 values ranging from 44.4 to 91.8 µM (Table 2).

Table 2. Growth inhibition (GI50, µM) values of 1 against human tumor cell lines.

Cell Line GI50, µM ADR a

HCT-15 64.3 <0.5
NUGC-3 62.2 <0.5
NCI-H23 70.9 <0.5
ACHN 44.4 <0.5

PC-3 54.1 <0.5
MDA-MB-231 91.8 <0.5

GI50 values are the concentration corresponding to 50% growth inhibition. a ADR, adriamycin as standard.
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Compounds 1–5 were also tested for their inhibitory effects on the production of nitric
oxide (NO) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. The cells were
initially treated with a high concentration (200 µM) of each compound and LPS (200 ng/mL)
to screen their inhibitory effect on NO production. All the compounds showed weak or
strong inhibitory effects on NO production (Figure S33), and compounds 2 and 5 showed
the most potent anti-inflammatory activity. Therefore, talacyanol B (2) and eurothiocin
A (5) were selected for further studies to investigate NO production in BV-2 cells and
LPS-induced expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS) proteins by Western blot analysis. As shown in Figure 4A,B, the NO
production and expression levels of COX-2 and iNOS proteins were suppressed by both 2
and 5 in a dose-related fashion at the concentrations of 50, 100, and 200 µM.
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Figure 4. (A) The measurements of nitrite levels in the culture media were conducted using the
Griess reaction. The release of NO was measured with indomethacin as a positive control (Figure S30).
Cell viability was tested using the MTT (3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazol bromide)
assay. Results are shown as the percentage of control samples; (B) Inhibition of inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and mRNA expression by compounds 2 and
5 in lipopolysaccharide (LPS)-stimulated BV-2 cells. The data (B) is expressed as the relative signal
intensity for two independent experiments. Values are the mean ± standard error. ### p < 0.001, vs.
control group and *** p < 0.001 vs. LPS-treated group.

3. Experimental Methods
3.1. General Experimental Procedures

The 1D (1H and 13C) and 2D (COSY, HSQC, HMBC, and NOESY) NMR spectra were ac-
quired by a Bruker 600 MHz spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany).
Specific optical rotations were obtained in methanol at 25 ◦C on a Rudolph Research Ana-
lytical (Autopol III) polarimeter (Rudolph Research Analytical, Hackettstown, NJ, USA).
UV-visible spectra were acquired by a Shimadzu UV-1650PC spectrophotometer in 1 mm
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quartz cells (Shimadzu Corporation, Kyoto, Japan). IR spectra were collected on a JASCO
FT/IR-4100 spectrophotometer (JASCO Corporation, Tokyo, Japan). High-resolution ES-
IMS were recorded on a hybrid ion-trap time-of-flight mass spectrometer (Shimadzu
LC/MS-IT-TOF). HPLC was conducted using a semi-prep ODS column (YMC-Triart C18,
250 × 10 mm i.d, 5 µm) and an analytical ODS column (YMC-Triart C18, 250 × 4.6 mm i.d,
5 µm) (YMC Corporation, Kyoto, Japan). All the reagents were purchased from Sigma-
Aldrich (Merck KGaA, Darmstadt, Germany), and the organic solvents and water were
distilled prior to use.

3.2. Fungal Material and Fermentation

The fungal strain 168ST-51.1 was isolated from the seaweed Caulerpa sp. collected
in Son Tra peninsular, Da Nang, Vietnam in August 2016. The fungus was identified as
Talaromyces cyanescens Stchigel & Guarro on the basis of DNA amplification and ITS gene se-
quencing (GenBank accession number MK 072976.1). The voucher of this strain is currently
deposited in the Microbial Culture Collection, KIOST, with the name of Talaromyces sp.
168ST-51.1 under the curatorship of Hee Jae Shin.

The seed and mass cultures were performed in Bennett’s medium (1% glucose, 0.2%
tryptone, 0.1% yeast extract, 0.1% beef extract, 0.5% glycerol, sea salts 32 g/L, and agar
17 g/L for agar medium). The fungus was initially cultured on Bennett’s agar medium
in a Petri dish for 7 days. The actively grown mycelium was transferred aseptically into
a 500 mL conical flask containing 300 mL of Bennett’s broth medium and incubated on a
rotary shaker (140 rpm) at 28 ◦C for 4 days. An aliquot (0.1% v/v) from the seed culture
was inoculated into twenty 2 L flasks each containing 1 L of the medium and grown under
the same conditions as described for the seed culture for 7 days, and then harvested.

3.3. Extraction and Isolation of Metabolites

After cultivation, the culture broth was extracted with ethyl acetate (20 L × 2 times).
The organic layer was evaporated under vacuum at 37 ◦C to yield a crude extract (3.0 g).
Afterwards, the crude extract was separated into fifteen fractions (Fr. 1 to Fr. 15) by vacuum
liquid chromatography on a flash ODS column (20 cm × 4.5 cm), which was stepwise
eluted with 3 × 250 mL each of 20%, 40%, 60%, 80% MeOH in H2O, and 100% MeOH.
Fraction 4 was purified by an analytical RP-HPLC (YMC-Pack-ODS-A, 250 × 4.6 mm i.d,
5 µm) using an isocratic condition with 14% ACN in H2O at a flow rate of 1 mL/min to
afford compound 3 (3.0 mg, tR = 15 min). Fraction 5 was applied to a semi-preparative RP-
HPLC (YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm, flow rate 2.0 mL/min) using an isocratic
elution with 14% ACN in H2O to yield compounds 2 (20.0 mg, tR = 38 min) and 1 (5.0 mg,
tR = 42 min). Fraction 9 was recrystallized from methanol to give compound 4 (10.0 mg) as
yellow needles. Finally, compound 5 (4.0 mg) was purified from fraction 10 using a semi-
preparative RP-HPLC (YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm, flow rate 2.0 mL/min)
with an isocratic elution of 37% ACN in H2O for 46 min. All the purification procedure
was repeated 2 times to yield sufficient amounts of 1–5 for structure determination and
bioassays.

3.3.1. Talacyanol A (1)

Colorless oil, [α]25
D +76.6 (c 0.2, MeOH). UV (MeOH) λmax (log ε) 285 (2.86), 232 (2.38)

nm; IR (MeOH) νmax 3392 (br), 2975, 2933, 1671, 1632 cm−1; HRESIMS m/z 219.1002
[M + Na]+ (calcd for 219.0992, C11H16O3Na+); 1H NMR (CD3OD, 600 MHz) and 13C NMR
(CD3OD, 150 MHz) see Table 1.

3.3.2. Talacyanol B (2)

Colorless oil, [α]25
D −15 (c 0.2, MeOH). UV (MeOH) λmax (log ε) 285 (2.86), 232 (2.38)

nm; IR (MeOH) νmax 3392 (br), 2975, 2939, 1671, 1632 cm−1; HRESIMS m/z 219.1003
[M + Na]+ (calcd for 219.0992, C11H16O3Na+); 1H NMR (CD3OD, 600 MHz) and 13C NMR
(CD3OD, 150 MHz) see Table 1.
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3.3.3. Talacyanol C (3)

Colorless oil, [α]25
D −10 (c 0.2, MeOH). UV (MeOH) λmax (log ε) 248 (2.61), 204 (1.56)

nm; IR (MeOH) νmax 3335 (br), 2971, 2943, 1056 cm−1; HRESIMS m/z 221.1155 [M + Na]+

(calcd for 221.1148, C11H18O3Na+); 1H NMR (CD3OD, 600 MHz) and 13C NMR (CD3OD,
150 MHz) see Table 1.

3.4. MTPA Esterification of Compounds 1–3

Compound 1 (1.0 mg for each) was dissolved in anhydrous pyridine (200 µL), and then
added dimethylaminopyridine (DMAP). Afterwards, (R)-MTPA-Cl (20 µL) or (S)-MTPA-Cl
(20 µL) were introduced, and reaction mixture was stirred at ambient temperature for
30 min, and then quenched with MeOH. Each mixture ((a) 1 with 1a and (b) 1 with 1b)
was dried to dryness and purified by analytical reversed-phase HPLC to afford 1a and 1b.
(R)- and (S)-MTPA esters of compounds 2 and 3 were prepared in the same procedure as
described above for compound 1. The ∆δS-R values around the stereogenic centers of the
MTPA esters were determined by 1H, HSQC, and 1H-1H COSY NMR spectra.

3.4.1. Bis-S-MTPA Ester (1a) of Talacyanol A (1)
1H NMR (600 MHz, CD3OD) δ 9.47 (s, 1H), 7.39–7.51 (m, 10H), 6.87 (d, J = 11.1, 1H),

6.54 (dd, J = 11.7, 14.9, 1H), 6.04 (dd, J = 6.3, 15.4, 1H), 5.86 (m, 2H), 5.74 (dd, J = 2.8, 6.3,
1H), 5.36 (m, 1H), 3.46 (s, 3H), 3.45 (s, 3H), 1.40 (d, J = 5.1, 3H), 1.28 (d, J = 6.5, 3H).

3.4.2. Bis-R-MTPA Ester (1b) of Talacyanol A (1)
1H NMR (600 MHz, CD3OD) δ 9.47 (s, 1H), 7.39–7.49 (m, 10H), 7.02 (d, J = 11.2, 1H),

6.52 (dd, J = 10.9, 15.1, 1H), 6.23 (dd, J = 5.9, 15.5, 1H), 5.84 (m, 2H), 5.83 (m, 1H), 5.45 (m,
1H), 3.44 (s, 3H), 3.43 (s, 3H), 1.40 (d, J = 5.4, 3H), 1.30 (d, J = 6.6, 3H).

3.4.3. Bis-S-MTPA Ester (2a) of Talacyanol B (2)
1H NMR (600 MHz, CD3OD) δ 9.47 (s, 1H), 7.32–7.49 (m, 10H), 6.98 (d, J = 11.2, 1H),

6.51 (dd, J = 11.0, 15.4, 1H), 6.12 (dd, J = 6.9, 15.4, 1H), 5.88 (m, 2H), 5.82 (dd, J = 2.5, 5.9,
1H), 5.52 (m, 1H), 3.47 (s, 3H), 3.44 (s, 3H), 1.47 (d, J = 5.2, 3H), 1.35 (d, J = 6.6, 3H).

3.4.4. Bis-R-MTPA Ester (2b) of Talacyanol B (2)
1H NMR (600 MHz, CD3OD) δ 9.49 (s, 1H), 7.33–7.48 (m, 10H), 7.08 (d, J = 11.1, 1H),

6.73 (dd, J = 11.0, 15.4, 1H), 6.32 (dd, J = 7.0, 15.5, 1H), 5.94 (m, 2H), 5.90 (dd, J = 2.7, 6.8,
1H), 5.42 (m, 1H), 3.43 (s, 3H), 3.41 (s, 3H), 1.47 (d, J = 5.1, 3H), 1.19 (d, J = 6.6, 3H).

3.4.5. Tri-S-MTPA Ester (3a) of Talacyanol C (3)
1H NMR (600 MHz, CD3OD) 7.28–7.51 (m, 15H), 6.33 (dd, J = 10.8, 15.3, 1H), 6.08 (d,

J = 10.9, 1H), 5.77 (m, 2H), 5.65 (dd, J = 2.2, 7.6, 1H), 5.47 (dd, J = 7.58, 15.3, 1H), 5.44 (m,
1H), 4.88 (d, J = 10.3, 1H), 4.82 (d, J = 14.0, 1H), 3.52 (s, 3H), 3.44 (s, 3H), 3.44 (s, 3H), 1.48 (d,
J = 5.3, 3H), 1.31 (d, J = 6.6, 3H).

3.4.6. Tri-R-MTPA Ester (3b) of Talacyanol C (3)
1H NMR (600 MHz, CD3OD) 7.32–7.50 (m, 15H), 6.47 (m, 1H), 6.15 (d, J = 10.9, 1H),

6.04 (dd, J = 6.3, 15.4, 1H), 5.80 (m, 2H), 5.73 (m, 2H), 5.34 (m, 1H), 4.91 (d, J = 12.8, 1H), 4.80
(d, J = 12.8, 1H), 3.51 (s, 3H), 3.42 (s, 3H), 3.39 (s, 3H), 1.44 (d, J = 5.4, 3H), 1.14 (d, J = 6.5,
3H).

3.5. Cytotoxicity Test by SRB Assay and Anti-Neuroinflammatory Test

The SRB cytotoxicity assay and anti-neuroinflammatory test for compounds 1–5 were
performed as previously described [25,26].
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4. Conclusions

Chemical examination of the ethyl acetate extract of the marine-derived fungus Ta-
laromyces cyanescens 168ST-51.1 led to the isolation of three new compounds, talacyanol A–C
(1–3), together with two known compounds 4 and 5. The structures of the new compounds
1–3 were determined by the spectroscopic and modified Mosher’s methods. The known
compounds 4–5 were identified by comparing their spectroscopic data with those reported
in literature. Talacyanol A (1) expressed in vitro cytotoxicity against various cancer cell
lines. In contrast, talacyanol B (2) and eurothiocin A (5) showed anti-neuroinflammatory
activity without cytotoxicity. The results demonstrated that the absolute configurations of
the chiral centers may exert significant effects on biological activities of natural products.
To the best of our knowledge, this is the first report on the cytotoxicity of compound 1 and
the anti-neuroinflammatory effect of compounds 2 and 5.

Supplementary Materials: The following materials are available online, Figures S1–S23: HRESI-MS
data, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC, NOESY experimental spectra of compounds
1–3, Figures S24–S29: 1H NMR spectra of R- and S-MTPA esters of compounds 1–3.
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