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ABSTRACT

The tumor suppressor gene, p53, is rarely mutated
in neuroblastomas (NB) at the time of diagnosis, but
its dysfunction could result from a nonfunctional
conformation or cytoplasmic sequestration of
the wild-type p53 protein. However, p53 mutation,
when it occurs, is found in NB tumors with drug
resistance acquired over the course of chemother-
apy. As yet, no study has been devoted to the
function of the specific p53 mutants identified in NB
cells. This study includes characterization and
functional analysis of p53 expressed in eight cell
lines: three wild-type cell lines and five cell
lines harboring mutations. We identified two
transcription-inactive p53 variants truncated in
the C-terminus, one of which corresponded to the
p53B isoform recently identified in normal tissue
by Bourdon et al. [J. C. Bourdon, K. Fernandes,
F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas,
M. K. Saville and D. P. Lane (2005) Genes Dev., 19,
2122-2137]. Our results show, for the first time, that
the p53B isoform is the only p53 species to be
endogenously expressed in the human NB cell line
SK-N-AS, suggesting that the C-terminus truncated
p53 isoforms may play an important role in NB
tumor development.

INTRODUCTION

The p53 tumor suppressor gene remains the most frequently
altered gene in human tumors. Several p53 mutation

GenBank accession nos KO3199 (mRNA) and X54156 (HSP53G)

databases have been reported previously (1-3), and to date,
more than 1500 different pS3 mutants have been described
(4). Functional inactivation of p53 is usually due to gene
mutation, deletion or protein degradation. In general, the
majority of pS3 mutations in human neoplasia are missense
mutations affecting the DNA-binding domain (DBD). Unlike
other human cancers, p53 in neuroblastoma (NB) is rarely
mutated in the primary tumor at diagnosis but high levels
of wild-type p53 (wt p53) protein expression have been
found in the cytoplasm of undifferentiated tumors (5,6).
More recently, in normal unstressed cells, wt p53 protein
was found to be retained in the cytoplasm as a latent form,
in huge, p53-associated protein complexes known as ‘Parc’
(7). The steady-state concentration of p53 in normal
unstressed cells is usually very low because of the short
half-life of the wild-type (wt) protein. Overexpression of
p53 in most of the transformed cells containing a missense
mutation within the p53 gene appears to be due to the
increased stability of mutated p53 (8). In unstressed NB
cells, high wt p53 expression may reflect the embryonic
origin of NBs, in which precursor cells fail to mature (9).
pS53 mutations are unusual in human NB but, when they do
occur, are found in post-chemotherapy tumors. In this respect,
Tweddle et al. (10) described how two NB cell lines derived
from the same patient can elicit a different p53 status: wt p53
for SK-N-BE(1a) established before treatment, and mutated
pS53 for SK-N-BE(2c¢) established after relapse of the patient
under treatment with cytotoxic agents such as cyclophos-
phamide, doxorubicin, vincristine and radiotherapy. In NB
cell lines, p53 mutation has been found in multidrug-resistant
cells (11). Various types of p53 mutation have been detected
in NB cells and can lead to inactivation either by shut-down
of protein expression or production of aberrant p53 products.
Indeed, in LAN-1 cells, p53 nonsense mutation at cysteine
182 in exon 5 leads to the absence of protein (9), whereas
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in SK-N-BE(2) cells, missense mutation at codon 135
(C135F) leads to stable overexpressed protein (11). By ana-
lyzing IGR-N-91, a cell line established in our laboratory
from the bone marrow of a patient with metastatic NB after
unsuccessful Adriamycin—vincristine chemotherapy (12), we
identified another type of aberrant protein that arises from
the duplication of exons 7-8-9. This duplication spans from
amino acids 225 to 331, which represent part of the DBD
and part of the oligomerization domain (13). However, each
pS3 mutant has been described in the literature as a case
report, and so far, no comparative study has been undertaken
to link their biochemical features with functional properties.

In the present study we report two novel p53 C-terminus
mutants identified in SK-N-AS and IGR-NB8 human NB
cell lines. The biological properties of these two new variants
were analyzed in comparison with p53 isolated from six other
human NB lines: three [LAN-1, SK-N-BE(2) and IGR-N-91]
expressing mutant p53 and three (SH-SYSY, LAN-5 and
IMR-32) expressing the wt protein. This characterization
was done by using a range of functional assays: (i) the ability
of the protein to bind with p53 consensus sequence using the
functional analysis of separated allele in yeast (FASAY); (ii)
the ability of the protein to transactivate the p53-responsive
element (RE) identified either in the promoter of p21/WAFI
or in the first intron of BAX, using luciferase reporter assay;
(iii) the induction of endogenous p2//WAF1 gene expression
under stress conditions.

MATERIALS AND METHODS
Neuroblastoma cell lines, culture and drug treatments

The parental human NB SH-SYSY, SK-N-AS, IMR-32 and
SK-N-BE(2) cell lines were purchased from the European
Collection of Cell Cultures (ECACC, Wiltshire, UK). The
human IGR-NB8 cells (a gift of Prof. Gilles Vassal,
UPRES EA 3535, Institut Gustave Roussy, Villejuif) were
derived from a previously untreated localized NB (14). The
LAN-1 and LAN-5 cell lines were provided by Dr Nicole
Gross (Pediatric Oncology Research, Lausanne, Switzerland).
The human IGR-N-91 cell line was established in our labor-
atory from the bone marrow of a patient with metastatic NB
after unsuccessful adriamycin—vincristin chemotherapy (12).
LAN-1, LAN-5 and IMR-32 were grown in RPMI medium
supplemented with 2 mM L-glutamine and 10% fetal calf
serum and gentamicine 10 pg/ml. Others cell lines were
cultured in DMEM.

For activation of endogenous p53, cells were treated
with cis-platinum (Sigma) (10 pg/ml) for 24 h then lysed
for western blot analysis.

Western blot analysis

This procedure was carried out as described previously (13).
Protein lysates (50 pg) were submitted to 10% SDS-PAGE,
and then transferred onto nitrocellulose filters. After satura-
tion, the membranes were incubated with primary antibody
diluted in 0.1% phosphate-buffered saline, Tween-20 and
3% skim milk. The primary antibodies used were anti-
p53 monoclonal antibody (clone DO-7, 1/1000, DAKO),

anti-p21/WAF1 monoclonal antibody (Ab-1, 1/200, Onco-
gene Research) and anti-B-actin monoclonal antibody
(1/1000; Chemicon) as internal control. Protein bands were
detected by ECL system (Amersham).

PCR, plasmids cloning

Genomic DNA was extracted using lysis buffer containing
20 mM Tris-HCIl, pH 7.5; 04 M NaCl; 0.5% SDS;
10 mM EDTA, treated with proteinase K (200 pg/ul),
purified with phenol/chloroform, precipitated with ethanol
and dissolved in DNase free water. Total RNA were purified
using RNAble reagent (Eurobio), precipitated with
isopropanol and dissolved in RNase free water. cDNA was
obtained by reverse transcription of 1 pg of total RNA
using Superscript II™ RNase H-Reverse transcriptase
(Invitrogen) and Oligo-d(T)¢ in conditions specified by the
manufacturer. Amplification of full-length p53 coding
region from SH-SY5Y, IGR-N-91, IGR-NB8 and SK-N-
BE(2) cell lines was performed using forward primer at
position 152 and reverse primer at position 1583 (F1 and
R7, respectively, Table 1; GenBank accession no. K03199).
p53 ¢cDNA from SK-N-AS cells for cloning was obtained
from RT-PCR using FI and reverse primer i9+: 5'-
GCAAAGTCATAGAACCATTTTCAT-3' (nucleotide posi-
tion 14989, GenBank accession no. X54156) primers which
encompass from exon 1 to exon i9+ first identified by
Flaman et al. (15) included. The PCR was done in the
presence of pfu Hotstart DNA polymerase (Stratagene) for
30 cycles of 1 min at 90°C, 1 min at 65°C and 2 min 30 s
at 72°C using PTC-100 thermocycler (MJ-Research).

The p53 cDNA from SH-SYS5Y, SK-N-AS, IGR-N-91,
IGR-NB8 and SK-N-AS cells were then cloned into
pcDNA3.1/V5-His-Topo vector (Invitrogen) according to
the manufacturer’s instruction. The p53 sequence of each
cell line was investigated by sequencing of plasmids after

Table 1. Primers pairs for RT-PCR of the p53 (mRNA and gene)

Primer Primer location Sequence 5’ —3'

Fl1 Exon 1 (nt 152)* getttccacgacggtgaca

F2 Exon 8 (nt 1001)* aatctactgggacggaacagcttt
R3 Exon 8/9 (nt 1124) gitgggcagtgetcgettagt
R4 Exon 9 (nt 1154)* tetttggetggggagagga

RS Exon 9 (nt 1184)* tgaagggtgaaatattctccate
R6 Exon 10 (nt 1230)* cctcattcagcetetcggaacatet
R7 Exon 11 (nt 1583)* cccacaacaaaacaccagtgc
DBD-F Exon 5 (nt 694)* ggccatctacaagcagtcac
DBD-R Exon 5 (nt 779)* ccagaccatcgctatctgag

B C-ter-F Exon 8 (n t1060)* gecgeacagaggaagagaatc
B C-ter-R Exon9/i9+ Exon 9 aagctggtetggtectgaag
wt C-ter-F Exon 10 (nt 1141)* caacaacaccagctcctcte
wt C-ter-R Exon 10 (nt 1258) caaggcctcattcagct tc
a-F Intron 7 (nt 14367)** aatctactgggacggaacagcttt
a-R Intron 9 (nt 14981)** gcaaagtcatagaaccattttcat
b-F Intron 9 (nt 1880)** gacaatggcteetggttgta
b-R Intron 9 (nt 15624)** ggtgtatgectgtggtecta
c-F Intron 9 (nt 16836)** gtgatggeaggtgcectgtaa
c-R Exon 10 (nt 17621)** caaggcctcattcagetete
d-F Intron 9 (nt 17211)** ctggctaacatggtgaag

d-R Exon 10 (nt 17610) tcagctetcggaacatct

According to GenBank sequence accession
*#X54156 (HSP53G); F, forward sequence; R, reverse sequence.

no. *KO3199 (mRNA) and



cloning. Sequencing was performed by Genome Express
(Meylan, France).

The pDDm-TO harboring p53 dominant negative form
(p53DD) pGL3-E1bTATA and the pEIB-hWAFI firefly
luciferase reporter containing the p53-responsive element
of the p2I1/WAFI promoter were described previously
(16,17) pE1B-BAXi contains the pS3RE identified in the
intron 1 of the BAX gene [(18) and D. Munsch, personal
communication]. Oligonucleotidles TCGAGGGCAGGCCC-
GGGCTTGTCG and CTAGCGACAAGCCCGGGCCTG-
CCC were annealed and cloned into pGL3-EIbTATA
digested with Nhel and Xhol to obtain pEIB-BAXi. The
pcDNA3-ANp73a expression plasmid was a gift of Dr Daniel
Caput (SANOFI, Labeges, France).

Fluorescent in situ hybridization (FISH)

Cytogenetic preparations. Metaphase spreads from healthy
human male lymphocytes and tumor cell lines were prepared
as described previously (19). BAC probe RP11-199F11, con-
taining a 167 kb region spanning TP53 gene, was labeled by
random priming in the presence of Alexa 594-dUTP
(Molecular Probes). A commercial probe specific for chromo-
some 17 centromere, and labeled with spectrum green, was
obtained from Vysis. After over-night cohybridization of
the probes in the presence of Cot-1 DNA, the slides were
washed and DNA counterstained with DAPI. The prepara-
tions were observed with an epifluorescence microscope
and images captured with a Vysis imaging station. Between
3 and 14 metaphases spreads and 30-200 nuclei were
examined for each cell line.

Luciferase reporter assays

LAN-1 or SH-SYS5Y cells were seeded in dug)licates onto
6-well plates at a density of 2 x 10* cells per cm” and cotrans-
fected 24 h later with 0.5 pug (2.5 pug/ml) of pGL3 firefly
luciferase reporter gene plasmid under the control of
either pE1IB-hWAF1 or pEIB-BAX using lipofectamine
2000 and 1 pg of either a p53 expressing plasmid or an
empty vector. At 24 h after transfection, cells were lysed
with 200 pl/well of passive lysis buffer provided with the
‘Luciferase assay kit’ (Promega). Luciferase activity was
measured using Microlumat LB96P luminometer (EG & G
Berthold Instrument).

Functional assay in yeast

cDNA was obtained by RT of 1 ug of total RNA using
Superscript II™ RNase H-Reverse transcriptase (Invitrogen)
and random hexamers to prime the synthesis in conditions
specified by the manufacturer. p53 cDNA was amplified by
PCR and cotransformed into yeast, I1G397 Ade2 strain,
together with either pRDI-22 vector for p53-standard assay
or pFW35 and pFW34 plasmid for 5’ or 3’ split assay,
respectively, carrying the ADE2 open reading frame under
the control of a p53-responsive promoter (20). In a selective
medium lacking leucine, wt-p53 activates transcription of
ADE?2 gene that encodes enzyme—phosphoribosylimidazole
carboxylase—implicated in adenine biosynthesis. Therefore,
a colony of cells that expresses ADE2 gene is white whereas
the one composed of cells where ADE2 gene is not expressed
owing p53 mutation is red.
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Figure 1. p53 expression of different neuroblastoma cell lines. (A) Western
blot from protein total extracts (upper panel); B-actin was used as loading
control (lower panel). (B) RT-PCR using F1-R7 primers (Table 1); amplified
fragment was normalized by GAPDH.

RESULTS
P53 status in SK-N-AS and IGR-NBS cells

We first compared the migration profiles of p53 expressed in
SK-N-AS and IGR-NBS with those expressed in the other six
NB cells, SH-SY5Y, LAN-5, LAN-1, IMR-32, SK-N-BE(2)
and IGR-N-91. Western blots from 50 pg of total protein
extracts were revealed with p53 monoclonal antibody
(DO-7). A range of profiles was identified as shown
in Figure 1A. As expected, p53 extracted from the three
cell lines, SH-SYS5Y, LAN-5 and IMR-32, expressing wt
protein (13,21) migrated at the wt position. Of particular
note in these three wt p53 cell lines was an additional faint
band that migrated faster than the full-length protein. The
LAN-1 cells were found to be p53 deficient (9). The SK-N-
BE(2) cell line showed an intense band reflecting p53 stabil-
ity due to a missense mutation at codon 135 (11). As
expected, due to the previously identified duplication of
exons 7-8-9 (13), p53 protein migration was delayed in the
IGR-N-91 cells. In contrast, the p53 protein in the SK-N-
AS cell line migrated noticeably faster than the wt protein,
indicating that it was smaller in size. The p53 protein in the
IGR-NBS cell line was even smaller than that in SK-N-AS.

To analyze the coding region of each of the p53 variants,
RT-PCR was performed using p53-specific F1-R7 primers
(Table 1 and Figure 1B). The expected 1430 bp for
full-length p53 was amplified from wt p53-expressing
SH-SYS5Y, LAN-5 and IMR-32 cell lines. As SK-N-BE(2)
harbors a single point mutation at codon 135 (C135F), the
amplified fragment analyzed by electrophoresis migrated as
wt pS3 (Figure 1B). The longer RT-PCR fragment from the
mutated IGR-N-91 cell line resulted from the duplication of
exons 7-8-9, as shown in our previous data (13), which
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corresponds to extra nucleic material of 321 nt. For the LAN-
1 cells, no amplified fragment was observed in accordance
with published data, which demonstrates the extremely low
levels of p53 mRNA and the undetectable level of protein
(9). An amplified fragment of the same length as the wt pro-
tein was observed in the IGR-NBS8 cell line (Figure 1B).
Indeed, complete gene sequencing revealed a point mutation
E326STOP leading to a truncated protein at C-terminus. No
fragment, however, was amplified from SK-N-AS with
F1-R7 primers.

To further map the p53 mRNA transcribed in these cells,
series of RT-PCR tests were performed using the forward
primer, F2 (exon 8 position 1008th according to GenBank
accession no. K03199), matched with different reverse pri-
mers, R3 (at the junction of exon 8/9, nt position 1124),
R4, RS (in exon 9 at positions 1154 and 1184, respectively),
and R6 (in exon 10, at position 1230). The sequences of these
primers are given in Table 1 and the results are presented in
Figure 2A. SK-N-AS cDNA gave an amplified fragment of
the same size as SH-SYS5Y cDNA with the three primer
pairs, F2/R3, F2/R4 and F3/R5. However, in contrast to
SH-SYSY, no fragment was obtained with SK-N-AS cDNA
using the F2/R6 primer pair, which suggests the absence of
exon 10 in SK-N-AS mRNA.

A Exons[ 8 | 9 [ 10 |
2 o+« . % R6
R3 170
Forward primer F2 F2 F2 F2
Reverse primer R3 R4 R5 R6

SH AS SH AS SH AS SH AS

B
Primers specific to: wt C-ter B C-ter DBD
SH AS SH AS SH AS
bp
162 m

118 =

86 =

Figure 2. Detection of p53 mRNA abnormalities in SK-N-AS (AS) in
comparison with SH-SY5Y (SH) cells. (A) Amplification of p53 cDNA using
primers from exons 8 to 10 as indicated below each arrow; for precise
position see Table 1 and GenBank K03199: F2 (forward primer in exon 8);
R3 (reverse primer at the junction of exon 8/9); R4 (the first moiety of exon
9); RS (exon 9, 30 nt downstream R4); R6 (beginning of exon 10). Note that
no amplification was observed in SK-N-AS from exon 10 (last lane), in
contrast to SH-SYSY. (B) RT-PCR from SK-N-AS compared to SH-SY5Y
cells. Specific primers (Table 1) were used to amplify the DBD, the p53f
isoform (B) and the C-terminal domain (C-ter).

The p53 protein expressed in SK-N-AS is the pS383
isoform

An alternatively spliced form of human p53 mRNA with an
additional 133 bp exon derived from intron 9 has been
detected in normal human lymphocytes (15). This spliced
variant named ‘i9+" encodes a truncated protein of 341
amino acids including 10 new amino acids derived from the
novel exon, the p53f isoform according to Bourdon et al.
nomenclature (22). This led us to hypothesize that the shorter
protein expressed by the SK-N-AS cell line could be the p53f3
isoform. To test this hypothesis, RT-PCRs were performed
using primer sets designed to amplify the 3’ region of p53
mRNA encoding either the specific C-terminal part of the
wt protein (wt C-ter) or the specific C-terminal part of the
B isoform (B C-ter). In parallel amplification with a primer
pair amplifying the DBD was used as control. The sequences
of these oligonucleotides are given in Table 1. The results
presented in Figure 2B are consistent with the only expres-
sion of the p53B isoform in SK-N-AS as no band was
observed in lane using specific C-ter primer located in exon
10. Interestingly, RT-PCR using SH-SY5Y (SH) gave an
amplified fragment not only with the primer pair specific to
the C-ter domain of wt p53 but also with the primer pair
specific to the p53p isoform. This result, combined with the
presence of an additional faint band migrating faster than
wt p53 in denaturing polyacrylamide gel (Figure 1A),
strongly suggests that both the p53 full-length protein and
the P isoform were expressed in the SH-SY5Y cells.

The full-length SK-N-AS p53 cDNA was then amplified
with the forward primer F1 and a reverse primer located
within the novel exon 19+ (Table 1). This amplified fragment
was cloned in pcDNA3/V5-His-Topo, as described in Materi-
als and Methods. Its sequence analysis confirmed that the
truncated p53 expressed in SK-N-AS was encoded by the
19+ splice variant described previously by Flaman et al.
(15) that encodes the p53[ isoform characterized by Bourdon
et al. (22).

A series of genomic amplifications were performed to
identify a possible deletion within the intron 9 that could
account for the absence of normal size p53 in SK-N-AS
cells. The primer sequences are given in Table 1. Amplifica-
tions were performed in parallel with total DNA extracted
from SH-SYSY and SK-N-AS cells. Results are presented
in Figure 3. Normal size fragments that encompass the accep-
tor site of intron 9 were amplified with SH-SYSY as well as
with SK-N-AS DNA. On the contrary amplification frag-
ments that encompass the intron 9 donor site were obtained
only with SH-SYSY but not with SK-N-AS DNA. These
results identify a deletion of the intron 9/exon 10 junction
within the SK-N-AS p53 gene.

A yeast functional assay confirmed the absence of p53
full-length expression in SK-N-AS and IGR-NBS

It is possible to detect pS3 mutation using a simple yeast
colony color assay as described by Flaman et al. (23).
When the strain is transformed with a plasmid-encoding wt
p53, the cells express the ADE2 gene and produce white col-
onies (Figure 4A, a, b2 and cl, and Figure 4B, dish a). Cells
containing mutant p53 fail to express ADE2 and form small
red colonies (Figure 4A, b and bl, and Figure 4B, dish c).
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Figure 3. Identification of a deletion spanning the intron9/exon 10 junction of
SK-N-AS p53 gene. (A) Schematic representation of p53 gene from intron 7
to intron 10 with the position of amplified fragments; (B) PCR fragments
amplified from SH-SYSY (SH) and SK-N-AS (AS) DNA with the primer
pairs a, b, c and d. The primer sequences are given in Table 1; contl: PCR
performed in parallel without DNA.

When the p53 cDNA fragment is deleted, cells are unable to
form a colony (Figure 4A, ¢ and c2). As shown in Table 2,
FASAY was performed as a p53-standard test with full-length
¢DNA or with the split version at the 5’ and 3’ end (15). The
background of FASAY experiments is around 10%. p53 wt
expressing SH-SYSY and LAN-5, 2 wt cell lines, yielded
~92-97% of white colonies (Table 2).

One hundred percent of the colonies carrying SK-N-BE(2)
p53, which is homozygous for the C135F mutation, turned
red with the standard or 5’ split assay, whereas 94% of the
colonies turned white with the 3’ split assay since the mis-
sense mutation does not extend to the C’-terminus of the
gene (Table 2 and Figure 4B, dish c¢). No colonies were
observed with pS3-deficient LAN-1 cells, (see also Figure 4A,
¢ and ¢2). With SK-N-AS cells, the split 5" assay gave 96%
white colonies, while the p53-standard and split 3’ assay did
not produce any colonies (Table 2). This means that the 5’
terminus was intact whereas the 3’ terminus had been deleted,
as was confirmed by nucleotide sequence analysis. The IGR-
NB8 colonies, however, were red both with the p53-standard
assay and the split 3’ assay. In the IGR-N-91 cell line, where
p53 harbors two contiguous sets of exons 7-9, spanning the
DBD and oligomerization domain, it is interesting to note
that the yeast colonies were predominantly white
(Figure 4B, dish b) with the split 5" and the split 3’ assay
(96 and 87% of white colonies, respectively) This suggests
that the cells express a binding ability that is specific to
wild-type p53 rather than mutated p53 (Table 2).
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Figure 4. p53 transactivation ability using yeast-based assay (FASAY). (A)
Schematic representation of the analysis of p53 mutants using the yeast
homologous recombination expression vector pRDI-22 carrying the 5" and 3’
ends of the p53 open reading frame and the split forms, pFW35 and pFW34
(lacking p53 fragment from amino acids 66 to 210 for split 5" and 211-348 for
split 3/, respectively) transfected into YPH500 Ade2 yeast strain. This strain
repairs double-strand breaks in transfected plasmids by homologous
recombination as ‘gap repair’ (see text). (B) Photographs of yeast colonies
showing 100% wild-type p53 where all colonies are white (a), or special
mutated p53 by duplication of exons 7-9 found in IGR-N-91 cells (b), where
white and red colonies were mixed (see also Table 2), and mutated p53 such
as those in SK-N-BE(2), where all colonies are red (c).

Transcription activity of SH-SYSY, IGR-N-91,
SK-N-BE(2), SK-N-AS and IGR-NBS§
p53 variants in mammalian cells

To determine the transactivation ability of p53 variants in
mammalian cells, we used a reporter gene strategy. The
PS3RE located within either the human p2//WAF1 promoter
or the intron 1 of the mouse and human BAX gene [(18) and
D. Munsch, personnal communication) were cloned in a
luciferase reporter gene plasmid upstream of the E1B mini-
mal promoter as described in Materials and Methods. The
p53-negative LAN-1 cells were cotransfected with the p53
vectors expressing the p53 cloned from either SH-SYSY,
IGR-N-91, SK-N-BE(2), SK-N-AS or IGR-NB8 and the
luciferase reporter plasmids. Both p53RE were strongly
stimulated in cells cotransfected with wt p53 cloned from
SH-SYSY, as compared to cells cotransfected with an
empty plasmid. In contrast, none of the p53 variants was
able to transactivate the expression of luciferase driven by
either p21/WAF1 or BAX pS3RE (Figure 5).
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Table 2. Functional activity of p53 from NB cells using FASAY assays

Cell lines p53-standard assay SPLIT 5 SPLIT 3’
White (%) Red (%) Phenotypes*** White (%) Red (%) Phenotypes*** White (%) Red (%) Phenotypes®**
SHSYS5Y 87* 13%% wt 97 3wk wt 93%* T wt
LAN-5 92%* 8#k wt 93 TH* wt 95% 5% wt
IGR-N-91 81* 19%%* mut ? 96 4% wt 87* 13%%* wt?
SK-N-AS 0 0 96 4k wt 0 0
LAN-1 0 0 0 0 0 0
SK-N-BE(2) 0 100* mut 0 100* mut 94%* 6%* wt
IGR-NBS 0 100* mut 95 Sk wt 2% 98°* mut
Mean value from three independent experiments (*+6%, **+3%); ***wt and mut phenotypes: red and white colonies <10%, respectively; wt, wild-type; mut,
mutant.
A—h p21/WAF1 p53RE < S
I @
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pos neg. LAN-1 cells wi-p53 pos. SH-SY5Y cells Figure 6. Western blot showing induction of p21/WAF]1 protein by plasmid-
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Figure 5. p53 transactivation ability by luciferase test using plasmid pE1B-
hWAF1(A) and Bax (B). p53-deficient LAN-1 cells (p53-) (left panel) or SH-
SYSY (p53+) (right panel) were cotransfected with 0.5 pg of the luciferase
reporter gene containing the human p21/WAF [-p53-responsive element and
with 1 pg of the expressing vector as indicated. Cells were collected and
subject to luciferase assay, 24 h following cotransfection. The values
represent mean relative luciferase activity from three independent experi-
ments. SH-SYSY, IGR-N-91, SK-N-BE(2), SK-N-AS and IGR-NB8 were
termed as SH, N91, BE(2), AS and NBS, respectively.

To test transactivation capability at the protein level, each
variant was transfected into p53-negative LAN-1 cells and
the stimulation of endogenous p21/Wafl gene expression
was analyzed by western blotting. As shown in Figure 6, in
contrast to wt p53, none of the p53 variants was able to
induce p21 protein accumulation.

We then tested for a possible dominant negative effect of
these various mutants on wt p53-dependent transcriptional
activity. To this end, SH-SYSY cells were cotransfected
with constructs encoding the luciferase gene driven by either
the p21/Wafl or BAX p5S3RE and the constructs expressing
the various p53s cloned from IGR-NB8, SK-N-BE(2),

IGR-N-91, SK-N-AS and IGR-NB8 NB cells or p53DD,
a dominant negative mutant of wt p53 (24). The stress
induced by transfection activated the transcriptional activity
of the wt p53 expressed in SH-SYSY, leading to a p53-
dependent expression of luciferase as illustrated by the
fact that coexpression of p5S3DD led to a substantial decrease
in luciferase activity when compared to the luciferase
activity of cells cotransfected with an empty plasmid
(Figure 5). Compared to p53DD, mutants within the DBD
isolated from IGR-N-91 or SK-N-BE(2) had only a moderate
dominant negative effect on endogenous wt p53 transcrip-
tional activity. More surprisingly, the transfection of the
C-terminal truncated variant IGR-NB8 enhanced both BAX
and p21/WAFI p53RE activity. The coexpression of p33[3
cloned from SK-N-AS also enhanced BAX p53RE activity.
A similar effect has been reported already for p53f by
Bourdon et al. (22).

When combined, these results show that all the p53
variants isolated from the NB cells had lost the ability to
specifically transactivate the p53 target genes. Their effect
on the transcriptional activity of endogenous wt p53
expressed in SH-SYSY cells, however, largely depended on
the p53 domain affected by the modification.
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Figure 7. Western blot showing induction of endogenous p21/WAFI in
different neuroblastoma cell lines in response to 10 UM cisplatin treatment.
Protein p21/WAF1 induction was observed only in the three wild-type p53
NB cell lines and the protein was differentially accumulated.

All the identified p53 variants inhibited
the induction of endogenous p21/WAF1 gene
expression under stress conditions

We further examined whether the four p53 variants, SK-N-
BE(2), IGR-N-91, SK-N-AS and IGR-NBS, had loss their
ability to stimulate the endogenous expression of the p21/
WAF1 gene, the archetypical cell cycle inhibitor and the
true target of p53. To this end, cellular response to genotoxic
stress was analyzed by western blot following treatment of
the various cell lines with cisplatin, one of the most potent
antitumor agents used in neuroblastoma. Results are pre-
sented in Figure 7. None of the mutant cells, regardless of
the type of mutation, was able to induce p21/WAF1 protein
accumulation, unlike the 3 p53 wild-type cells (SH-SYSY,
IMR-32 and LAN-5).

Genomic status of TP53 region in the various cell lines

According to Knudson’s ‘two hit” model of tumor suppressor
gene functional inactivation, the mutation of one allele is sup-
posed to be associated with a deletion of the second allele. To
assess this genetic mechanism, we performed FISH experi-
ments to search for deletions of one copy of the TP53 region,
especially in cell lines with a mutated TP53 gene. For this
purpose, metaphase preparations of the studied cell lines
were cohybridized with a p53 DNA probe labeled in red
(BAC clone RPI1-199F11) as described previously (25)
and a chromosome 17-specific centromeric probe labeled in
green. The three cell lines shown previously to express a
wt p53 protein (LANS, IMR32 and SH-SYS5Y), displayed
as expected two signals with each probe, confirming the
presence of both TP53 alleles in these cells (Figure 8 and
Table 3). Conversely, IGR-N-91 and SK-N-AS cell lines dis-
played only one fluorescent signal for each probe, suggesting
a whole chromosome 17 lost, or at least losses of the 17p arm
and the centromeric region. The SK-N-BE(2) cell line has
been described as containing only one chromosome 17 and
one TP53 signal (10). In our analysis, only 10% of the cells
displayed this characteristic, whilst most of the cells had
two copies of both (Figure 8 and Table 3). p53 sequencing,
however, confirmed the previously described mutation, and
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Figure 8. Visualization of chromosome 17 copy number and p53 genes by
FISH experiments. Chromosome 17 centromere probe is green labeled and
TP53 gene probe red labeled. Only the predominant clone of each cell line is
presented and its frequency indicated.

Table 3. Genomic status of chromosome 17 centromere and TP53 gene
explored by FISH

NB cell line  Ploidy No. of chrb

17 centromere(s)

No. of % of
TP53 spots  cells

IMR32 Pseudodiploid 2 2 100
LAN-5 Pseudodiploid 2 2 100
SH-SY5Y Pseudodiploid 2 2 100
IGR-N-91 Pseudodiploid 1 1 100
SK-N-AS Pseudodiploid 1 1 95
Pseudotetraploid 2 2 5
SK-N-BE(2)  Pseudodiploid 2 2 90
Pseudodiploid 1 1 10
LAN-1 Pseudotriploid 3or4 3or4 77
Pseudotriploid 3or4 lor2 20
Pseudodiploid 2 2 3
IGR-NB8 Pseudodiploid lor2 Oorl 76
Pseudodiploid 2 2 3
Pseudotetraploid 3 1-3 11
Pseudotetraploid 4 4 10

the absence of a normal allele, suggesting that the cells
used in our study had acquired, during culture, an uniparental
disomy for the TP53-mutated chromosome 17. Finally, the
other two cell lines (LAN-1 and IGR-NBS) displayed highly
variable genetic heterogeneity from one cell to the next
(Table 3). Surprisingly, although p53 transcripts are
extremely faintly expressed in LAN-1 cell line, all cells
showed several FISH signals with the 167 kb BAC probe
used here. To understand this apparent contradiction, an
array-CGH experiment was performed on an oligo-array
Agilent, which indicated a 133 kb interstitial deletion corre-
sponding to the p53 coding region and the 97 kb upstream
region. Accordingly, the fluorescent spots observed in FISH
experiments on LAN-1 cells should be related to the hybrid-
ization of the 57 kb region downstream of p53 gene present
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Figure 9. Structure of p53 proteins in different neuroblastoma cell lines. The
three functional domains are represented: TAD, transactivation domain;
DBD, DNA-binding domain; OD, oligomerization domain. The wild-type
p53 gene in SH-SYSY, IMR-32 and LAN-5 cells contains 11 exons that
encode 393 amino acids. In SK-N-BE(2) cells, p53 is mutated at codon 135
(*), which converts cysteine to phenylalanine. In IGR-N-91 cells, a
duplication of exons 7-8-9 adds an additional 107 amino acids leading to a
total of 500. In SK-N-AS cells, a mutation due to alternate splicing
downstream of exon 9 leads to a protein of 341 amino acids whereas in IGR-
NB8 cells, the pS3 protein ends at 326 amino acids owing to the mutation
E326STOP.

in the BAC probe. IGRN-B8 cell line displayed a number of
signals of both colors ranging from 0 to 4, with 87% of cells
displaying a loss for one TP53 allele. Despite this genomic
variability, analysis of the p53 protein showed a single short-
ened form in IGR-N-B8 cell line (Figure 1). Consequently,
and as suggested for SK-N-BE(2) cell line, IGR-N-B8 cell
line should contain a variable number of copies of chromo-
some 17 with mutated p53.

DISCUSSION

The p53 gene, the ‘genome guardian’, is mutated in over 50%
of human cancers, with the most common mutations being
missense mutations (>2/3 of mutations) (26). In human neu-
roblastoma tumors, p53 mutations are rarely present at the
time of diagnosis (5,27); however, oncogenic pS3 mutations
can be found in advanced neuroblastomas that often relapse
following high-dose chemotherapy (10). In contrast, in breast
cancers, it has been reported that p53 mutations might
improve response to high-dose chemotherapy including ther-
apy with epirubicin and cyclophosphamide (28).

An investigation into the p53 genomic status and functions
of eight human NB lines revealed that all five of the mutated
cell lines had distinct genetic characteristics as is schemati-
cally represented in Figure 9: SK-N-BE(2) with a single
missense mutation in the p53 gene, encoding a highly stable
full-length protein. SK-N-AS and IGR-NB8 proteins,
although they have intact transactivation and DBDs, were
truncated at the C-terminus generating 341 and 326 amino
acids respectively; they therefore lack the tetramerization
domain that is essential for an active conformation. Very

recently, Bourdon et al. (22) reported the putative occurrence
of B and v isoforms from different tissues due to alternate
splicing that indicates the similarity to those of p73 and
p63 as identified previously by Daniel Caput and co-workers
(29). In the p53 isoforms scheme proposed by Bourdon et al.
(22), the SK-N-AS cell line that elicits p53i9 protein expres-
sion is consistent with the p53[ isoform. Genomic analysis
reveals that the only occurrence of the p53p isoform in
SK-N-AS results from a deletion spanning the intron 9/exon
10 junction. Similar to the p53f isoform in SK-N-AS, the
p53 in IGR-NBS that lacks 67 amino acids at C-terminus
was, alone, unable to induce p21/WAF1 promoter activation
except with endogenous wt-pS3 on SH-SYSY cells where
transfection with IGR-NBS significantly augmented the tran-
scriptional activation of the p21/Waf-1 promoter (Figure 5A).
Studies by other authors have reported the interaction
between the C-terminal domain and another region that
impedes the active conformation of p53, suggesting an
allosteric model for p53 activity regulation (30). Such events
have been demonstrated for the 342-stop mutant, generated
by mutagenesis, which can modulate transactivation, growth
and apoptosis (31). Moreover, Harms and Chen (32) reported
that the C-terminal basic domain inhibits induction of the
proapoptotic target gene insulin-like growth factor binding
protein 3, suggesting that IGR-NBS8 might induce this gene.
IGR-N-91 had an abnormally high molecular weight protein
due to the duplication of wild-type exons 7-8-9, thus affecting
the DBD and OD; and LAN-1, with a mutation at codon 182
(Cys—stop) concurred with an earlier report showing
extremely low levels of mRNA and undetectable protein
expression (9).

Notably, all the p53 variants, including SK-N-AS (B iso-
form) and IGR-NBS§ (C-terminal truncated p53), elicited a
total lack of p21 promoter activation. In particular, the
p53P isoform was unable to induce endogenous p21 expres-
sion in SK-N-AS (Figure 6), concurring with data obtained
from in vitro transfection experiments in H1299 cells by
Bourdon et al. (22). For the IGR-N-91 cells, although p53
was mutated and unable to transactivate the p2//WAF1 pro-
moter, the FASAY global test was not conclusive since
~80% of colonies were white and nearly 20% (see also
Table 2), though not enough, were red. Moreover, in this par-
ticular line, standard sequencing on cDNA using primers
located within each exon as used for routine tumor analysis
was unable to detect any anomalies in p53 genetic status
(data not shown). These results enlighten the limit of the con-
ventional tests to detect a transcription inactivation of p53
brought by duplication within the DBD.

Analysis of p53 genomic status was explored by FISH
experiments, in search for a potential biallelic inactivation
of p53, with a mutation of one allele and a deletion of the
second one. This situation was indeed clearly observed in
IGR-N-91 and SK-N-AS cell lines, with an unambiguous
loss of one chromosome 17p arm in all cells of both.
SK-N-BE(2), LAN-1 and IGR-NB-8 cell lines showed a more
complex genomic situation which should be relevant of
variable copy numbers of chromosome 17 bearing in most
cases (LAN-1) or in all cases [SKN-BE(2), IGR-NBS] the
mutated characteristic p53 allele. Our data therefore clearly
demonstrate that each technique has a role and a combination
of techniques is required in order to correctly define the



pS3 phenotype and genotype in tumor and particularly in
NB cells.

Our data enlighten a high frequency of the C-terminal
abnormalities (3/5 mutated) in NB cell lines. For SK-N-AS
and IGR-NBS8, a part of the oligomerization domain was
lost and IGR-N-91 gained an extra oligomerization domain.
According to FASAY assay the p53 expressed in IGR-N-91
still specifically bind DNA but not the p53 expressed
in SK-N-AS and IGR-NB8 in agreement with previous
published data obtained by electrophoretic mobility shift
assay (33).

With regards to biological relevance, different mutants
within the DBD vary in their oncogenicity. They are classi-
fied into two types depending of the location of the mutation,
mutations of class I occur in the DNA contact areas, while
class II mutations occur in areas important for the conforma-
tional stability of p53 protein (30). Although both class I and
class I mutants have loss its ability to specifically bind DNA,
class II mutations have been shown to be more oncogenic
than class I. However, to our knowledge the oncogenicity
of mutant affecting the C-terminal domain have not been
studied. The biological role of the C-terminal mutants
needs now to be thoroughly investigated in NB tumors.
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