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Extracellular vesicles (EVs) are produced by diverse eukaryotic and prokaryotic cells.
They have prominent roles in the modulation of cell-cell communication, inflammation
versus immunomodulation, carcinogenic processes, cell proliferation and differentiation,
and tissue regeneration. These acellular vesicles are more promising than cellular
methods because of the lower risk of tumor formation, autoimmune responses and
toxic effects compared with cell therapy. Moreover, the small size and lower complexity
of these vesicles compared with cells have made their production and storage easier
than cellular methods. Exosomes originated from mesenchymal stem cells has also
been introduced as therapeutic option for a number of human diseases. The current
review aims at summarization of the role of EVs in the regenerative medicine with a
focus on their therapeutic impacts in liver fibrosis, lung disorders, osteoarthritis, colitis,
myocardial injury, spinal cord injury and retinal injury.

Keywords: extracellular medicine, regenerative medicine, mesenchymal stem cells, biomarkers, expression

INTRODUCTION

Being released from diverse eukaryotic and prokaryotic cells, extracellular vesicles (EVs)
have prominent roles in the modulation of cell-cell communication, inflammation versus
immunomodulation, carcinogenic processes, cell proliferation and differentiation, and tissue
regeneration (Soleymani-Goloujeh et al., 2018). Collectively, EV include an assorted cell-secreted
assemblies enclosed by a bilayer phospholipid membrane containing various macromolecules such
as proteins, lipids, and nucleic acids (Robbins and Morelli, 2014; Fuster-Matanzo et al., 2015).
The interaction between EVs and target cells is accomplished via various routes including the
interplay between transmembrane proteins on EVs and cellular surface receptors and induction
of certain signaling pathways (Raposo and Stoorvogel, 2013). Alternatively, EVs can directly fuse
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with their target cells and release their constituents into the
cytosol after endocytosis (Raposo and Stoorvogel, 2013). Being
implicated in a wide range of pathophysiological processes, EVs
can be used as biomarkers of diverse disorders and targets for
the design of new cell-free therapeutic options (Fuster-Matanzo
et al., 2015). Microvesicles and exosomes comprise two main
categories of EVs with sizes about 100 nm−1 µm and 30–150 nm,
respectively (Doyle and Wang, 2019).

Due to the heterogeneity of EVs and their sizes, isolation,
identification and classification of EVs are challenging issues
(Ramis, 2020). Yet, ample works are being conducted to enhance
procedures for investigation of EVs. A new aqueous two-phase
system-based method has been established for highly efficient
isolation of EVs with high level of purity (Kırbas̨ O. K. et al.,
2019). Another EV immunolabeling method has been introduced
that can be incorporated into the currently used nanoparticle
tracking analysis protocols to provide particle concentration, size
scattering, and surface characteristics of EVs (Thane et al., 2019).
Moreover, a luminescence-based assay has been developed that
can obviously discriminate between EV uptake and EV binding to
the surface of target cells (Toribio et al., 2019). Lastly, generation
of an inducible CD9-GFP mouse has provided a method for EV
labeling in a cell-type specific way and simultaneous analysis of
EVs in vivo (Neckles et al., 2019). It is worth mentioning that the
method used for isolation of EVs has clear impact on the integrity
and purity of EVs.

Several studies have emphasized on the role of EVs in
tissue engineering and regenerative medicine with the aim of
reestablishment of an injured or abnormal-working tissue (De
Jong et al., 2014). The current review aims at summarization
of the role of EVs in the regenerative medicine with a focus
on their therapeutic impacts in liver fibrosis, lung disorders,
osteoarthritis, colitis, myocardial injury, spinal cord injury
and retinal injury.

LIVER FIBROSIS

Mesenchymal stem cells (MSCs) has been introduced as
therapeutic option for liver disease based on their ability
to differentiate into hepatic cells and their aptitude in the
reduction of inflammatory responses through secretion of
certain anti-inflammatory cytokines (Lou et al., 2017a). MSC-
derived exosomes are superior to MSCs regarding lower
probability induction of tumors, rejection and toxicity (Lou
et al., 2017a). Expression of miR-122 has been decreased in
transactivated hepatic stellate cells (HSCs). Exosomes originated
from adipose tissue-derived MSCs have been displayed to up-
regulate miR-122. Up-regulation of miR-122 has suppressed
the proliferation of LX2 cells through targeting P4HA1 gene.
This miRNA has been shown to reduce collagen maturation
and extracellular matrix synthesis (Li J. et al., 2013). MSC-
derived substances might also be used in the treatment of
fulminant hepatic failure (FHF). In a rat model of acute
hepatic injury, systemic administration of MSC-conditioned
medium has enhanced survival of animals, prevented the
production of hepatic damage markers, decreased apoptosis rate

of hepatic cells and increased the quantities of proliferating
hepatic cells. Taken together, MSC-conditioned medium has
direct anti-apoptotic and pro-mitotic impacts on hepatic cells
and is a possible method for the management of FHF (Van
Poll et al., 2008). Besides, MSC-conditioned medium (CM)
has been revealed to influence apoptotic processes in cultured
mouse primary hepatic cells following induction of hepatic
injury using carbon tetrachloride (CCl4). In this study, bone
marrow MSCs (BM-MSCs) have been used for generation
of CM. Authors have demonstrated up-regulation of IL-6 in
the CCl4-CM treated hepatocytes on the first day of culture.
Moreover, levels of fibroblast-like-protein (FGL1) have been
increased after 48 h, while annexin V positive hepatocytes
have been decreased at day 3 post plating. These results have
indicated the impact of this CM in attenuation of CCl4-induced
apoptosis in liver cells via induction of FGL1 (Xagorari et al.,
2013). Another study has assessed the impact of MSCs on
the phenotype and activity of natural killer T (NKT) cells in
a mouse model of hepatic injury induced by concanavalin A
and α-galactosylceramide. In vitro culture of liver NKT cells
with MSCs has resulted in production of lower quantities
of TNF-α, IFN-γ and IL-4 proinflammatory cytokines while
over-production of the anti-inflammatory cytokine IL-10 upon
stimulation with α-galactosylceramide. MSCs have also deceased
levels of apoptosis-inducing ligands on hepatic NKT cells
and diminished levels of pro-apoptotic genes in the hepatic
tissue. Notably, MSCs have decreased the cytotoxic effects
of hepatic NKT cells against hepatocytes. These effects have
been shown to be mediated by indoleamine 2,3-dioxygenase
(IDO) and inducible nitric oxide synthase (iNOS). Moreover,
human MSCs have also been shown to reduce release of
proinflammatory cytokines in α-galactosylceramide-stimulated
human peripheral blood mononuclear cells via a similar
route and decrease their cytotoxic effects against hepatic cells
(Gazdic et al., 2018). In addition, transplantation of human
umbilical cord-MSCs (UC-MSCs) into acutely damaged and
fibrotic liver have restored hepatic function and ameliorated
liver fibrosis. Exosomes originated from these cells have
decreased the surface fibrous capsules, lessened inflammatory
responses in the hepatic tissue and collagen deposition in
CCl4-associated fibrotic liver. Levels of collagen type I and III,
TGF-β1 and phosphorylated Smad2 have also been decreased
(Li T. et al., 2013). Table 1 reviews the results studies which
reported the role of extracellular vesicles in the treatment of
liver disorders.

LUNG DISORDERS

Exosomes originated from endothelial progenitor cells (EPCs)
have been shown to preclude sepsis-associated endothelial
dysfunction and lung damage partly because of the presence
of miR-126 in these vesicles (Zhou et al., 2018). Moreover,
intratracheal injection of EPC-derived exosomes has been
shown to ameliorate lung damage following lipopolysaccharide-
induced acute lung injury. This type of treatment has also
decreased cell quantities, protein amounts, and cytokine levels
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TABLE 1 | Summary of studies which reported the role of extracellular vesicles in the treatment of liver disorders.

Cell
origin

Type of
secreted
vesicle

Disease Target cells or
tissues

Molecular mechanism Biological effect and
therapeutic applications

References

CP-
MSCs

Exosome liver fibrosis Hepatocytes microRNA-125b Increase liver Regeneration by
inhibition of hedgehog (Hh)
signal

Hyun et al., 2015

βMSCs Exosome CLP Hepatocytes miR-146a Diminish liver damage and
decrease mortality

Song et al., 2017

BM-
MSCs

Conditioned
medium

Acute liver
failure

Th1 and Th17 cells IL-10; CXCR3 and CCR5 Decrease invasion in the injured
liver

Van Poll et al., 2008

HA-
MSCs

EVs Acute liver
failure

Hepatocytes lncRNA H19 Increase hepatocytes
proliferation and decrease
mortality

Jin et al., 2018

HA-
MSCs

Exosome Acute liver
failure

Macrophages miR-17 Suppress the activation of
NLRP3 inflammatory bodies

Liu et al., 2018

UC-
MSCs

Exosome Liver fibrosis Hepatic cells TGF-β/Smad2 Decrease collagen production Li T. et al., 2013

hUCMSCs Exosome Acute liver
failure

Hepatocytes miR-299-3p Decrease inflammation through
suppression of NLRP3-related
pathways

Zhang et al., 2020

MSC Exosome HBV Macrophage HBV-miR-3/SOCS5/STAT1 Macrophage M1 polarization
and IL-6 secretion

Zhao X. et al., 2020

MSC Exosome HBV Macrophage HBV-infected hepatocyte
exosomes/MyD88, TICAM-1,
and MAVS

Enhance immune response in
the host

Kouwaki et al.,
2016

BM-
MSCs

Conditioned
medium/
Exosome

Acute liver
failure

Hepatocytes IDO-1/KYN; HGF; FLP1;
IL-6/gp130; Bcl-xL; Cyclin D1

Increase proliferation and
suppress apoptosis

Xagorari et al.,
2013; Gazdic et al.,
2018; Milosavljevic
et al., 2018

hUCMSCs Exosome Liver failure Hepatocytes GPX1 Decrease oxidative stress and
apoptosis

Yan et al., 2017

BM-
MSCs

Exosome Autoimmune
hepatitis

Hepatocytes miR-223 ALT and AST levels were
diminished and apoptosis was
inhibited.

Chen et al., 2018

BM-
MSCs

Conditioned
medium

Acute liver
failure

Natural killer T cells IDO-1/KYN Decrease inflammatory
Cytokines secretion and
decrease cytotoxicity

Xagorari et al.,
2013; Gazdic et al.,
2018; Milosavljevic
et al., 2018

MSC Exosome NAFLD Macrophage miR122-5p/lysosome M1 polarization Zhao Z. et al., 2020

MSC Exosome Hepatocellular
carcinoma

Macrophage lncRNA TUC339/Toll-like
receptor signaling and
FcgR-mediated phagocytosis

Decrease in pro-inflammatory
cytokine secretion and enhance
the phagocytosis

Li X. et al., 2018

MSC Exosome Hepatocellular
carcinoma

Macrophage Exo-con/STAT3 Enhance cytokine secretion in
macrophages

Cheng et al., 2017

BM-
MSCs

Exosome Acute liver
failure/liver
fibrosis

Leukocyte IDO-1/KYN; TGF-; IL-10 Suppressed activation of the
inflammasome

Lou et al., 2017a;
Milosavljevic et al.,
2017

MSC Exosome Alcoholic liver
disease

Macrophage miR-27A/CD206 on monocytes M2 polarization Saha et al., 2016

MSC Exosome Alcoholic liver
disease

Macrophage CD40L/Caspase-3 M1 polarization Eguchi et al., 2016

MSC Exosome Alcoholic liver
disease

Monocytes miR-122/HO-1 Increase sensitivity of
monocytes to LPS

Fairclough et al.,
2014

MSC Exosome Alcoholic liver
disease

Kupffer cells Mitochondrial double-stranded
RNA/TLR3 in Kupffer cells

Increase in IL-1b and IL–17A
levels

Lee et al., 2020

MSC Exosome NAFLD Macrophage Hepatocyte-derived
EV/DR5/Caspase/ROCK1

Enhance macrophage
pro-inflammatory

Hirsova et al., 2016

(Continued)
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TABLE 1 | Continued

Cell
origin

Type of
secreted
vesicle

Disease Target cells or
tissues

Molecular mechanism Biological effect and
therapeutic applications

References

MSC Exosome NAFLD Monocytes Lipotoxic EVs/ITGb1 Increase monocyte adhesion
and inflammatory response

Gallina et al., 2019

MSC Exosome Hepatocellular
carcinoma

Macrophage miR-23a-3p/PTEN/AKT Inhibition of T-cell function Li T. et al., 2013

MSC Exosome Hepatocellular
carcinoma

Hepatocytes miR-142-3p/RAC1 supress hepatocellular
carcinoma cell migration and
invasion

Zhang et al., 2014

UC-
MSCs

EVs Hepatitis Liver cells miR-let-7f, miR-145, miR-199a,
miR-221

Protect liver cells against HCV Qian et al., 2016

BM-
MSCs

Exosome Liver injury – Cationized pullulan Anti-inflammatory effect Tamura et al., 2017

MenSCs Exosome Fulminant liver
failure

Hepatocytes ICAM-1, osteoprotegerin,
angiogenin-2,

Decrease mortality and inhibits
apoptosis

Yang et al., 2017a

HA-
MSCs

Exosome liver fibrosis Hepatocytes miR-122 Decrease collagen deposition Lou et al., 2017b

MSC Exosome HCV Macrophage Anti-HCV
miRNA-29/TLR3-activated
macrophages

Decrease HCV replication Zhou et al., 2016

MSC Exosome HCV Monocytes Exosome-packaged
HCV/TLR7/8

Differentiation of monocytes
into macrophages

Saha et al., 2017

MSC Exosome Alcoholic liver
disease

Macrophage miR-155/Hsp90 Enhance in inflammatory
macrophages

Babuta et al., 2019

MSC Exosome NAFLD Macrophage mi R-192-5p/Rictor/Akt/FoxO1 M1 polarization Liu et al., 2020

BM-MSCs, bone marrow mesenchymal stem cells; UC-MSCs, umbilical cord mesenchymal stem cells; KYN, Kynurenine; CCR5, C-C chemokine receptor type 5; TGF-β,
transforming growth factor beta; IDO-1, indoleamine 2,3 dioxygenase-1; HA-MSC, human adipose-derived mesenchymal stem cells; MenSC-Exos, human menstrual
blood stem cell-derived exosomes; hUCMSC-Exos, Human umbilical cord mesenchymal stem cell-derived exosomes; CP-MSC, chorionic plate-derived mesenchymal
stem cells; βMSC, MSC pre-treated with IL-1β; CLP, Puncture induced sepsis; NAFLD, Nonalcoholic fatty liver disease.

in the bronchoalveolar lavage fluid, representing a decrease
in permeability and inflammatory responses possibly through
a miR-126-dependent mechanism. Similarly, up-regulation of
miR-126-3p in human small airway epithelial cells has been
shown to affect expression of PIK3R2, miRNA-126-5p has
been shown to suppress expression of HMGB1 and VEGFα

which are involved in the regulation of inflammatory responses
and permeability, respectively. Notably, both miRNAs enhance
the levels of tight junction proteins proposing a possible
mechanism through which miR-126 alleviates LPS-induced lung
damage (Zhou et al., 2019). Another study has demonstrated
the efficacy of CM or EVs originated from BM-MSCs in
amelioration of inflammation in an animal model of mixed
Th2/Th17, neutrophil-associated allergic airway inflammation.
Systemic injection of both CM and EVs isolated from
human and murine MSCs, at the commencement of antigen
challenge in formerly sensitized animal models has considerably
amended the airway hyperreactivity, inflammatory reactions
in lung, and the antigen-specific CD4 T-cell Th2 and Th17
phenotype (Cruz et al., 2015). Adipose tissue-derived MSCs
and EVs have been shown to act in a different way on
static lung elastance, regulatory T cells and CD3+CD4+
T cells of bronchoalveolar lavage fluid, and production of
proinflammatory cytokines. Yet, their effects on reduction
of eosinophils in lung tissue, content of collagen fibers in
airways and lung parenchyma, production of TGF-β in lung
tissue, and thymic CD3+CD4+ T cells have been similar

(de Castro et al., 2017). Supplementary Table 1 gives a summary
of studies which reported the role of EVs in the treatment
of lung disorders.

OSTEOARTHRITIS

Mao et al. have demonstrated elevated exosomal levels of miR-
92a-3p in the chondrogenic exosomes of MSCs despite its low
levels in the osteoarthritis chondrocyte-originated exosomes.
Notably, MSC-miR-92a-3p exosomes have stimulated cartilage
proliferation and increased expressions of matrix genes in
an MSC model of chondrogenesis and in primary human
chondrocytes, respectively. miR-92a-3p has been shown to
suppress expression of WNT5A in both models. Moreover, MSC-
miR-92a-3p exosomes have inhibited cartilage destruction in the
mouse model of osteoarthritis (Mao et al., 2018). Zhu et al.
have shown the effects of exosomes originated from synovial
membrane MSCs as well as exosomes of MSCs derived from
iPSCs in the attenuation of osteoarthritis in an animal model
of this disorder. Yet, the latter exosomes have had a greater
therapeutic impact. Both types of exosomes have also enhanced
chondrocyte migration and proliferation with those secreted
by MSCs derived from iPSCs being superior to the other
(Zhu et al., 2017). Supplementary Table 2 gives a summary
of studies which reported the role of EVs in the treatment
of osteoarthritis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 July 2021 | Volume 9 | Article 653296

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653296 July 5, 2021 Time: 13:40 # 5

Ghafouri-Fard et al. Extracellular Vesicles and Regenerative Medicine

COLITIS

Microvesicles containing miR-200b have been shown to amend
the abnormal morphology of TGF-β1-treated intestinal epithelial
cells and recover the 2,4,6-trinitrobenzene sulfonic acid-induced
fibrosis in the colon possibly through inhibition of epithelial-
mesenchymal transition (EMT) and mitigation of fibrosis. These
effects have been accompanied by over-expression of E-Cad,
and down-regulation of vimentin, α-SMA, ZBE1, and ZEB2
(Yang et al., 2017b). Mao et al. have appraised the impact of
human UC-MSCs-derived exosomes in an animal model of
dextran sulfate sodium- induced inflammatory bowel disease
(IBD). These exosomes have been shown to relieve IBD course
through enhancing IL-10 level while decreasing TNF-α, IL-1β, IL-
6, iNOS, and IL-7 levels. Besides, treatment with these exosomes
has led to reduction of macrophage infiltration into the colon
(Mao et al., 2017). BM-MSC-derived EVs have also had beneficial
effects in an animal model of 2,4,6-trinitrobenzene sulfonic acid-
induced colitis when injected intravenously. These effects are
possibly mediated through down-regulation of NF-κBp65, TNF-
α, iNOS, and COX-2 in damaged colon. Moreover, these vesicles
have remarkably decreased IL-1β and increased IL-10 levels. In
addition, BM-MSC-derived EVs have been shown to modulate
the anti-oxidant/oxidant equilibrium, and moderate apoptotic

pathways (Yang et al., 2015). Supplementary Table 3 gives a
summary of studies which reported the role of EVs in the
treatment of colitis.

MYOCARDIAL INJURY

Mesenchymal stem cell-derived exosomes have been shown
reduce the size of infarct in a mice model of myocardial
ischemia/reperfusion injury thus being implicated in the tissue
repair (Lai et al., 2010). MSCs have also been demonstrated
to suppress myocardial cell apoptosis and enhance regenerative
process in the endothelial cell microvasculature through
production of exosomes. SDF1 has been identified as the effective
exosome ingredient which has protective effects on cardiac
function and suppresses myocardial injury (Gong et al., 2019).
Akt-containing exosomes have improved cardiac function in
an animal model of acute myocardial infarction. These vesicles
could accelerate proliferation and migration of endothelial cells
and construction of tube-like configurations and blood vessels
in vitro and in vivo, respectively. These effects have been
mediated through up-regulation of PDGF-D (Ma et al., 2017).
Supplementary Table 4 provides a summary of studies which
reported the role of EVs in the treatment of cardiac disorders.

FIGURE 1 | Role of MSC-derived extracellular vesicles in the regeneration of different tissues.
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SPINAL CORD INJURY

Bone marrow-MSC-derived EVs have been reported to decrease
brain cell death, increased survival of neurons and improved
regenerative processes and motor function. In addition, these
vesicles has attenuated blood-spinal cord barrier and reduced
pericyte coverage in the animal models of spinal cord injury.
Exosomes have been shown to decrease pericyte migration
through inhibition of NF-κB p65 signaling and reduction
of the permeability of the blood-spinal cord barrier (Lu
et al., 2019). miR-133b has been identified as an important
ingredient of MSC-derived exosomes. Administration of miR-
133b-containing exosomes has enhanced the recovery of
hindlimb function in an animal model of spinal cord injury.
Moreover, these exosomes have decreased lesion size, protected
neurons, and stimulated regenerative processes of axons RhoA
has been identified as a direct target of miR-133b. miR-133b-
containing exosomes could activate neuron survival pathways
such as ERK1/2, STAT3, and CREB (Li D. et al., 2018).
Systemic injection of MSCs-derived exosomes has also been
shown to reduce lesion dimension and enhance functional
recovery after induction of spinal cord injury in animal
models. These exosomes have also decreased cell apoptosis
and inflammatory responses in the damaged spinal cord
as evidenced by reduction of expressions of pro-apoptotic
protein and TNF-α and IL-1β proinflammatory cytokines while
increased levels of BCL2 and IL-10. MSCs-derived exosomes
have also increased angiogenic processes (Huang et al., 2017).
Supplementary Table 5 has shown summary of studies which
reported the role of extracellular vesicles in the treatment of
spinal cord injury.

OTHER DISORDERS

The beneficial effects of EVs in the treatment of several
other disorders such as renal fibrosis, stroke, neurodegenerative
disorders and retinal injury have been assessed in independent
studies. For instance, experiments in an animal model of
middle cerebral artery occlusion have shown the impact of
MSCs in enhancement of miR-133b expression in the ipsilateral
hemisphere. In vitro, expression of this miRNA has been
increased in MSCs and in MSC-derived exosomes after exposure
to ipsilateral ischemic tissue extracts. Expression of miR-133b has
also been augmented in primary cultured neurons and astrocytes
exposed with the exosome-enriched materials produced by
these MSCs. The results of this study indicates communication
between MSCs and brain parenchymal cells and the impact
of such interplay on regulation of neurite outgrowth through
exosome-mediated transfer of miR-133b to neural cells (Xin
et al., 2012). The beneficial effects of BM-MSC-derived EVs
have also been assessed in Alzheimer’s disease. Cui et al. have
shown improvement of some neurological abnormalities in
an animal model of this disorder following administration of
MSC-derived exosomes. Administration of normoxic MSCs-
derived exosomes has amended cognition and memory deficits,
decreased plaque deposition and brain Aβ amounts. These

effects are associated with down-regulation of TNF-α and IL-1β

and up-regulation of IL-4 and IL-10. Exosomes from hypoxia-
preconditioned MSCs have exerted superior effects in learning
and memory abilities and plaque deposition and Aβ amounts
(Cui et al., 2018). Another experiment in an animal model of
glaucoma induced by chronic ocular hypertension has shown
neuroprotective effect of BM-MSC-derived EVs and reduction
of the quantity of degenerating axons in the optic nerve
(Mead et al., 2018). In addition, BM-MSCs have been shown
to extend the survival of allogenic renal transplant in animal
models. Mechanistically, these cells increase miR-146a levels
in dendritic cells of the treated animals. Similarly, BM-MSC-
derived microvesicles enhance miR-146a levels in both immature
and mature dendritic cells in vitro, while decreasing IL-12
levels in mature dendritic cells. Therefore, BM-MSCs-originated
microvesicles enhance outcome of allogenic renal transplantation
via suppression of dendritic cell maturity by miR-146a (Wu
et al., 2017). Supplementary Table 6 summarizes the results
of studies which reported the role of EVs in the treatment of
various disorders.

DISCUSSION

Extracellular vesicles are beneficial tools of delivery of
biomolecules in the field of regenerative medicine. These
acellular vesicles are more promising than cellular methods
because of the lower risk of tumor formation, autoimmune
responses and toxic effects compared with cell therapy (Katsuda
et al., 2013a). Moreover, the small size and lower complexity of
these vesicles compared with cells have make their production
and storage easier than cellular methods (Katsuda et al., 2013a).

Mesenchymal stem cells have been suggested as the most
favorable source for cell-based therapy due to their multi-lineage
differentiation capacity and immuno-modulatory features
(Harrell et al., 2019). As MSCs have therapeutic application in
the prevention of parenchymal cell defects and enhancement of
tissue regeneration in animal models of myocardial injury, renal
failure, stroke and other disorders, the effects of MSC-derived
EVs in the treatment of these disorders have been assessed
reporting promising results. Figure 1 illustrates role of these
particles in regeneration of different tissues.

Proliferation, survival, apoptosis and senescence of MSCs
might be affected by EVs. Endothelial cell-derived exosomes have
been found to induce angiogenesis through suppression of cell
senescence. Moreover, transfer of miR-214 by these vesicles has
decreased expression of ATM gene in recipient cells, reducing
their senescence (van Balkom et al., 2013). Further evidence for
modulation of apoptosis by EVs has come from studies that
revealed the presence of anti-apoptotic miRNAs in exosomes
originated from human cardiac progenitor cells as well as bone
marrow MSCs (Reis et al., 2012; Barile et al., 2014).

Conditioned medium or exosomes originated from MSCS
can prevent liver injury through different mechanisms such
as modulation of immune responses, induction of immune
tolerance via affecting IDO and iNOS levels and changing
expression of a number of miRNAs. In animal models of acute
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lung injury, administration of EPC-derived EVs has ameliorated
tissue damage particularly through their cargo miR-126. Besides,
a growing experience demonstrates beneficial effects MSC-
based cell therapies in animal models of asthma suggesting
a novel strategy for treatment of severe refractory asthma
(Cruz et al., 2015).

The underlying mechanism of beneficial effects of MSC-
derived EVs in the regeneration of tissues and inhibition of
tissue damage has been verified in a number of studies through
assessment of the cargo of EVs. However, the synergic effects of
EV ingredients should not be ignored as these acellular particles
contain several agents which might affect cellular processes
via different routes. Moreover, EVs have several target cells
in the microenvironment; therefore can affect the function
of various cells such as endothelial cells, epithelial cells and
different immune cells. The cell-specific functions of EVs should
be also assessed in order to design the most appropriate
therapeutic modalities.

The long half-life of exosomes and their ability in penetrating
cell membranes and targeting specific kinds of cells have
potentiated these vesicles as candidates for therapeutic
applications. Moreover, the fact that exosomes are not perceived
by immune system as foreign bodies makes them more
appropriate for the these applications (Lai et al., 2013).

The efficacy of EVs originated from adipose tissue-MSCs
in the amelioration of clinical and pathological features in
animal models of disorders has indicated the vast source of
finding MSCs and their related biomaterials, thus improving the
applicability of these modalities in several settings. Exosomes
secreted by iMSC might also have appropriate therapeutic impact
in certain conditions due to their inexhaustible potential. Besides,
microvesicles can be used for transferring certain cargo from
genetically modified stem cells to target cells. Due to stability
of exosomes in the circulation, systemic administration of these

vesicles is an efficient method for transferring their cargo
to target cells.

A challenge in the field of application of MSCs in the
regenerative medicine has arisen from the observed different
effects of some MSC-derived EVs and MSCs on molecular targets,
biomolecules and tissue construction which necessitate precise
assessment of the pathways targeted by each modality.

Taken together, EVs have emerged as potential vehicles
for amelioration of damaged tissues and improvement of
tissue organization. However, the molecular mechanisms of
EVs-induced changes in tissues should be appraised further.
Moreover, the majority of studies have been conducted in
experimental models. Therefore, applicability of these techniques
in medical practice must be more comprehensively assessed.
Besides, understanding the cargo trafficking pathways of EVs is
necessary to control the cargo of EVs and avoid unspecific effects.
Lack of knowledge in these fields has limited application of EVs
in treatment of human disorders. Finally, lack of segregation of
the therapeutic effects of “cells” versus “cell-derived EVs” is a
limitation of a number of studies in this field.
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