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Abstract: Cystic Fibrosis (CF) is a chronic autosomal recessive disease caused by defects in the
cystic fibrosis transmembrane conductance regulator gene (CFTR). Cystic Fibrosis affects multiple
organs but progressive remodeling of the airways, mucus accumulation, and chronic inflammation in
the lung, result in lung disease as the major cause of morbidity and mortality. While advances in
management of CF symptoms have increased the life expectancy of this devastating disease, and there
is tremendous excitement about the potential of new agents targeting the CFTR molecule itself, there is
still no curative treatment. With the recent advances in the identification of endogenous airway
progenitor cells and in directed differentiation of pluripotent cell sources, cell-based therapeutic
approaches for CF have become a plausible treatment method with the potential to ultimately cure
the disease. In this review, we highlight the current state of cell therapy in the CF field focusing
on the relevant autologous and allogeneic cell populations under investigation and the challenges
associated with their use. In addition, we present advances in induced pluripotent stem (iPS) cell
approaches and emerging new genetic engineering methods, which have the capacity to overcome
the current limitations hindering cell therapy approaches.

Keywords: cystic fibrosis; cell therapy; lung; airway; autologous; allogeneic; induced pluripotent
stem cells; mesenchymal stromal cells

1. Introduction

Lung diseases are major challenges to the health care sector, and the second leading cause of
death in our society. For patients with end-stage lung disease, direct costs are high [1] and lung
transplantation has become both a cost-effective treatment approach [2] and often the only life-saving
option, despite associated risks of mortality and morbidity due to graft rejection and infection. Cystic
Fibrosis (CF), caused by mutations in the gene encoding CF transmembrane conductance regulator
(CFTR), is the most common life-limiting, autosomal recessive monogenic disease in Caucasian
populations [3]. While the loss of CFTR function affects multiple organs including the lungs, pancreas,
liver, and intestine, progressive lung disease and respiratory failure are the major cause of morbidity
and mortality for most patients [4]. Recent advances in pharmacological agents such as CFTR correctors
and potentiators (reviewed in Gentzsch et al. (2018) and Burgener et al. (2018)) [5,6] and other medical
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advancements, including lung transplantation, have extended the mean survival of CF patients.
However, patients are still faced with reduced quality of life, severe pulmonary complications, and the
high costs associated with the lifelong intake of drugs. These limitations and the difficulties of the
transplant option continue to drive the search for a more fundamental “cure”.

The most important problem in CF is the defective function of CFTR protein in epithelial cells of
the smallest airways. Rather than fixing CFTR in the airway cells, cell replacement therapy would
replace them. Mechanistically, the approach could reduce disease impact either via replacement of the
defective chloride transport, seen with mutation of the CFTR gene, or lessen the impact of secondary
mediators of inflammation. Intact but genetically defective epithelium in the CF airway would be
selectively targeted for removal, allowing replacement with progenitor cells with corrected CFTR
(Figure 1). This strategy is analogous to hematopoietic stem cell transplantation following cytotoxic
chemotherapy, to create “space” in the bone marrow niche. The lung is an ideal organ system for
cell-therapy approaches, since minimally invasive access by bronchoscopy, allows us to deliver cells
and monitor their persistence directly and potentially their efficacy. Encouragingly, Johnson et al. [7]
and others [8] showed that correction of CFTR in only a fraction of cells may be sufficient to restore
electrophysiological function and permanently improve clinical outcome. Thus, the concept of “cell
replacement therapy” for CF continues to be a scientifically valid and clinically relevant goal.
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which defective airway epithelium (1) is ablated via injury to the airways thereby creating a niche for
engraftment (2). Corrected cells are then delivered into the airways, localize and engraft in the exposed
niche (3) and restore functional epithelium (4). Figure created with BioRender.com.

In this review, we will outline the current state of cell-based therapeutic approaches in the CF field.
We will first review the existing pre-clinical animal models of CF and their utility in cell therapy. We will
highlight the different cell sources used as vectors in these models and the challenges associated with
their use. We will then discuss emerging new ‘designer cells’ from pluripotent sources, molecularly
engineered to address some of the current limitations.
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2. Etiology and Pathophysiology of CF

Cystic Fibrosis is an autosomal recessive disease caused by mutations in the CFTR gene involved
in chloride and bicarbonate transport. CF affects multiple organs such as intestine, pancreas, liver and
gallbladder but lung disease is the major cause of morbidity and mortality as a result of mucus
accumulation, chronic inflammation, and persistent bacterial infection [9–11]. Although CF is caused
by mutations in a single gene, over 2000 genetic variants have been identified [12]. Those mutations
are classified into six groups according to the synthesis, trafficking, and function of CFTR which
include (1) no synthesis, (2) defective processing, (3) defective gating, (4) low conductance, (5) low
synthesis, and (6) increased turnover. The most common mutation, a deletion of phenylalanine 508
(∆F508), accounts for approximately 85% of CF cases and can be classified in multiple groups adding
to the complexity. Moreover, patients with the same genetic variation may exhibit different clinical
phenotypes attributed to environmental factors and modifier genes [13].

With respect to the epithelium, progressive remodeling of the airways ultimately results in
structural damage and impaired lung function and it is unclear whether these changes are related
to and initiated by infection/inflammation or are a result of CFTR dysfunction [14,15]. Hyperplasia
of goblet and basal cells, squamous metaplasia, increased epithelial height, cell shedding, loss of
ciliated epithelial cells, and a disorganization of tight junctions and compound cilia have been reported.
In addition, extensive structural changes of the small airway epithelia have also been observed,
including epithelial shedding and altered barrier integrity (reviewed in De Rose (2018)) [16].

It is also not clear which CFTR-expressing cells are responsible for CF disease thus making targeted
therapeutic approaches challenging. Some studies have suggested that CFTR-dependent submucosal
gland secretions have an important role in airway innate immunity [17,18]. More recently, rare FoxI1+

pulmonary ionocytes which are rich in CFTR and account for less than 1% of epithelial cells have
been described [19,20]. Ionocytes are believed to have an important role in fluid regulation of airway
surfaces and appear to be replenished by basal cells. For significant advancements in cell-based
therapies for CF, a better understanding of the most important cell populations to target and ways to
remove them will be needed.

3. Animal Models of CF

Animal models are an essential tool to study the pathophysiology of CF and for the development
of treatment methodologies. Following cloning of the CF gene in 1989, the first animal model was
introduced in mice 3 years later [21,22]. These CFTR-deficient mice quickly developed lethal intestinal
obstruction and needed to be fed a liquid diet. To facilitate husbandry and improve survival for lung
studies, a gut-corrected model was introduced 2 years later [23]. Despite showing some abnormalities
in the lung following bacterial challenge, CFTR-deficient mice did not recapitulate the characteristic
lung pathophysiology observed in human patients. This was thought to be the result of a redundant
chloride transport channel in murine lungs. Since then, multiple animal models, including conditional
CFTR knockout models, have been developed in mice, pigs, zebrafish, rats, rabbits, and sheep [24–29].

The pig model showed early signs of airway inflammation, airway remodeling, mucus accumulation,
and infection with multiple bacterial species and is 100% lethal without ileostomy performed after
birth [9,30]. Thus, a second generation CFTR pig was developed with gut-correction [31]. Similarly, to the
CF pigs, CFTR-deficient ferrets also show evidence of lung infections in early life necessitating antibiotic
treatment prior to weaning and therefore a gut-corrected second generation was developed [32,33].
Sheep and rabbit CF models are relatively new models and have not yet been fully characterized.
Since the sheep has similar lung anatomy to humans it could be a promising model while the rabbit
could be useful for fast reproduction and availability of multiple antibodies. However, early results in
newborn CFTR−/− sheep showed lethal pancreatic fibrosis, intestinal obstruction, and absence of the
vas deferens suggesting that a gut-corrected second generation model may be required [27].

Currently, no single animal model recapitulates all aspects of human CF disease and the majority of
cell-based therapeutic studies in the lung have been performed in mice. Larger animal models, such as
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pig and ferret, are resource-intensive and challenging to raise but may be the most useful preclinical
models to study cell-based therapies in a chronic lung infection environment. To our knowledge, no cell
therapy has been performed in these models with only few studies focusing on gene therapy. As the
field moves towards developing clinically relevant cell-based approaches, large animal models of CF
will become useful in assessing cell-based therapies. These models will need to both better recapitulate
the human disease and allow for testing of conditioning protocols to remove target epithelium and
allow for retention and long-term engraftment of transplanted cells.

4. Overview of Cell Types Used in Cell-Based Therapeutic Approaches for the Lung

The mature lung comprises at least 40 morphologically and functionally distinct cell populations
including epithelial, inflammatory, stromal, and endothelial cells [34,35]. Epithelial cells include those
forming alveolar units, the Type I and II alveolar epithelial cells, and those lining proximal airways,
including ciliated, mucous, Club, basal, and pulmonary neuroendocrine cells (PNEC). Identifying
epithelial stem cells in the lung has been difficult due to low cell turnover, but by assessing cell
proliferation and using ‘lineage tagging’ techniques [34–39], various niches have been identified that
contain stem or progenitor cells. Despite the marked progress, the field remains limited in its ability to
produce therapeutically applicable cell numbers derived from endogenous stem cells hindering their
use in cell-based applications.

The majority of lung regenerative medicine studies have focused on the use of exogenous cell types,
predominantly on the use of bone marrow cells (BMC) and in particular the adherent stromal population
referred to as mesenchymal stem cells and/or mesenchymal stromal cells (MSC). Engraftment and the
significant therapeutic effects of MSC has been shown following various human and experimental lung
injuries [40–50]. Although in the majority of cases, therapeutic effects have been observed, there is still
considerable debate about the fate of the cells [51–54], the true level of cell engraftment [42–45,51–54],
and whether transplanted MSC can truly replace epithelial cells.

As the lung is a complex organ, pluripotent cells would serve as ideal therapeutic units for
lung regeneration. There have been significant efforts put forth in generating lung epithelium using
embryonic stem (ES) cells and induced pluripotent stem (iPS) cells [55–64], and recent progress in
directed differentiation studies has indicated their potential for use as a cell source for treatment in
lung injury models [58,60,65–67].

5. Mesenchymal Stromal Cells (MSC)

The bone marrow is the main source for hematopoietic stem cells, harbors endothelial progenitor
cells as well as MSC, which represent 0.001–0.01% of the nucleated cells in the marrow [68]. Since their
identification in the bone marrow, MSC have been isolated in a variety of other tissues including
umbilical cord blood, placental, and adipose tissues [69–71]. Data suggesting that these cells can
engraft and develop into cell types of other organs including the heart [72], brain [73], liver [74],
pancreas [75], skin [76], and lung [77–82] has been presented. Most of these observations were based
upon co-localization of tissue specific phenotypic markers with sex, transgenically, or dye-marked
cells. These reports led to wide interest in BMC therapy for lung injury.

Many groups have since reported much lower lung engraftment of MSC leading to some skepticism
in the efficiency of these cells to regenerate epithelium [79,83–86]. The difficulty in reproducibility
of the reported engraftment levels and the possibility of cell fusion has added to the controversy
surrounding MSC plasticity. This may have been due to differences in methodologies used, lack of
proper controls, and artifacts [86]. Despite concerns regarding lack of standardized methodologies and
wide range of variability in observed engraftment potential, the biological effects of BMC are less easily
ignored. Therapeutic benefit has been shown following various human and experimental lung injuries
such as lung transplantation [87], endotoxin-induced acute lung injury [79,88–93], asthma [94–96],
bronchopulmonary dysplasia [97,98], emphysema [99,100], bleomycin-induced fibrosis [78,97,101–106],
sepsis [45,107–109], and ventilator-induced injury [107,110].
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Current thinking suggests that while BMC and MSC are not able to fully transdifferentiate,
BMC may promote lung tissue repair through the ability to adopt the expression profiles and functional
phenotypes of lung cells even if only temporarily, or via paracrine effects—the ability to secrete soluble
growth factors, cytokines, and even organelles which can exert their influence on lung repair. Bioactive
factors secreted by MSC are known to mediate immunomodulatory, anti-inflammatory, antioxidant,
and anti-apoptotic effects. They also contribute to tissue regeneration, angiogenesis, and clearance of
microorganisms. Indeed, the secretory and paracrine effects of MSC have continued to be extensively
studied, and it is widely accepted in the MSC field that their secretome is predominantly responsible
for the intercellular crosstalk between MSC and targeted cells [111–113].

Our lab has contributed to this field with identification of a novel subset of bone marrow cells with
particular utility in both mice and human airways [40,41,114–117]. To increase the therapeutic utility
of cell replacement therapy, we have undertaken a number of experiments to optimize cell retention
within the lung including a recipient conditioning regimen of naphthalene and busulfan treatment
prior to transplantation [41,117]. We have been able to improve BMC retention efficiency by a factor of
10-fold, even in CF CFTR knockout recipient animals. With these technical improvements in delivery
regimen, we have achieved substantial increases in expression of CFTR mRNA, and detectable CFTR
protein. Importantly, we found that treatment of CFTR−/− mice with CFTR+/+ BMC improved bacterial
clearance resulting in greater survival of the CFTR−/− mice treated with BMC [41]. However, despite
this progress, proving that the transferred CFTR is functional in vivo has been extremely difficult.

In the context of CF, Wang et al., suggested that MSC were able to differentiate into airway
epithelial cells when co-cultured with primary human airway epithelial cells under air–liquid-interface
(ALI) conditions. Importantly, the authors found that CFTR-corrected MSC (transduced with a lentiviral
vector bearing a wild type CFTR gene) from homozygous ∆F508 CF patients were able to contribute
to apical Cl- secretion in response to cAMP agonist stimulation [118]. In subsequent studies by the
Conese group, human amniotic MSC were also felt to differentiate into airway epithelial cells when
co-cultured with CF immortalized airway epithelial cells [119,120]. Carbone et al. showed that MSC
sourced from human amniotic mesenchymal stromal cells co-cultured in ALI with CF immortalized
airway epithelial cells were able restore some of the basic defects associated with CF. Specifically,
co-cultures had more organized tight junctions with increased expression of occludin and ZO-1 and
decreased dextran permeability and resumed chloride transport.

Bonfield and colleagues have shown in a lung infection and inflammation mouse model of
CF (Pseudomonas aeruginosa and Staphylococcus aureus), that human MSC decreased the bacterial
burden and thereby enhanced the ability of the CF lung to resolve the infection potentially through
changes in the in vivo production of the antimicrobial peptide LL-37. They also showed in vitro
that supernatant from hMSC derived from both bone marrow and adipose tissue reduced bacterial
growth of Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae [121]. Further
evaluation of the mechanistic action of hMSC showed that in vivo hMSC recruit macrophages known
to be important in infection resolution and attenuation of the inflammatory response [122]. In vitro,
they showed that hMSC decreased pro-inflammatory cytokine production in LPS-stimulated mouse
bone marrow-derived macrophages or human peripheral blood mononuclear cells, and upregulate
the expression of PPARγ, which is an important regulator of inflammation in chronic inflammatory
diseases such as CF [122,123].

Studies have found that MSC secrete different types of extracellular vesicles (EV) believed
to account for much of their therapeutic effects [124–127]. Additionally, more recent reports have
explored the role of released EV from MSC as a potential therapeutic application for controlling
inflammation in Cystic Fibrosis [128]. Zulueta and colleagues showed that treatment of IB3-1 CF
cell line, (an in vitro human model of CF), with EV derived from human lung MSC under basal and
inflammatory conditions (TNFα stimulation) downregulated transcription and protein expression
of pro-inflammatory cytokines IL-1β, IL-8, IL-6 and upregulated the mRNA expression of PPARγ
(a transcription factor controlling anti-inflammatory and antioxidant mechanisms via NF-kB and HO-1).
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They also observed reduced NF-kB nuclear translocation and increased HO-1 expression confirming
the impairment of the downstream inflammation cascade [128].

Despite recent progress in small animal and in vitro studies, the utility of MSC secretome for
treatment of CF remains to be determined and there remains skepticism that MSC will ever function as
an equal replacement for respiratory epithelium. Additionally, although there have been numerous
preclinical studies on using MSC for cell-based therapy in CF, the vast majority of these have been
in small animal models. To determine whether MSC cell or secretome delivery is a viable option
for treatment of CF, there needs to be further work in large animal models and in clinical trials.
In fact, there are currently only two ongoing phase I clinical trials (NCT02866721 and NCT03058068)
investigating MSC therapy in CF. The first, Safety and Tolerability Study of Allogeneic Mesenchymal
Stem Cell Infusion in Adults With Cystic Fibrosis (CEASE-CF; NCT02866721), is a prospective,
single-center, dose-escalation, open-label interventional study to evaluate the safety and tolerability
of allogeneic hMSC in 15 clinically stable subjects with CF age ≥ 18 years. Results from this trial are
yet to be published. The second trial, Human Mesenchymal Stem Cells Infusion in Patients With
Cystic Fibrosis (HAPI; NCT03058068), focuses on the demonstration of the safety of MSC intravenously
administered to 15 adult subjects with Cystic Fibrosis with a secondary objective to explore if MSC can
improve the symptoms of cystic fibrosis, including lung function, the rate of pulmonary exacerbation,
systemic and local inflammation, and symptom-related quality of life. It is important to note that
since its initiation, the latter study has been withdrawn as the principal investigator is no longer at
the institution.

6. Induced Progenitor-Like Cells (iPL)

Due to the limitations and skepticism surrounding MSC, as an alternate source of autologous cells,
we have been working on a novel cell type which we have developed by careful dissection of events
underlying reprogramming during iPS cell generation. Transient reprogramming with transcription
factors Oct4, Sox2, Klf4, and c-Myc (OSKM) resulted in an intermediate product of the iPS cell process
which we have termed “induced progenitor-like” (iPL) cells [129,130]. We noted that iPL cells are
highly proliferative but retain epigenetic “memory” that allows return to their original identity upon
withdrawal of reprogramming factors. Specifically, we isolated highly purified populations of Club
cells from R26-rtTA/Col1a1:tetO-4F2A double transgenic mice enabling expression of OSKM. We used
controlled, transient, exogenous activation of the transcription factors with doxycycline, which causes
reprogramming towards iPS cells, but turns off the expression of the OSKM factors prior to reaching
the commitment point leading to pluripotency. Throughout this process, we have generated and
characterized iPL cell populations derived from the Club cells of the proximal airways [129], alveolar
type II epithelial cells (AEC-II) of the distal lung parenchyma [130], and pulmonary endothelial
cells (Unpublished data). We found that using Club cells as the starting population, these induced
progenitor-like (iPL) cells can be expanded 30-fold yet differentiate normally to ciliated cells with
functional expression of CFTR [129]. In vivo, we showed successful retention and incorporation of
Club cell-derived iPL cells in airways of CFTR-deficient animals with injected iPL cells giving rise to
both Club cells and ciliated cells [129]. A schematic depiction of the generation and utility of Club-cell
derived iPL cells is shown in Figure 2.

While we have made significant progress in generating and characterizing a viable source of cells
that may be applicable in the clinic in the future, there are several challenges that this technology
presents. These include the need for optimization of the partial reprogramming in the human system,
as well as the required customization of the approach to any given somatic cell type. For CF patients,
an additional step of gene correction will be required. Another limiting factor for autologous cell
therapy as a whole, remains the time and effort in obtaining the required cells and the cost associated
with the treatment. However, from an immunological perspective, autologous transplantation is ideal
and thus it remains a valuable avenue to pursue.
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Figure 2. Schematic representation of the Induced progenitor-like cells (iPL) process and their utility in
cell therapy for Cystic Fibrosis (CF). iPL are generated from mature club cells isolated from a CF patient
via transient reprogramming with Oct4, Sox2, Klf4, and c-Myc (OKSM). Gene corrected iPL cells are
then transplanted back to the preconditioned recipient airways where they will engraft and integrate
into the airways and restore the epithelium. Figure created with BioRender.com.

7. Embryonic and Induced Pluripotent Stem Cells (iPS)

Unlike autologous cell sources, human pluripotent stem cells (hPSC) hold enormous promise to
serve as the source of unlimited therapeutic cells used to treat injuries and degenerative diseases in
future cell-based therapies. There have been significant efforts put forth in generating lung epithelium
using pluripotent cell sources [55–62,64–66,131–133], with evidence for their potential use as a cell source
for treatment of lung injury models [57,59,65,66,132,134–138]. Induced pluripotent cells are particularly
advantageous to embryonic stem cells, as they are associated with less ethical controversy [139,140]
and can be used as an autologous cell source.

Most of the focus in the pluripotent stem cell field in relation to CF, has been on generation of
proximal lung epithelial cells to develop patient-specific models of CF [58,60,63] and generation of
multi-ciliated cells [61,62]. The protocols presented in these studies follow the basic premise of using
the embryological development of the lung as a guide [141] but differ in their use of type, concentration,
and time of exposure of chemical stimuli and growth factors. As such, most protocols guide pluripotent
stem cells through the developmental stages of definitive endoderm, followed by anteriorization to
foregut endoderm, subsequent ventralization to generate NKX2.1+ putative lung progenitor cells,
and finally maturation to proximal airway epithelium using air–liquid interface (ALI) culture in which
cells are basally exposed by to media and apically to air (Figure 3).

While early attempts using simpler 2D culture protocols showed successful differentiation into
lung progenitor populations, mature epithelial cells were not obtained [60], with varying CFTR
expression amongst iPS cells derived from CF patients [58]. Subsequent studies [61,131] using lower
concentration of BMP4 required during the ventralization phase, also resulted in epithelium lacking
multi-ciliated cells but did generate CCSP+ Club cells, MUC5AC+ goblet cells, and some functional
CFTR+ cells [61]. This protocol was used to differentiate induced pluripotent stem cells (iPSC) from
CF patients carrying a homozygous deletion of F508 in the CFTR gene (resulting in a defective
processing of CFTR to the cell membrane) and corrected using clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) genome editing to target corrective
sequences to the endogenous CFTR genomic locus, using a completely excisable piggyBac transposase
system [131]. The corrected iPS cells were subsequently differentiated to mature airway epithelial cells
and analyzed for CFTR currents by whole cell patch clamp methods. In the CF iPS-derived epithelial
cells, approximately 50% of the cells responded to stimulation via exposure to a cocktail of forskolin,
genistein, and 3-isobutyl-1-methylxanthine (IBMX) [131].

BioRender.com
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inhibition, a maturation cue, during the ALI culture phase [62–64,142]. These protocols can achieve 
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Figure 3. Derivation of proximal airway epithelial cells from induced pluripotent stem (iPS) cells.
Schematic representation of the embryologically guided stepwise approach to generate mature proximal
epithelial cells. The first requirement is the generation of definitive endoderm (equivalent to cells at
approximately 3 weeks post conception) from iPS cells (equivalent to the cells found in the inner cell mass
of the blastocyst at day 6). The second stage is differentiation to anterior foregut endoderm (equivalent
to cells at approximately 4 weeks post conception). Cells are then differentiated via ventralization to
NKX2.1+ lung progenitors (equivalent to cells at approximately 5–6 weeks post conception). Proximal
airway lineage and maturation is then induced using 3D culture conditions and air–liquid-interface
(ALI) culture. Figure created with BioRender.com.

More recent protocols have incorporated supplemental 3D culture in Matrigel as well as NOTCH
inhibition, a maturation cue, during the ALI culture phase [62–64,142]. These protocols can achieve
multi-ciliated cells with ciliary beating frequency similar to that of primary bronchial epithelial cells.
These significant advances in directed differentiation protocols have enabled derivation and use of
iPS-derived epithelium from CF patients. In their study, McCauley and colleagues generated airway
spheroids from patient-specific CF lines (RC2 202 and RC2 204 lines both with homozygous ∆F508
CFTR mutations) as well as CF corrected iPS lines. They showed forskolin-responsive swelling in
normal and not CF patient-derived spheroids and were able to rescue the defect in swelling via genome
editing in the CF corrected iPS lines [63].

Although human iPS cells hold enormous promise as the source of unlimited therapeutic cells,
there remain challenges in the purity and yield of the cells produced. For utility, standardized protocols
are required which produce reproducible numbers of CFTR expressing cells potentially including the
newly discovered ionocytes. In addition, prior to clinical application of iPS cells, significant hurdles
with respect to their safety and acceptance by the immune system must be overcome.

8. Designer Pluripotent Cells

The generation of designer pluripotent cells, in which iPS cells are molecularly and/or genetically
engineered for altered or enhanced function offers the possibility to circumvent their existing limitations.
Recent advances in genome editing technologies, particularly the CRISPR/Cas system, have facilitated
the targeted integration of functional DNA elements into the human genome, thus, extending their
research and therapeutic applications [143]. These include approaches to address both the safety as
well as immunogenicity of pluripotent cell sources. The tumorigenicity of hPSC, mainly monitored
as teratoma formation after in vivo injection, remains a major challenge that needs to be overcome
for the application of hPSC in the clinic. Thus, a variety of approaches have been investigated
with the aim to identify and eliminate undifferentiated hPSC including chemical ablation [144],
targeting and removal of pluripotent-specific hPSC antigens with cytotoxic antibodies [145], genetic
modification of tumor-driving genes [146], insertion of cytotoxic suicide genes [147], and the use
of small molecule-based selective elimination [148]. More recently, Liang et al. (2018) described a
cell-therapy ‘safety’ solution, termed the safe-cell (SF) suicide system. In this system, they achieve
safety by transcriptionally linking a drug-inducible suicide system, Herpes Simplex Virus type 1
thymidine kinase (HSV-TK), to the CDK1 cell division essential loci (essential for a cell to divide or
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to survive) using CRISPR/Cas9 genome editing; allowing complete control over proliferating cells.
Therefore, if required, the dividing cells can be arrested or eliminated by treatment with the drug
that induces the suicide system (in this case, ganciclovir (GCV) which activates the HSV-TK suicide
system) [149].

In addition to iPS tumorigenicity and the risk of teratoma formation, immune rejection due to
expression of human leukocyte antigens (HLA) remains a significant problem. These are encoded by
a highly polymorphic set of genes and include HLA class I (HLA-A, HLA-B, and HLA-C) and class
II (HLA-DP, HLA-DM, HLA-DO, HLA-DQ, and HLA-DR) molecules [150]. Approaches to generate
iPSC stocks isolated from HLA homozygous donors are currently under exploration and it is believed
to be possible to cover most HLA haplotypes [151], but the recruitment of HLA homozygous donors
that serve an entire population is very difficult and require the generation of a large number of
cell lines, extensive validation, and stringent regulatory processes [150]. Genetic manipulation of
HLA gene expression for instance via knockout of β2-microglobulin (β2m, major component of
HLA class I molecules) resulting in reduced expression of HLA genes has shown to be a promising
approach [150,152,153]. Another approach has been to overexpress immunosuppressive genes [152,154].
For example, overexpression of immunosuppressive receptors cytotoxic T-lymphocyte-associated
protein 4-immunoglobulin (CTLA4-Ig) and programmed death-ligand 1 (PD-L1) in human ESCs (hESCs)
have been shown to prevent allogenic immune rejection [154]. Similarly, Deuse et al. demonstrated
that human iPSCs lose their immunogenicity when HLA class I and II genes are inactivated via
CRISPR/Cas9 disruption of β2m gene and Ciita (master regulator of HLA class II genes), and CD47 is
overexpressed [152].

While suicide gene approaches could eliminate tumor forming cells even after cell transplantation,
their efficacy remains controversial. Another concern is the safety of genome editing. Our knowledge
of human genomic safe harbors (GSHs) is still insufficient, making it difficult to predict the influence of
gene integration on nearby genes and vice versa [143]. Similarly, genetic manipulation of HLA and
immunosuppressive genes remain to be fully developed, validated, and likely combined with stringent
safety measures prior to implementation in the clinic.

9. Conclusions

Cell-based therapy is a promising approach for CF and would be a less invasive alternative to
transplantation, which is limited by organ shortage. Autologous cells could be harvested, gene-corrected
in vitro, and transplanted back to the patient’s lungs without the need for immunosuppressive drugs.
Mature cells taken from patients could be reprogrammed to iPS to facilitate their expansion and
re-differentiated in vitro to proximal and distal epithelium. New technologies such as CRISPR/Cas9
have made gene editing simple and efficient where 30–50% allelic correction led to 20–50% CFTR
function restoration in ALI culture [155]. Since CRISPR/Cas9 can have off-target effects resulting in
proto-oncogene activity [156,157], the potential tumorigenicity of various gene-corrected cells could be
tested in vitro prior to transplantation. For added safety, a fail-safe mechanism, such as herpes simplex
virus thymidine kinase, could also be introduced to the cells which could be eliminated by ganciclovir
in case of tumorigenic proliferation [149,158].

Many groups, including our own, have investigated ways to improve cell engraftment in the lung
by various conditioning regimens to disrupt the epithelium. These treatments include naphthalene,
bleomycin, polidocanol, or elastase alone or in combination with busulfan or non-lethal irradiation
in animal models and have led to increased cell retention in the lung [41,159–161]. As we continue
to have a better understanding of cell types involved in the pathogenesis of CF, we can begin to
develop preconditioning regiments directly targeting specific cells within the airway epithelium.
For instance, standard airway depletion with naphthalene may not be sufficient to deplete submucosal
glands and will likely require a harsher insult to expose. One significant challenge that needs to be
overcome is the fact that preconditioning regimens are currently in preclinical animal models and not
clinically viable options. To achieve clinical translation, it will be necessary to establish clinically viable
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protocols to ensure adequate cell delivery and engraftment. These will likely require 3D geometric
data, mapping the pulmonary vasculature and airways, and computational models that characterize
fluid flow and mass transport of the human lung to guide optimization of preconditioning regimens
by enabling the selection of process parameters that will minimize the existing limitations of chemical
detergents. One possibility is to use ex vivo lung perfusion platform [162] to test and develop these
complex therapies.

Early studies using bone marrow MSC faced controversy due to the skepticism that they could
truly function as lung epithelium. With the advent of ES and iPS, which can be differentiated in vitro,
viable cell sources for use in cell therapy may soon be available [65,129,130,159,163,164]. More studies
will need to address the functional integration and long-term regenerative capacity of these cells as well
as the safety of engrafted cells. Taken together, cell replacement therapy approaches using pluripotent
cell sources in combination with genetic engineering of cells for safety and immunogenicity look to be
a promising avenue for a curative treatment (Figure 4).

In conclusion, cell-based therapy for CF is a growing field and for successful future translation to
the clinic, several limitations must be addressed. These include (1) development of animal models
which better recapitulate the human disease, (2) clinically relevant conditioning regimens to enhance
cell retention and engraftment, (3) evaluation of autologous cells, in large animal models and clinical
trials (4) refinement of directed differentiation protocols to enhance the yield of proximal airway
epithelial cells from pluripotent sources, and (5) assessment of feasibility in use of designer cells in CF
models. Nevertheless, cell replacement therapy for CF has huge implications and may significantly
increase the quality of life for patients. A strategy in which targeted removal of genetically impaired
epithelial cells, followed by repopulation with a gene-corrected cohort, could result in ‘re-designed’
lungs, obviating the need to undergo transplantation.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 20 
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Figure 4. Schematic representation of cell-based therapeutic approaches using induced pluripotent
stem cells. In autologous iPS cell therapy, somatic cells are isolated from the CF patient, expanded
and reprogrammed to produce patient-specific induced pluripotent cells. These cells are subsequently
differentiated to proximal airway epithelium, corrected for the genetic defect to achieve normal airway
epithelium and transplanted back to the patient. In allogeneic iPS cell therapy, a universal iPS line
(from a healthy source) which has been genetically modified for safety and immunogenicity is used
to generate proximal airway epithelium which is transplanted to CF patients. Figure created with
BioRender.com.
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