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Abstract

Impaired blood flow and oxygenation contribute to many ocular pathologies, including 

glaucoma. Here, a mathematical model is presented that combines an image-based heterogeneous 

representation of retinal arterioles with a compartmental description of capillaries and venules. 

The arteriolar model of the human retina is extrapolated from a previous mouse model based 

on confocal microscopy images. Every terminal arteriole is connected in series to compartments 

for capillaries and venules, yielding a hybrid model for predicting blood flow and oxygenation 

throughout the retinal microcirculation. A metabolic wall signal is calculated in each vessel 

according to blood and tissue oxygen levels. As expected, a higher average metabolic signal is 

generated in pathways with a lower average oxygen level. The model also predicts a wide range 

of metabolic signals dependent on oxygen levels and specific network location. For example, for 

high oxygen demand, a threefold range in metabolic signal is predicted despite nearly identical 

PO2 levels. This whole-network approach, including a spatially nonuniform structure, is needed to 

describe the metabolic status of the retina. This model provides the geometric and hemodynamic 

framework necessary to predict ocular blood flow regulation and will ultimately facilitate early 

detection and treatment of ischemic and metabolic disorders of the eye.
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1. Introduction

Eye disease and associated blindness are highly impactful to both individuals and society 

as a whole. Despite their obvious importance, the exact cellular mechanisms involved in 

many ocular pathologies are not well described due to the inaccessibility of deep ocular 

tissues and the complex physiological interactions between systems. For instance, primary 

open-angle glaucoma (OAG), a leading cause of irreversible blindness world-wide, is 

characterized by progressive retinal ganglion cell death and loss of visual field. Reduction 

of intraocular pressure (IOP) remains the only currently approved treatment in OAG, yet 

lowering of IOP has not prevented or fully arrested the disease. Although many studies 

have identified specific aspects of the ocular vasculature to be involved in OAG [1], a 

clear understanding of mechanistic events during homeostatic hemodynamic regulation 

and the disease process remains elusive. Previous experimental studies have established 

relationships between retinal structure and visual function in glaucoma, while others have 

demonstrated a correlation between impaired blood flow and glaucoma. However, a unified 

theory of the structural and hemodynamic factors that combine to cause functional visual 

impairment in glaucoma is missing. Other diseases such as diabetic retinopathy have clear 

vascular involvement and clinical presentation but lack a robust understanding of prior 

sequential events and/or individual susceptibility. In both examples, there are significant 

gaps in knowledge related to the retinal microvasculature, tissue oxygenation, and retinal 

regulatory capacity during stresses related to disease processes.

To date, mathematical models of the retinal microvasculature and tissue have included only 

some aspects of the main elements impacting retinal blood flow and oxygenation. The bulk 

structure of the retinal tissue is multilayered, and the vessel network supplying the tissue is 

heterogeneous, with wide variations in vessel size, spacing, density, and path length. Models 

for oxygen diffusion in tissue (e.g., Krogh cylinder model) vary according to simplifying 

assumptions and network geometry. Previous modeling studies have accounted for blood 

flow regulation in the retinal microcirculation [2,3]; however, these have assumed a uniform 

structure to the network and have not included multiple depths of retinal tissue. Studies 

that have included a more complex network and tissue structure have not accounted for 

flow regulation [4,5]. A recent theoretical study [6] used mathematical modeling to identify 

three possible factors that can lead to increased venous oxygen saturation, demonstrating 

that clinical measures are not sufficient to explain or identify the underlying mechanisms 

causing them. The multilayer tissue geometry, heterogeneous vascular network structure, 

flow regulation, and oxygen transport in the retina each contributes in a significant way to 

the accurate depiction of retinal blood flow; thus, a model that combines all of these factors 

is greatly needed to make more definite predictions of retinal oxygenation in health and 

disease conditions.
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The current study serves as a necessary first step that will allow for the integration 

of clinical measures with theoretical models to relate changes in tissue-specific blood 

flow and oxygenation to visual function and structure in healthy and glaucomatous eyes. 

In particular, a mathematical model was developed here that can be used to predict 

oxygen transport and components of blood flow regulation in a heterogeneous description 

of the retinal microvasculature. The model combined a heterogeneous description of 

the retinal arterioles with a compartmental model of retinal capillaries and venules. 

Including a compartmental representation of the downstream microvessels allowed for 

realistic predictions of PO2 downstream of the arterioles. Regulation of blood flow in the 

microcirculation depended in part upon metabolic signals generated and conducted upstream 

throughout the entire microvascular network. This model allowed for the prediction of 

conducted metabolic signals along all nonuniform pathways throughout the network, leading 

to a spatially heterogeneous distribution of metabolic responses throughout the realistic 

network of regulating arterioles and, more importantly, providing more accurate predictions 

of downstream conducted metabolic signals. The implications of the model are highly 

relevant for glaucoma and other ocular pathologies that involve and potentially alter retinal 

metabolism and ultimately threaten ganglion cell preservation.

2. Materials and Methods

2.1. Network Geometry

2.1.1. Arteriolar Network Description—In this study, a theoretical model of human 

retinal arterioles was extrapolated from a previous model of the mouse retina [7]. In [7], 

detailed mappings of the positions, lengths, and diameters of the arteriolar network in the 

mouse retina (Figure 1A) were obtained from confocal microscopy images [8,9]. Since 

such detailed mappings have not been obtained from a human retina, human oximetry 

data were used to translate the murine arteriolar network to a human network by adapting 

three main components: (i) the number of main arterial and venous branches and the 

angles between them, (ii) vessel diameters, and (iii) vessel lengths. First, two of the six 

arterial branches in the mouse retinal network were eliminated; the remaining four were 

repositioned to superior/inferior temporal/nasal positions according to angles calculated 

from oximetry images and the position of the fovea. Next, based on oximetry biomarkers 

from human retinal arterioles [10], a scaling factor of 3.6 was used to convert murine 

vessel diameters to human values. Last, the distance from the CRA to the fovea in the 

human retina (approximately 4.5 mm) was used to determine a 5.9 scaling factor between 

mouse and human vessel lengths [11,12]. Importantly, the heterogeneity of the network 

branching structure was assumed to be similar between species since several studies have 

indicated that the morphology of the human and murine vascular networks is strikingly 

similar [13,14]. The resulting human arteriolar network is shown in Figure 1B. To validate 

this mouse-to-man conversion process, it is noted that an assumed pressure drop of 16 

mmHg along the human arteriolar network [2] corresponds to a total flow of 36,670 nL/min 

to the human retinal microcirculation, which is consistent with the flows measured in human 

retina [15,16].
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2.1.2. Capillary and Venular Network Description—Although the model defined in 

[7] included a heterogeneous description of the capillaries and venules, the current study 

represented retinal capillaries (C), small venules (SV), and large venules (LV) using a series 

of compartments (as in [2,17]) in an effort to obtain insights into flow and oxygenation 

throughout the entire retina without requiring intense computational power. Each vessel 

compartment was assumed to contain a set of identical, parallel-arranged segments that 

experience identical hemodynamic and metabolic conditions. This compartmental model 

was used to evaluate flow and oxygenation of the retinal microcirculation downstream of the 

heterogeneous arteriolar network.

2.1.3. Hybrid Model Description—The theoretical model of the human retinal 

microcirculation introduced in this study was defined as a hybrid model that combines the 

heterogeneous model of retinal arterioles described in Section 2.1.1 with a compartmental 

representation of capillaries and venules described in Section 2.1.2. More specifically, 

vessel compartments corresponding to capillaries, small venules, and large venules were 

connected in series to each terminal arteriole in the heterogeneous model. This model 

expanded previous work [2] by capturing the full heterogeneity of the arteriolar network 

structure. Since arterioles are the primary microvessels capable of actively regulating flow, 

this hybrid model allowed for spatial predictions of oxygen distribution and blood flow. The 

heterogeneity of the arteriolar network was preserved in the downstream compartments by 

requiring that the inflow oxygen content to the capillary compartment be calculated as a 

weighted sum of the hematocrit in each of the outflowing arterioles. The hybrid model is 

depicted in Figure 2.

2.2. Blood Flow

The arteriolar network of the hybrid model was represented as a large, directed graph, 

whereby each vessel with a particular diameter and length was represented by an edge and 

each junction was represented by a node. Pressure-driven flow through each segment in the 

network was modeled using Poiseuille’s Law:

Q = πΔPD4

128μL (1)

where Q is the volumetric blood flow rate in an individual vessel segment, ΔP is the pressure 

drop along the vessel, D is the diameter of the blood vessel, L is the vessel length, and μ is 

the apparent viscosity, which was assumed dependent on the diameter and hematocrit of the 

blood vessel based on the diameter-dependent relationship previously established by Pries et 

al. [18].

Conservation of mass was imposed at every junction in the network, which allows for the 

flow rate, hematocrit, and apparent viscosity to be calculated in each arteriole using an 

iterative scheme [19], described in detail in [7]. Initial pressure and flow conditions for the 

capillary compartment were obtained from the predictions in the terminal arterioles of the 

heterogeneous arteriolar network. Poiseuille’s Law and conservation of mass were then used 

to compute flows in the downstream compartmental network.
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2.3. Oxygen Transport

The governing equation for steady-state diffusion with oxygen consumption in the tissue 

was given by

Ddiffα∇PO2 = M PO2 (2)

where PO2 is the tissue partial pressure of oxygen, M(PO2) is the tissue oxygen consumption 

rate, and Ddiff and α are the diffusivity and solubility of oxygen in the tissue, respectively. 

Here, Ddiffα = 6 × 10−10 cm3 O2/cm/s/mmHg [20,21]. The consumption rate in the tissue 

region was assumed to depend on PO2 following Michaelis–Menten oxygen utilization 

kinetics, so that

M PO2 = M0
PO2

P0 + PO2
(3)

where M0 is the tissue oxygen demand, and P0 is the Michaelis constant at which the 

consumption rate is half maximal (taken here to be 10 mmHg [22]).

In the spatially heterogeneous arteriolar network, a Green’s function method [23,24] was 

used to solve Equation (2), where the vessels were modeled as discrete oxygen sources, 

and the tissue points were represented as oxygen sinks [7,23–25]. The resulting PO2 at a 

tissue point was then calculated as the superposition of the oxygen fields (Green’s functions) 

produced by each of the surrounding sources and sinks. This method accounted for diffusive 

interactions between all vessels and tissue points in the network and was computationally 

efficient, as it reduced the problem to solving for the strengths of the sources and sinks.

By conservation of mass, in each arteriole,

df Pb
ds = − q(s) (4)

where f(Pb) = Q(HDC0S(Pb) + αbPb) is the rate of convective oxygen transport along 

a vessel segment, Q is the blood flow rate, HD is the discharge hematocrit, C0 is the 

concentration of hemoglobin-bound oxygen in a fully saturated red blood cell, Pb is the 

blood PO2, s is the distance along the vessel segment, q(s) is the rate of diffusive oxygen 

efflux per unit vessel length, and S(Pb) is the oxyhemoglobin saturation, which was assumed 

to be a function of the blood PO2 via a Hill equation:

S Pb = Pb
n

Pb
n + P50

n (5)

where P50 is the vessel PO2 at which hemoglobin is half-saturated, and n is the Hill 

coefficient. Here, P50 = 26 mmHg and n = 2.7 (based on [26]).

Similar to Equation (4), by conservation of mass, the rate of change in oxygen flux in the 

capillary and venous compartments was given by
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d QjHDC0S Pb(s)
ds = − q(s) (6)

where index j denotes compartment, and s is distance along the compartment.

In the capillary compartments, oxygen consumption was calculated using a Krogh cylinder 

model [27], in which each capillary was assumed to provide oxygen via diffusion to a 

surrounding tissue cylinder according to:

Ddiffα 1
r

d
dr rdPO2(s, r)

dr = M PO2 (7)

where r is the radial distance within the tissue cylinder. The tissue oxygen consumption per 

vessel length was computed as:

∫rv

rt
M PO2 2πr dr (8)

where rt denotes the radius of the tissue and rv denotes the radius of the vessel (capillary). 

The width of tissue surrounding each capillary was defined as d = rt − rv. Since oxygen 

is exchanged primarily in the arterioles and capillaries, oxygen exchange in the venular 

compartments was neglected (and hence tissue width in the venules was set to zero). 

Assuming a fixed capillary density of N = 50,000/cm2, the value for tissue depth d = 22 μm 

was determined by solving Equation (9):

N =
∑inC, iLC, i

AV OL + ∑i nC, iLC, iπ rC, i + d 2 + nSV , iLSV , iπrSV , i
2 + nLV , iLLV , iπrLV , i

2 (9)

where AVOL = 0.0025 cm3 is the total volume of the arteriolar network vessels and tissues, 

and index i denotes each vascular pathway. A fourth-order BVP solver in MATLAB was 

used to calculate the partial pressure of oxygen in the radial direction while iterating down 

the vessel segments. If PO2 decreased to zero, all subsequent values of PO2 along the 

capillary were also set to zero.

2.4. Metabolic Signal Calculation

Regulation of blood flow in the microcirculation depends, in part, upon metabolic signals 

generated and conducted upstream throughout the entire microvascular network. The model 

developed in this study allowed for the prediction of conducted metabolic signals along all 

vascular pathways; this algorithm for determining the conducted metabolic signal will be 

utilized in future work to predict flow regulation within the hybrid model.

The metabolic response in a given vessel, Smeta, was defined as the average value of 

the metabolic wall signal generated along the length of the vessel [25]. This signal was 

composed of two exponentially decaying terms: one from the downstream outflow node of 

the vessel (Smeta,out) that was decayed upstream along the length of the vessel, and one from 

the local signal rate (Sloc) generated at every point along the vessel and decayed upstream 
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along the remaining length of the vessel. The local metabolic signal, Sloc, generated at each 

point along the vessel was inversely related to the local vessel PO2:

Sloc = P0
P0 + PO2

(10)

Thus, in a particular vessel, the metabolic response was given by

Smeta = 1
L∫

0

L

Smeta, oute−x/L0dx + 1
L∫

0

L

∫
0

x
Sloce−(x − y)/L0dy dx (11)

where L0 is the exponential decay constant, assumed here to be 1 cm, as in [2].

2.5. Control State for the Hybrid Model

A control (or reference) state was established in this model to represent baseline geometric 

and hemodynamic conditions corresponding to a healthy human retina. An incoming 

pressure (Pa) of 40 mmHg was assumed at the beginning of the arteriolar network (i.e., 

the downstream end of the central retinal artery), and an overall pressure drop of 16 mmHg 

was assumed across the arterioles (consistent with [2]).

Capillary diameter was assumed to be DC = 6 microns, and shear stress (τ) in the capillaries 

was assumed to be τC = 15 dyn/cm2. Viscosity in the capillaries (μC) was given as a function 

of capillary diameter obtained from an empirical fit to experimental data [18]. Given these 

values, flow in a capillary was calculated as QC =
πτCDC

3

32μC
.

A loose symmetry assumption was implemented in this study to define geometric 

components of the venous compartments; the symmetry assumptions (based on those 

outlined in [2]) required the heterogeneous arteriolar network to be classified in terms 

of large arterioles (LA) and small arterioles (SA) so that analogous definitions between 

arterioles and venules could be established. In the heterogeneous arteriolar network, terminal 

arterioles (i.e., the final small arteriolar segments that connect directly to a capillary 

compartment) were defined as small arterioles. The entire arteriolar pathway upstream 

of the terminal arteriole was classified as a large arteriole. Diameters and lengths of all 

arterioles in the hybrid model were obtained from a scaling of the confocal microscopy 

images of the murine retina (Section 2.1.1). Since the large arteriole classification contains 

vessels of many different diameters, DLA was defined as the diameter of the first (i.e., most 

upstream) vessel for a particular pathway; the diameter of the SA (DSA) was the diameter 

of the terminal arteriole (all diameters of terminal arterioles were the same). Flow and 

pressure drop in the LA and SA were obtained from the heterogeneous model calculations. 

Specifically, in any given pathway, the flow in the LA (QLA) was taken as the incoming flow 

to the first vessel (main branch) of that pathway, and flow in the SA (QSA) was taken as 

the flow calculated in the terminal arteriole, which also corresponded to the flow that would 

enter the downstream compartments. The pressure drop in the LA (ΔPLA) was calculated 

as the entire pressure drop from the incoming point of the pathway to the upstream end of 
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the terminal arteriole. The pressure drop along the SA (ΔPSA) was the pressure drop in the 

terminal arteriole. The first symmetry assumption required that the number of vessels (n) in 

corresponding compartments be equal (as in [17]). That is, nSA = nSV and nLA = nLV. Since 

all pathways contain only a single terminal arteriole, nSA = nSV = 1. Conservation of flow 

along a pathway required that nLAQLA = nSAQSA = nCQC = nSVQSV = nLVQLV. As a result, 

nLA = QSA/QLA = nLV and nC = QSA/QC.

Wall shear rates (ω) in the retinal microcirculation were given as a function of arterial and 

venous diameter in [28]. In the present study, wall shear rates were interpolated from the 

values provided in [28] for capillary, small (terminal) arteriole, and large arteriole diameters. 

If the large arteriole diameter was outside the range of interpolation, the maximum possible 

interpolated value was used, which was reasonable, since the wall shear rates were nearly 

constant for large diameter values. Control state diameter values for the small and large 

venule from [2] (i.e., DSV = 69 μm and DLV = 140 μm) were used here to interpolate for 

the wall shear rate in the SV and LV compartments. Upon obtaining the wall shear rate for 

all vessel types, symmetry assumptions and flow conservation were used to calculate venular 

diameters used in the hybrid model: DSV = DSA
ωSA
ωSV

1/3
 and DLV = DLA

ωLA
ωLV

1/3
. With all 

control state diameter values defined, viscosity in all vessels was obtained from an empirical 

relationship [18]. Then, wall shear stress in all compartments was calculated according to ω 
= τ/μ.

Another symmetry assumption dictated that the lengths of corresponding vessel 

compartments were equal, i.e., LSA = LSV and LLA = LLV. Pressure drops in the small 

and large venule compartments were obtained using Poiseuille’s Law (Equation (1)). Since a 

total pressure drop across the entire microcirculation is assumed to be Pa—IOP, where IOP 

is the intraocular pressure and was assumed to be 15 mmHg, the remaining pressure drop 

in the capillary compartment was calculated. Then, the length of the capillary compartment 

was obtained using Poiseuille’s Law. Table 1 provides the diameter, wall shear stress, 

pressure drop, number of segments, length, viscosity, and flow averaged over all pathways in 

the control state for the C, SV, and LV compartments.

2.6. Model Algorithm and Simulations

The heterogenous arteriolar network was programmed using C++, and the compartmental 

model was programmed in MATLAB. Figure 3 summarizes the numerical procedure 

implemented in this study (as described in detail in Sections 2.1–2.4); computations using 

C++ are labeled in blue, and those using MATLAB are labeled in purple. First, as described 

in Section 2.1.1, the position and diameter of every arteriole were defined. Then, boundary 

conditions for the heterogeneous network were defined. Here, the incoming arterial pressure 

was set to 40 mmHg, and the outgoing terminal arterial pressure was set to 24 mmHg, 

yielding a fixed pressure drop of 16 mmHg along the arterioles, consistent with [2]. The 

arterioles were assumed to be well oxygenated with an inflow PO2 of 84.4 mmHg and 

saturation of 0.96. Blood flow was calculated within each arteriole, and the Green’s function 

method was implemented to calculate PO2 in tissue points and all arterioles. Values of blood 

flow, PO2, diameter, vessel length, and pressure drop in the terminal arterioles were then 
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sent to MATLAB for use in the compartmental model. In the capillaries, a Krogh cylinder 

model was used to calculate PO2 along the vessel compartment. Using these PO2 values, 

the wall-derived metabolic signal was calculated in the capillaries and venules (see Section 

2.4), assuming zero signal at the downstream end of the large venule compartment. The 

value of the signal at the upstream end of the capillaries was transmitted back to C++ so 

that the metabolic signal could be calculated throughout the entire arteriolar network. Blood 

flow, oxygenation, and metabolic signals were predicted as oxygen demand was varied 

between M0 = 1 and 4 cm3 O2/100 cm3/min. Although the current study ends with the 

calculation of this signal, ultimately, the metabolic signal will be used to simulate flow 

regulation using a previously established vessel wall mechanics model [2,17,25] to obtain 

more accurate predictions of diameter changes as pressure or metabolic demand are varied. 

The two programming languages will be dynamically linked to exchange data until a steady 

state is reached, at which point flows and oxygenation levels will be obtained for the hybrid 

model (future work, shaded in Figure 3).

3. Results

Figure 4 shows the model predicted levels of tissue PO2 in the arterioles for three values 

of oxygen demand. As oxygen demand (M0) is increased from 1 to 4 cm3 O2/100 cm3/

min, there is a nonuniform reduction in PO2 throughout the tissue indicated by the blue, 

green, yellow, and red regions in the contour plots shown in Figure 4A–C. In addition, 

multiple regions are consistently predicted to exhibit low PO2 at each oxygen demand level. 

Such spatial variance in oxygen distribution could not be predicted without utilizing this 

heterogeneous description of the arterioles. The histograms in Figure 4D–F quantify the 

distribution of PO2 in the retinal tissue and indicate an increase in the spread of PO2 values 

as oxygen demand is increased.

Figure 5A,B shows the mean and standard deviation, respectively, of PO2 at the upstream 

(blue curve) and downstream (green curve) end of the capillary compartment as oxygen 

demand increases. As expected, both curves in Figure 5A decrease monotonically with 

oxygen demand. Since the majority of oxygen extraction occurs in capillaries, the PO2 at the 

upstream end of the capillaries remains relatively high and decreases slightly with increased 

oxygen demand. The vertical distance between the blue and green curves indicates that 

oxygen extraction increases in the capillaries as oxygen demand is increased. Unlike the 

predicted mean PO2 values, the standard deviation in PO2 is predicted to increase in almost 

all cases when M0 is increased from 0.5 to 4 cm3 O2/100 cm3/min (Figure 5B). The decrease 

in the standard deviation of PO2 at high oxygen demand resulted from PO2 values equal to 

zero in multiple vascular pathways.

Figure 5C,D shows the mean and standard deviation, respectively, of the metabolic signal 

(Smeta) at the upstream end of the capillaries as oxygen demand increases. The mean and 

standard deviation of the signal at the downstream end of the capillaries are not shown 

since only minimal differences in the signal are generated along the small length of the 

capillaries (please see Figure 6 for signal values along each point of each pathway). The 

signal increases with oxygen demand (Figure 5C). As the PO2 in the blood approaches zero 

along a pathway, the local metabolic signal (Sloc, see Equation (6)) approaches one. This 
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explains the steep increase in both the mean and standard deviation of metabolic signals 

for high levels of oxygen demand. Figure 5D indicates that the model predicts not only an 

increase in the values of the signal but also an increase in the spread of the metabolic signal 

values (i.e., standard deviation) with high oxygen demand.

Figure 6 depicts the metabolic signal calculated for each pathway in the arteriolar network 

(Column 1) and capillary and venous compartments (Column 2). The metabolic signal is 

initiated in the retinal venules and is conducted upstream to the arteriolar network, where 

it will eventually contribute to the model’s prediction of flow regulation (future study). A 

minimal spread in the signal generated for M0 = 1 and M0 = 2 is observed, but a significant 

increase in the compartmental signal values and variability in the arteriole signal values are 

predicted for M0 = 4 (Figure 6E,F).

Figure 7A,B shows the variance in the metabolic signal reaching the arterioles as a function 

of flow or PO2 at the upstream end of the capillaries, respectively (similar results are 

obtained at the downstream end of the capillaries but are not shown). Pathways with 

the lowest flow typically have branched numerous times and contain terminal arterioles 

located far from the central retinal artery. These pathways tend to generate higher levels of 

metabolic signal, indicating a possible oxygen deficit in the network periphery. However, 

this general trend of increased signal with decreased flow is not very pronounced, since 

many pathways with high flow yield similar predictions of the metabolic signal as pathways 

with low flow (Figure 7A). An expected increase in metabolic signal with decreasing levels 

of PO2 is shown in Figure 7B, although several pathways generate the same level of signal 

for a wide range of PO2.

4. Discussion

A healthy vascular network within the retina is a critical element for preserving visual 

function in health and disease. The present study adapted previous models of the retinal 

microcirculation [2,7,25] to create a more realistic “hybrid” representation of the retinal 

microvasculature. An image-based murine retinal arteriolar network was translated into a 

heterogeneous description of a human retinal arteriolar network using scaling factors and 

geometric properties obtained from retinal oximetry maps. A compartmental description 

of the human retinal capillaries and venules [2] was connected in series to each terminal 

arteriole in the heterogeneous network to create a full “hybrid” description of the human 

retinal microcirculation. The addition of downstream vessels to the heterogeneous arteriolar 

network allowed for more realistic predictions of tissue and blood PO2, and, most 

importantly, allowed for the computation of metabolic signals that are conducted upstream 

to the arterioles.

The model predicted an expected decrease in PO2 (Figures 4 and 5A) throughout the human 

retinal microvasculature as oxygen demand (M0) was increased. In addition to a steady 

decrease in PO2 in the arterioles, a very large decrease was predicted in venular PO2 as M0 

was increased; specifically, a decrease was predicted from mean PO2 values of 44 mmHg 

(M0 = 0.5 cm3 O2/100 cm3/min) to 4 mmHg (M0 = 4 cm3 O2/100 cm3/min). Figure 5A 

shows that the difference between the arteriolar and venular PO2 grew as the oxygen demand 
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was increased, and Figure 5B demonstrates that the spread (as measured by the standard 

deviation) in PO2 also grew as M0 was increased. Taken together, these model predictions 

revealed that an increase in oxygen demand not only led to lower overall network PO2, but 

also to a larger spread in PO2. Thus, different regions of the retina experience vastly different 

oxygenation, which can lead to vastly different metabolic responses. To regulate blood flow, 

arterioles constrict and dilate in response to local and conducted metabolic signals. The 

current study demonstrated the interconnection of all vessels in an arteriolar network such 

that the metabolic signal (and eventual flow regulation) in a given vessel is dependent upon 

all other vessels in the network.

An important component of this study was the assessment of the metabolic status throughout 

the retina, as indicated by the metabolic responses generated in the retinal vessels. As 

expected, the model predicted an increase in the average metabolic signal (Smeta) as the 

oxygen demand was increased (Figure 5C). However, more interestingly, the model also 

predicted a large increase in the spread of the metabolic signal throughout the network 

(Figures 5D and 6), similarly to the effect seen with PO2. While this is not surprising, given 

the relationship between Smeta and PO2, it is important to note that the metabolic signal 

varied widely throughout the network, especially for higher oxygen demand, which indicates 

that the metabolic signal is most sensitive at high levels of oxygen demand. As seen in 

Figure 6C, the value of the metabolic signal varied over an order of magnitude among the 

terminal arterioles of the network. This result could not be seen in a nonheterogeneous 

description of the retinal vasculature and demonstrates that an averaged description of the 

metabolic response does not adequately describe the metabolic status throughout the retina, 

potentially missing extreme regions at the tails of the signal distribution.

Perhaps nonintuitively, the model also revealed that vessels with equivalent values of 

PO2 exhibited differing levels of metabolic signal. For example, Figure 7B indicates an 

approximately threefold range in Smeta at the terminal arterioles (M0 = 4) despite nearly 

identical PO2 levels. This again demonstrates the importance of a whole-network approach 

when assessing oxygenation and metabolic status of the retina. Every vessel depends on 

every other vessel in the network; obtaining a measure of PO2 within a single vessel would 

not be sufficient to analyze the effect of that vessel on flow and oxygenation in the network.

This has important clinical relevance, as retinal nerve fiber tissue loss and associated visual 

function defects in glaucoma patients occur regionally rather than globally. Contrary to 

diseases such as cataract and corneal opacification that cause diffuse visual field loss, 

glaucomatous damage is characterized, at least in the early stages of the disease, by isolated 

visual field defects [29]. Importantly, glaucoma is an asymmetric disease that affects the 

two hemifields differently, with more pronounced damage in the superior hemifield than the 

inferior [30]. Little is still known about the relationship between the location of the initial 

visual field damage and the rate and direction of the functional disease progression, and their 

association with ocular and systemic factors [31]. Our comprehensive retinal model allows 

for regional as well as global testing which is in alignment with sectorial glaucomatous 

damage models and clinical presentations of the disease.
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Limitations.

The hybrid model presented here greatly improves upon retinal microcirculation models by 

incorporating heterogeneity within the arterioles, but it is limited by a lack of heterogeneity 

in the network description of the venules. Unlike the arteriolar network, which was based 

on confocal microscopy images, the venules were assumed to be represented as downstream 

fixed resistances, as in [2]. As a result, the model does not capture variation in PO2 or 

metabolic signal in the venules downstream of a given terminal arteriole, which could 

potentially affect the spread in signal at the upstream arterioles. However, the description 

of the downstream venular compartment of a given terminal arteriole does differ from that 

of another terminal arteriole in that the venular compartment parameters depend on the 

terminal arterioles. In this way, venular heterogeneity was represented between different 

pathways throughout the network. Eventually, a region-based model could extend this 

hybrid model to create a heterogeneous description of both the arterioles and venules for 

a single quadrant of the retina in hopes of obtaining even more accurate predictions of the 

distribution of PO2 and metabolic signals in the venules in a computationally tractable way.

The translation of the murine arteriolar network to the human arteriolar network also 

introduces some limitations, since it is not fully known if the murine network structure 

is identical to the human structure. Nonetheless, studies [14] indicate that the morphologies 

of human and murine retinas are strikingly similar and thus the murine network structure is 

used here as a best approximation.

Additionally, the model does not explicitly account for the intermediate and deep layers in 

which retinal capillaries reside. The arterioles are assumed to be located in the superficial 

layer of the retina, but the compartmental and Krogh model description of the capillaries 

do not currently account for their arrangement in three-space. Thus, future iterations of this 

model will establish a comprehensive multilayer heterogeneous network model geometry to 

improve the accuracy of model predictions when simulating metabolic requirements in the 

eye.

5. Conclusions

The current model provides predictions of metabolic signals throughout the retinal arterioles, 

but it does not yet predict how the arterioles change in response to these signals (i.e., 

blood flow regulation). Nevertheless, the hybrid model provides the necessary framework 

for assessing metabolic blood flow regulation in the retina and will be expanded to include 

blood flow regulation mechanisms as described in previous modeling work [2,17,25,32]. 

The ability to predict changes in arteriolar diameter and blood flow in a heterogeneous 

retinal microvascular network in response to changes in blood pressure or oxygen demand 

is critical for unraveling mechanisms involved in many ocular pathologies, especially 

OAG. Although experimental observations of blood flow impairment and/or biomarkers of 

altered retinal oxygenation in glaucoma patients have been observed for many decades, 

the sequential physiological events involved in such processes remain enigmatic. Our 

model provides a framework for predicting and interpreting hemodynamic response to 

physiological challenge(s) and understanding the chemical mechanisms and associated 

cellular responses of the retinal vasculature to stress and during disease processes. 
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Ultimately, results of our model may allow for earlier detection and higher specificity 

of prognosis of ocular pathologies involving retinal hemodynamics and help identify new 

treatment targets for multiple eye diseases, including glaucoma.
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Figure 1. 
(A) Heterogeneous mouse arteriolar network obtained using position, length, and diameter 

data from [8,9], as described in [7]. (B) Heterogeneous human arteriolar network developed 

by modifying the mouse model in panel (A) in the following ways: reducing the number 

of main branches from six to four, rotating the four main branches according to oximetry 

images, and increasing vessel diameters and lengths by a scaling factor of 3.6 and 5.9, 

respectively.
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Figure 2. 
Schematic representation of the hybrid model. The circle shows an enlarged portion of the 

network where a series of compartments for the capillaries (C), small venules (SV), and 

large venules (LV) are attached to each terminal arteriole in the heterogenous model.
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Figure 3. 
Flowchart of the hybrid model programmed in C++ (blue) and MATLAB (purple). The 

heterogeneous arteriolar model is programmed in C++ and the compartmental capillary and 

venular model is in MATLAB. The two programming languages will be dynamically linked 

to exchange information repeatedly until a steady state of blood flow and diameter activation 

is achieved (future work, shaded gray).
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Figure 4. 
Contour plots (panels (A–C)) and histograms (panels (D–F)) of tissue PO2 in the arteriolar 

network for varying levels of oxygen demand (M0) prior to the calculation of the conducted 

metabolic response. Three levels of oxygen demand were simulated: low (M0 = 1 cm3 

O2/100 cm3/min, panels (A,D)), moderate (M0 = 2 cm3 O2/100 cm3/min, panels (B,E)), 

and high (M0 = 4 cm3 O2/100 cm3/min, panels (C,F)). As M0 is increased, a nonuniform 

decrease in tissue PO2 was predicted.
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Figure 5. 
Mean PO2 (panel (A)) and standard deviation of PO2 (panel (B)) at the upstream (blue) and 

downstream (green) end of the capillary compartment as oxygen demand is varied from M0 

= 0.5 to 4 O2/100 cm3/min. Mean (panel (C)) and standard deviation (panel (D)) of the 

metabolic signal (Smeta) calculated at the upstream end of the capillaries as oxygen demand 

is varied.
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Figure 6. 
Panels (A,C,E): Histograms giving the percent distribution of the metabolic signal (Smeta) 

in every arteriole for M0 = 1, 2, and 4 cm3 O2/100 cm3/min, respectively. Panels (B,D,F): 

Metabolic signal calculated at each point in the capillaries (C, blue), small venules (SV, 

brown), and large venules (LV, green) for M0 = 1, 2, and 4 cm3 O2/100 cm3/min, 

respectively.
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Figure 7. 
Metabolic signal (Smeta) calculated at the upstream end of the capillaries as a function 

of flow (panel (A)) or partial pressure of oxygen (panel (B)) at the upstream end of the 

capillaries for three levels of oxygen demand: M0 = 1 (blue), 2 (red), and 4 (green) cm3 

O2/100 cm3/min.
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Table 1.

Control state values for capillary, small venule, and large venules compartments averaged over all pathways.

Description C SV LV

Diameter, D (μm) 6 29.5 137.3

Wall shear stress, τ (dyn/cm2) 15 15.6 14.7

Pressure Drop, ΔP (mmHg) 6 0.3 2.7

Number of segments, n 340 1 0.008

Length, L (cm) 0.080 0.032 0.854

Viscosity, μ (cP) 9.05 2.28 2.39

Flow, Q (cm3/s) 3.51×10−9 1.19×10−6 1.52×10−4
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