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ABSTRACT: Muscle atrophy is an unfortunate effect of aging and many diseases and can compromise physical 

function and impair vital metabolic processes. Low levels of muscular fitness together with insufficient dietary 

intake are major risk factors for illness and mortality from all causes. Ultimately, muscle wasting contributes 

significantly to weakness, disability, increased hospitalization, immobility, and loss of independence. However, 

the extent of muscle wasting differs greatly between individuals due to differences in the aging process per se as 

well as physical activity levels. Interventions for sarcopenia include exercise and nutrition because both have a 

positive impact on protein anabolism but also enhance other aspects that contribute to well-being in sarcopenic 

older adults, such as physical function, quality of life, and anti-inflammatory state. The process of aging is 

accompanied by chronic immune activation, and sarcopenia may represent a consequence of a counter-

regulatory strategy of the immune system. Thereby, the kynurenine pathway is induced, and elevation in the 

ratio of kynurenine to tryptophan concentrations, which estimates the tryptophan breakdown rate, is often 

linked with inflammatory conditions and neuropsychiatric symptoms. A combined exercise program consisting 

of both resistance-type and endurance-type exercise may best help to ameliorate the loss of skeletal muscle mass 

and function, to prevent muscle aging comorbidities, and to improve physical performance and quality of life. 

In addition, the use of dietary protein supplementation can further augment protein anabolism but can also 

contribute to a more active lifestyle, thereby supporting well-being and active aging in the older population.  

 

Key words: Aging, muscle, physical fitness, protein, kynurenine pathway, longevity 

 

 

 

 

 

 

 
It is well known that people of all ages benefit from 

regular physical activity, which reduces the risk of 

coronary heart disease, hypertension, certain kinds of 

cancer, type 2 diabetes, and many other chronic diseases. 

Indeed, a low level of cardiorespiratory fitness is accepted 

nowadays as a powerful predictor of mortality in healthy 

as well as diseased individuals [1–3]. Muscular strength is 

an important component of physical fitness with an 

independent role in the prevention of many chronic 

diseases. Several epidemiological studies have shown that 

muscular weakness in middle-aged and older individuals 

is strongly related to functional limitations and physical 

disability [4–6]. Furthermore, epidemiological or short-

term studies indicate a potential beneficial effect of 
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increasing protein intake in older adults. Thus, the main 

goal of the present paper is to provide an overview on the 

role of physical exercise in muscle health in old age and 

to outline the clinical evidence of dietary protein intake to 

support healthy aging. 

 

Muscular strength and longevity  

 

A growing body of evidence suggests that muscular 

strength is inversely and independently associated with 

all-cause and cardiovascular mortality even after 

adjusting for cardiorespiratory fitness and other cofactors 

such as age, body fat, and smoking [7–12]. Several studies 

have shown that muscular strength is inversely associated 

with the incidence of many chronic diseases such as 

cardiovascular disease and stroke [13–17], hypertension 

[18], metabolic syndrome or hyperinsulinemia [19, 20], 

and type 2 diabetes [21]. In a large cohort study of one 

million Swedish men, muscle strength in young adulthood 

was an important predictor of coronary heart disease and 

stroke risk in later life, and this association persisted for 

both normal weight and obese individuals [14]. Recently, 

some researchers have also tried to relate muscular 

strength to the risk of suffering from multiple chronic 

diseases. In a cross-sectional study, including 1,145 

subjects aged 50 years and older, Cheung et al. [22] found 

that handgrip strength in men was a more useful marker 

of multimorbidity than chronological age. Results from 

the KORA-Age study, a population-based study of 1,079 

older people, demonstrated that low grip strength is 

inversely and independently associated with 

multimorbidity among older women after controlling for 

traditional confounders, as well as for inflammatory 

markers, telomere length, and levels of physical activity 

[23]. In addition, studies among older people have further 

suggested that there is a strong association between low 

muscle strength and both cognitive impairments and the 

risk of neurodegenerative diseases, such as dementia, 

Alzheimer’s disease, and Parkinson disease [24–28]. All 

the above facts are of great interest from a public health 

perspective as muscular strength is a modifiable risk 

factor that can substantially influence chronic disease risk 

and premature mortality.  

Multiple studies have examined the association 

between muscular strength and all-cause mortality, and all 

reported significant mortality reductions with increased 

levels of muscular strength [29–35]. This strong 

association persisted after adjusting for several cofactors 

and comorbidities and even after controlling for 

cardiorespiratory fitness. Especially in the oldest old 

population, poor handgrip strength has been linked with 

premature mortality, and this association tended to be 

stronger in women [36]. According to the findings of the 

Leiden 85-plus study [37], a population-based study that 

involved all (n=555) 85-year-old inhabitants of Leiden 

(The Netherlands), the risk of all-cause mortality was 

elevated by 35% and 104% in the lowest tertiles of 

handgrip strength among participants at age 85 and 89 

years respectively. Interestingly, in this study, it was also 

shown that handgrip strength had a greater impact on 

mortality than the age of the participants. Two other 

studies clearly confirmed the strong association between 

muscular strength and mortality in older as well as in 

younger populations. A meta-analysis of 53,476 older 

individuals found that the hazard ratio for all-cause 

mortality comparing the weakest with the strongest 

quintile of grip strength was 1.67 after adjustment for age, 

gender, and body size [38]. In the Prospective Urban–

Rural Epidemiology (PURE) study, Leong et al. [11] 

followed 139,691 adults aged between 35 and 70 years 

living in 17 countries for a median time of 4 years in order 

to assess the prognostic value of grip strength on 

mortality. They demonstrated that grip strength was 

inversely associated with all-cause mortality, 

cardiovascular mortality, non-cardiovascular mortality, 

myocardial infarction, and stroke.  

 

Biology of muscle aging  

 

Human skeletal muscle inevitably undergoes remarkable 

changes with aging, characterized by a decline in muscle 

mass and strength of about 1% per year from the age of 

around 40 years [39]. Ultimately, muscle wasting will 

contribute significantly to frailty, immobility, and loss of 

independence. However, the extent of muscle wasting 

differs greatly between individuals due to differences in 

the aging process per se as well as in physical activity 

levels. Alterations in muscle architecture and fiber type 

composition, in tendon mechanical properties and 

vascular control of the contracting muscle are the most 

prominent characteristics associated with the decline in 

mass and functioning of aging skeletal muscle [40–42].   

Age-related changes in muscle architecture 

 

Distinct alterations in muscle architecture occur during 

aging resulting from inactivity (disuse atrophy) and 

originating from the aging process (senile sarcopenia) 

[42]. Whereas disuse atrophy is characterized only by a 

reduction in fiber size, sarcopenia exhibits both reduced 

fiber size and reduced fiber number. In addition, fascicle 

length and pennation angle decrease with aging [43]. The 

observation that the physiological cross-sectional area 

(muscle volume divided by fascicle length) declines with 

disuse and aging as well indicates a more pronounced loss 

of sarcomeres in parallel than sarcomeres in series 

(fascicle length) [42].  
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Age-related changes in fiber type composition 

 

Reduced muscle volume in the elderly results from 

reductions in motor units and muscle fibers. Whereas the 

size of type 1 muscle fibers is nearly maintained, type 2 

fiber size diminishes [44]. Nevertheless, the loss of fibers 

remains the main reason for the reduced muscle mass and 

strength with aging. Type 2 fibers seem to be particularly 

prone to increasing denervation with increasing age [45]. 

Fiber loss, however, is at least partly prevented because 

type 1 motor neurons form connections to denervated type 

2 fibers. As a consequence, type 1 motor neurons become 

enlarged at the expense of type 2 fibers [45]. Muscle 

unloading (disuse) provokes a slow-to-fast transition, 

indicated by the elevation of fast myosin heavy chain 

(MHC) isoforms as well as fast myosin light chain (MLC) 

isoforms [46]. In contrast to disuse, aging per se results in 

a fast-to-slow transition, partly explained by the 

denervation of type 2 fibers and the glycation of the MHC 

[47].        

 
Figure 1. Age-related decline of endurance and strength performance in trained versus untrained 

subjects. Age-related decline in the anaerobic threshold (VO2AT) in Master’s mountain runners and 

sedentary subjects (A) and peak power in Master’s weight lifters and sedentary control subjects (B); 

(modified from ref. 58, 59).   

Mechanisms proposed 

 

Several mechanisms besides physical inactivity may 

explain aging-related muscle wasting. Age-related 

changes in the cerebral cortex have been proposed as a 

potential contributing factor, although no significant loss 

of motor cortical neurons seems to occur there [48]. 

However, there is a progressive loss of motor units (MUs) 

during the first five or six decades of life, which 

accelerates thereafter [49]. Axonal atrophy with aging 

may result from reduced axonal transport, degeneration of 

mitochondria, and accumulations of filaments also seen in 

neurodegenerative diseases [50]. Consequently, a 

denervation of type 2 fibers and their reinnervation by 

type 1 MUs probably develops in relation to the 

alterations in testosterone and estrogen (explaining sex 

differences), thyroid hormone levels, mitochondrial 

dysfunction, oxidative stress, low-grade inflammation, 

and insulin resistance [51]. In particular, the functional 

deterioration of mitochondria with aging and the related 

increase in oxidative stress may represent an important 

pathophysiological process of aging [52]. In addition, 

vasodilation and vascular control seem to be 

compromised in the aging skeletal muscle contributing to 
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the decline in exercise performance. Responsible 

mechanisms may include smaller and stiffer vessels, 

impaired endothelium-dependent vasodilation, increased 

sympathetic vasoconstriction, alterations in metabolic or 

myogenic control, and diminished effectiveness of the 

skeletal muscle pump [42]. Most importantly, lifestyle 

characteristics such as physical activity and dietary habits 

have the potential to modify the aging process 

significantly.  

 

Physiological response to exercise training 

 

The rapid and pronounced effects of resistance training 

(concentric and/or eccentric) on strength and muscle mass 

in healthy adults are as well established as the beneficial 

implications of endurance exercise on the cardiovascular 

and skeletal muscle systems. Mitochondrial biogenesis 

promoted by exercise (endurance and/or strength) 

contributes significantly to the beneficial outcomes of 

exercise training [53]. There is also convincing evidence 

that resistance training of sufficient intensity is an 

effective measure for counteracting muscle wasting and 

frailty in very old people [54]. Apart from the aging 

process per se, disuse often contributes importantly to 

muscle wasting and decline in cardiovascular fitness. 

Examples of dramatic disuse-related reductions in 

strength and muscle mass are bed rest and weightlessness 

[55]. In contrast, acute resistance exercise enhances 

myofibrillar muscle protein synthesis in young as well as 

in older individuals of both sexes [56]. Thus, physical 

inactivity promotes a circulus vitiosus in aging 

individuals, leading to coordinated deadaptation of the 

cardiovascular and skeletal muscle systems, which are in 

charge of oxygen delivery to and oxygen utilization in 

working muscles [57]. In contrast, exercise training 

counteracts this circulus vitiosus, resulting in coordinated 

beneficial adaptations of these systems [57]. The much 

higher physical fitness (strength and endurance) levels of 

aging athletes compared with their sedentary peers are 

largely explained by their regular high-intensity physical 

activity throughout the life span [58, 59] (Fig. 1). 

Resistance type of exercise 

 

A single bout of resistance training is associated with a 

two- to threefold increase in muscle protein synthesis, 

which may be additionally enhanced by the intake of a 

protein-rich diet [60, 61]. Elderly sedentary subjects can 

achieve up to more than 50% strength gain even after 6 

weeks of resistance training when performing two or three 

sessions per week applying a sufficiently high intensity 

(about 70–80% of maximal strength) [62]. To cause 

essential hypertrophy of muscle fibers, additional new 

myonuclei are necessary [63]. Skeletal muscle fibers are 

multinucleated, and these myonuclei are post-mitotic and 

cannot proliferate. Thus, for repair and renewal of 

myofibers, myogenic progenitor cells, termed satellite 

cells, are competent [64]. These satellite cells are in a 

quiescent state and only become activated when exposed 

to stress such as weight bearing or trauma resulting in 

proliferation and differentiation into new myonuclei, 

which fuse with existing muscle fibers [64]. It is believed 

that the increase in the number of satellite cells in 

response to various types of resistance training is different 

between young and older individuals, likely representing 

a limiting factor for muscle fiber hypertrophy in the 

elderly [63]. With regard to gender, resistance training has 

been shown to increase the myonuclear and satellite cell 

contents of type II muscle fibers and related muscle mass 

with no differences between older men and women [65]. 

Finally, resistance training also has the potential to 

increase respiratory capacity and the intrinsic function of 

mitochondria of skeletal muscles [66].    

Endurance type of exercise 

 

Endurance exercise training is the method of choice to 

maintain or improve cardiovascular fitness. Aerobic 

capacity (VO2max) has been shown to improve greatly in 

young as well as older (about 70 years) subjects in 

response to 12 weeks of endurance training [67]. There 

was a linear increase in VO2max during the 12-week 

training period, finally amounting to 30% improvement in 

the older group. Although this VO2max increase was 

mainly achieved (about 70%) by an increase in maximal 

cardiac output, oxygen extraction in working muscles 

significantly contributed to the improvement in aerobic 

capacity [67]. These training adaptations occurring in 

skeletal muscle contribute importantly to the ability to 

perform sustained exercise [57]. Muscle adaptations to 

repeated bouts of endurance exercise include increased 

capillary supply, elevations in key enzyme activities of the 

mitochondrial electron transport chain, and related 

enhancement in mitochondrial protein accumulation [57]. 

As a consequence, trained muscles at the same exercise 

intensity show a higher rate of fat oxidation, less use of 

muscle glycogen, and less lactate production, all 

contributing to improved exercise tolerance. Endurance 

exercise interventions have been reported to increase 

mitochondrial content on account of upregulation of 

transcriptional regulators of mitochondrial biogenesis 

[68]. The authors observed marked increases in the gene 

expression of peroxisome proliferator-activated receptor-

γ coactivator-1 (PGC-1α) by 50% and of mitochondrial 

transcription factor A (TFAM) comparable to that found 

in older subjects after a similar exercise intervention [69]. 

Taken together, a combined exercise program consisting 

of both resistance-type and endurance-type exercise may 
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best help to ameliorate the loss in skeletal muscle mass 

and function, prevent muscle aging comorbidities, and 

improve physical performance and quality of life.  

 

Dietary protein, muscle, and healthy aging  

 

Protein nutrition is an important component of the diet of 

older individuals. Protein is an essential nutrient; thus, at 

least a minimal amount of protein intake is necessary to 

support healthy living. However, older individuals are at 

high risk of insufficient protein intake, most probably as a 

consequence of aging malnutrition and anabolic 

resistance in aged muscle [70]. Furthermore, concomitant 

inflammation observed in chronic diseases leads to 

protein degradation and reduced skeletal muscle protein 

synthesis (MPS) and, consequently, to higher protein 

requirements [71]. Therefore, the current recommended 

dietary allowance (RDA) for protein of 0.8 grams of 

protein per kilogram of body mass per day might not be 

adequate for maintaining muscle and bone health in old 

age [72]. Recent research has provided evidence of the 

additional benefits of a greater dietary protein intake (i.e., 

1.5 g/kg body mass/day) beyond the prevention of 

sarcopenia [73], most relevant in both the genesis of and 

recovery from fractures [74, 75]. Still, one of the major 

issues regarding protein intake is identifying how proteins 

derived from animal and plant sources differ in their 

capacity to enhance immunity in elderly people and how 

much protein is needed as the combination of exercise and 

protein ingestion has a positive, often synergistic effect on 

MPS [76–78].   

Anabolic resistance of MPS with aging—the importance 

of exercise 

 

With aging, a progressive loss of skeletal muscle mass 

(defined as sarcopenia) occurs at a rate of 3–8% each 

decade after the age of 30 years [79], which has been 

attributed to impaired skeletal MPS, triggered by reduced 

amino acid delivery to aged skeletal muscle [80]. Older 

people appear to have a blunted muscle protein synthetic 

response to the two main anabolic stimuli, protein 

administration [81] or resistance exercise [82]. Several 

factors may influence the stimulation of MPS after a 

protein meal that may lead to anabolic resistance with 

aging. These include impairments in protein digestion and 

amino acid absorption [83], postprandial muscle tissue 

perfusion [84], muscle uptake of dietary amino acids [85], 

or a reduced amount or activation of anabolic signaling 

proteins [81, 86]. However, Burd and colleagues 

highlighted the hypothesis that physical inactivity is a key 

factor responsible for the proposed anabolic resistance of 

MPS with aging [87]. Indeed, several studies have shown 

that physical exercise performed before protein intake 

augments muscle protein synthetic response to protein 

ingestion and allows more of the ingested protein-derived 

amino acids to be used for de novo MPS in aging muscle 

[78, 88]. A recent study found that older individuals who 

are perhaps unable to consume large amounts of protein 

can still benefit from ingesting smaller amounts of protein 

before sleep by performing exercise beforehand, thereby 

increasing the overnight muscle protein synthetic 

response [76]. This simple strategy may help to preserve 

muscle mass and strength in the older population and, as 

such, support healthy aging. 

Clinical benefits of protein supplementation 

 

Muscle atrophy is an unfortunate effect of aging and many 

diseases and can compromise physical function and 

impair vital metabolic processes [89]. Interventions for 

sarcopenia include exercise and nutrition [90, 91], 

because both have a positive impact on protein anabolism 

but also enhance other aspects that contribute to well-

being in sarcopenic older adults, such as physical 

function, quality of life, and anti-inflammatory state [92]. 

Resistance training leads to a genuine increase in lean 

body mass and muscle strength in healthy older adults and 

is therefore considered to be the best exercise method for 

the treatment of sarcopenia [93]. Growing evidence 

supports increasing muscle protein uptake through 

nutrient interventions coupled with appropriate 

contractile manipulation [94]. Of importance for older 

adults, low load weight lifting effectively stimulates the 

rates of MPS to a level comparable with traditional high 

loads, besides other benefits such as improved aerobic 

capacity [95].   

In many wasting diseases, muscle atrophy can be 

attributed to detrimental metabolic changes inducing 

catabolic crises. For example, rapid muscle wasting 

occurs early in critical illness, the extent of which 

determines recovery and survival [96, 97]. Thus, early 

interventions to enhance anabolism are required. 

Functional electrical stimulation has become a clinically 

established method to prevent the loss of muscle mass for 

patients who are not able to perform active exercise [98]. 

This technique appears to be a useful adjunct to reverse 

muscle wasting in long-term intensive care unit patients 

by reducing protein degradation and inflammation in 

postoperative patients, which can positively affect the 

immune and inflammatory response seen in critical illness 

[99]. Furthermore, protein energy malnutrition is a 

condition that affects many hospital patients and consists 

of a variety of alterations including decreased intake of 

calories and/or protein and excess weight loss [100]. 

Insufficient dietary intake is not only related to the 

development of sarcopenia [101], but is also a major risk 

factor for illness and mortality in older hospitalized 
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medical patients [102]. In malnourished older patients, 

short-term protein supplementation solely significantly 

increased both dietary intake and lean body mass [103]. 

Furthermore, immunonutrition has become a popular 

approach to augment the immune response of medically 

ill, immobilized patients. However, in critical medical 

care settings, nourishment alone has not improved clinical 

outcomes in numerous controlled trials [104, 105]. 

Indeed, the results of a recent systematic review of 

randomized clinical trials demonstrates that, although 

nutritional interventions increase daily caloric and protein 

intake as well as body weight, there is little effect of 

nutritional support on clinical outcomes in malnourished 

medical inpatients [106]. Perhaps that aggressive nutrition 

might not be sufficient unless you train these patients, 

because low skeletal muscle area may play a significant 

role. Muscularity represents a potential new marker for 

identifying mortality risk but, more importantly, permits 

the early identification of patients who may benefit from 

integrated immune-modulating nutrition. High-quality 

randomized clinical trials are needed to fill this gap.  

The aging muscle is also a significant predictor of 

falls and fractures associated with a loss of independence 

in old age [107, 108]. Thus, anabolic interventions against 

sarcopenia are particularly relevant in this cohort, as it is 

more prevalent in older hip fracture patients [109]. 

Although protein energy undernutrition predicts poor 

outcome in hip fracture patients, increased energy and 

protein intake have a favorable effect on the postoperative 

course in older individuals with hip fractures [110]. In 

summary, clinicians should not overlook the benefit of 

combined exercise and protein ingestion. Muscle 

stimulation is essential in order to prevent muscle wasting, 

maintain normal muscle function, and reduce 

inflammation in hospitalized patients; these are crucial 

ways to attenuate infection development and mortality. In 

addition, there is a clear need for dietary protein intake 

above the current RDA in older individuals, especially 

during periods when musculoskeletal mass is 

compromised, such as immobilization, with experts 

recommending between 1.2 and 2.0 g/kg body mass per 

day [111].  

Protein quantity, quality, and timing of consumption  

 

Several factors related to protein nutrition, including the 

dose, source, and timing of ingested protein, as well as the 

co-ingestion of other macronutrients may influence the 

magnitude of the muscle protein response to exercise. It is 

clear that the essential amino acids are critical for optimal 

stimulation of MPS. It is generally accepted that the 

optimal amount of protein ingestion following exercise to 

stimulate maximal rates of MPS is ≈20–25g [112]. 

However, recent data suggest that this amount may be 

insufficient in the elderly [113]. Stimulation of MPS in 

older adults increases, even up to 40 g of protein intake 

during recovery from resistance-type exercise. Yet, 

consuming large protein quantities in a single meal may 

be difficult for older people [114]. To solve this problem, 

experts recommend the ingestion of “suboptimal” doses 

of protein via supplementation with specific amino acids 

such as leucine [115–117]. Leucine is a powerful signal 

for stimulation of the mammalian target of the rapamycin 

complex-1 (mTORC1) pathway, which is responsible for 

the initiation of protein translation and is thus often used 

as a proxy measure for MPS [118]. Animal proteins have 

a higher proportion of the amino acid leucine. Whey 

protein is most effective in stimulating post-exercise MPS 

when compared with casein or soy protein [119]. The 

timing of protein ingestion represents another important 

factor for muscle protein anabolism. Although isolated 

proteins (e.g., whey, soy) should be consumed during or 

immediately after an exercise bout, the ingestion of 

protein-dense foods, such as dairy and meat, should be 

90–120 minutes prior to exercise [91]. Most important for 

older adults, however, is to consume an adequate amount 

of high-quality protein at each meal, in combination with 

physical exercise.  

 

Tryptophan-kynurenine metabolism and immune 

activation in aging 

 

Immune activation in aging influences the metabolism of 

amino acids [120]. Although less than 1% of dietary 

tryptophan is utilized for protein synthesis, tryptophan 

metabolism could be of special relevance in the elderly. 

Essential amino acid tryptophan is not only the sole 

precursor of serotonin and thus important for mood and 

cognition, but it is also linked to inflammation and 

immune activation via the so-called kynurenine pathway 

(KP), which is often systemically upregulated when the 

immune response is activated [121]. Th1-type cytokine 

interferon-gamma, among other biochemical pathways, 

induces tryptophan breakdown by the enzyme 

indoleamine 2,3-dioxygenase (IDO-1). As a result of the 

accelerated IDO-1 activity, levels of indoleamines 

tryptophan and serotonin become diminished, and this 

may increase the risk of, e.g., cognitive impairments. The 

activated immune system in older persons can be detected 

by increased kynurenine to tryptophan concentrations 

(Fig. 2).  

Energy restriction clearly results in low plasma 

tryptophan and hence its availability, which can 

undermine serotonin metabolism, the KP, and 

subsequently the immune system [122]. Furthermore, the 

flux of tryptophan down the hepatic KP is enhanced by 

competing amino acids such as leucine [123]. Although a 

high-protein diet provides more tryptophan for the KP, 
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tryptophan availability to the brain is paradoxically 

decreased as tryptophan competes with the other large 

neutral amino acids (LNAA) for transport across the 

blood–brain barrier [124]. For example, a breakfast rich 

in proteins induces a significant decrease in the plasma 

total tryptophan to LNAA ratio [125]. Although these 

changes apply to acute protein intake, a high-protein 

intake limits tryptophan availability for the cerebral KP, 

may further influence serotonin synthesis, and can disturb 

memory and cognition as well as sleep and mood, which 

eventually increases the risk of development of dementia 

and depression (Fig. 3).  

 

 

 

 

 
 
Figure 2. The induction of indoleamine 2,3-dioxygenase 1 (IDO1) by aging. The process of aging 

involves pro-inflammatory pathways which include activation of the T-cell–macrophage axis in the 

framework of the cell-mediated (Th1-type) immune response in which the formation of Th1-type 

cytokine interferon-γ (IFN-γ) is of utmost relevance. IFN-γ stimulates a broad spectrum of 

biochemical pathways that are directed to stop unwanted growth of pathogens or malignant cells. 

Among them, the conversion of essential amino acid tryptophan to kynurenine is a key element, 

which on the one hand is involved in a feedback inhibition of T-cell activation via regulatory T-cells 

and thus immunosuppressive. On the other hand, the catabolites generated by this strategy can impact 

on the central nervous system when neuroactive compounds accumulate and pro-inflammatory 

cascades including the formation of reactive oxygen species (ROS) interfere with neuroendocrine 

signaling, which controls mood and behavior. 
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Figure 3. Tryptophan breakdown limits the availability of tryptophan for serotonin synthesis and increases the 

downstream production of neuroactive metabolites. Enhanced tryptophan breakdown by the enzymes tryptophan 

2,3-dioxygenase (tryptophan pyrrolase, TDO) and/or indoleamine 2,3-dioxygenase-1 (IDO-1) can affect several body 

compartments including the brain. Thereby, various intermediate catabolites such as kynurenic acid, picolinic acid, 

and quinolinic acid are formed on the route to nicotinamide adenine dinucleotides. Tryptophan shortage during/after 

the pro-inflammatory response may reduce the availability of the essential amino acid for the biosynthesis of muscle 

proteins and can thus contribute to sarcopenia development with older age. For the transport of tryptophan and 

kynurenine into the brain to cross the blood–brain barrier (BBB), the leucine-preferring L1 system is utilized in 

competition with the so-called large neutral amino acids (LNAA). Once arrived in the brain, astrocytes are able to 

convert kynurenine to neuroprotective kynurenic acid, whereas glial cells primarily produce its neurotoxic counterpart 

quinolinic acid. Alternatively, tryptophan is converted by the tryptophan 5-monooxygenase to 5-hydroxytryptophan, 

which decarboxylates to the product serotonin (5-hydroxytryptamin), an important neurotransmitter and precursor of 

the sleep hormone melatonin. If brain tryptophan is low, serotonin also decreases and can disturb memory and 

cognition as well as sleep and mood, which finally increase the risk of development of dementia and depression.  

 

On the other hand, moderate physical exercise, a 

potent stimulus to modulate tryptophan metabolism, 

could be helpful in improving mood status [126]. During 

exercise, the entry of tryptophan into the brain through the 

blood–brain barrier is favored by increased muscle use of 

branched-chain amino acids (BCAAs) and elevated 

plasma fatty acids. This elevates the ratio of unbound 

tryptophan to BCAA followed by a substantial increase in 

tryptophan availability to the brain, consequently leading 

to higher serotonin concentrations in some areas of the 

brain [127]. Recent results show that regular endurance 

exercise also causes adaptations in kynurenine 

metabolism by increased skeletal muscle kynurenine 

aminotransferase expression, which shifts kynurenine 

metabolism away from neurotoxic kynurenine 

metabolites like quinolinic acid to the production of 

kynurenic acid. By this method, crossing of kynurenine 

through the blood–brain barrier and the disruption of 

neural plasticity are prevented, which can have 

implications for exercise recommendations for patients 

with depressive disorders [128].  

Tryptophan-kynurenine, sarcopenia, and longevity 

 

The process of aging is accompanied by chronic immune 

activation and inflammation, and sarcopenia may 

represent a consequence of a counter-regulatory strategy 

of the immune system to dampen the process of immune 

activation. Thereby, tryptophan breakdown could 
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represent an important checkpoint. Tryptophan 

deprivation can suppress immune activation processes via 

restriction of protein biosynthesis and the induction of 

regulatory T-cells by kynurenine metabolites [129, 130]. 

Accelerated tryptophan breakdown has been observed in 

healthy elderly individuals [131, 132]. It may relate to 

specific clinical diagnoses that are common in old age 

such as cardiovascular diseases, chronic infections, or 

cancer. Likewise, not only loss of immunocompetence, 

but also decline in cognitive abilities and memory and 

higher risk of depressive mood may develop on the basis 

of tryptophan deficiency due to accelerated breakdown. 

Thus, these symptoms may represent side-effects of the 

immunobiochemical events that derive from chronic 

immune activation.  

For a long time, immunosuppressive and/or anti-

inflammatory therapy has been discussed as a 

prophylactic and therapeutic approach to reduce age-

associated ailments and to increase life span [133, 134]. A 

higher rate of tryptophan breakdown and lower serum 

tryptophan levels have been described as being associated 

with a reduced residual life span in individuals with 

cardiovascular risk, and this was true not only for 

cardiovascular mortality but also for overall mortality 

[135, 136]. Interestingly, the immunomodulatory 

properties of rapamycin and resveratrol are also 

responsible for their capacity to suppress tryptophan 

breakdown and IDO-1 activation, which were observed in 

human peripheral blood mononuclear cells in vitro [137, 

138]. Whereas intense physical exercise may provoke 

chronic immune activation and may thus be involved in 

the development of impaired immune function [139], 

moderate physical activity and muscular training can be 

regarded as effective strategies against the overload with 

antioxidants, but to what extent they might be able to 

combat aging-associated alterations in tryptophan 

metabolism remains to be shown. 

 

Conclusion 

 

Muscular strength represents an independent role in the 

prevention of chronic diseases, whereas muscular 

weakness is strongly related to functional limitations and 

physical disability. Furthermore, low muscular strength 

has been recognized as an emerging risk factor for 

premature mortality beyond traditional risk factors such 

as hypercholesterolemia, obesity, hypertension, and 

smoking. For the above reasons and because muscle 

strength is known to decline with age, resistance-type and 

endurance-type exercise are currently prescribed by 

numerous health organizations in order to improve fitness 

and to counteract the adverse effects of aging on health-

related parameters, including the risk of morbidity and 

mortality [140–142]. In addition, the use of dietary protein 

supplementation can further augment protein anabolism, 

but can also contribute to a more active lifestyle, thereby 

supporting well-being and active aging in the older 

population. 
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