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Oxidative stress (OS) has received extensive attention in the last two decades, because of the discovery that abnormal oxidation
status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS), cancer,
and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most
common complex endocrine disorders and a leading cause of female infertility, affecting 4%–12% of women in the world, as OS
has close interactions with PCOS characteristics, just as insulin resistance (IR), hyperandrogenemia, and chronic inflammation. It
has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival,
proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have
an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the
increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process,
providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic.

1. Introduction

Polycystic ovary syndrome (PCOS) is one of the most com-
mon endocrine disorders of women at reproductive age and
the major cause of anovulatory infertility [1]. It was first
described as the change of ovarian morphology by Chereau
in 1844 [2], and the diagnostic criteria were established by the
European Society for Human Reproduction and Embryology
(ESHRE) and American Society for Reproductive Medicine
(ASRM) in 2003 based on the extensive studies during the last
decades, which is the so-calledRotterdamConsensusCriteria
[3]. PCOS is a disease with high heterogeneity, and its clinical
featuresmainly includemenstrual disorder, secondary amen-
orrhea, serum hormone abnormality, hairiness, acne, obesity,
and infertility [3].

PCOS has been regarded as a chronic systemic disease
instead of the simple local disease, and it is frequently
associated with insulin resistance (IR), hyperandrogenemia,
chronic inflammation, and oxidative stress (OS), though the
pathogenesis mechanism has not been well defined [4–8]. A
lot of investigations have revealed thatOS level is significantly
increased in patients with PCOS compared with the normal,
when oxidative status is evaluated by circulating markers,
such as malondialdehyde (MDA), superoxide dismutase
(SOD), and glutathione peroxidase (GPx) [4]. However, OS
level is also observed to be significantly correlated with
obesity, insulin resistance, hyperandrogenemia, and chronic
inflammation [9–12]. Though OS is considered as a potential
inducement of PCOS pathogenesis [4], it is still undeter-
minedwhether the abnormalOS levels of patients with PCOS
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derive from PCOS itself or if they are related to the potential
complications.

Besides the above complications, PCOS is probably
accompanied with some malignant lesions as well, such
as endometrial cancer, breast cancer, and ovarian cancer
[13, 14]. Several investigations indicated that PCOS perhaps
could increase the risk of developing endometrial cancer,
and abnormal hormone level, IR, hyperinsulinemia, and
even obesity were suggested as the potential inducements of
endometrial cancer pathogenesis in PCOS patients [15–18].
What is more, OS, altered in PCOS, is discovered to play
pivotal roles in cancer pathogenesis [19–21]. ROS could cause
genetic changes by attacking DNA, leading to DNA damages,
such as DNA strand breaks, point mutations, aberrant DNA
cross-linking, and DNA-protein cross-linking [22]. As a
result, the mutations in protooncogenes and tumor suppres-
sor genes probably hijacked cell proliferation out of control,
when theDNArepairmechanismhas been disrupted [23, 24].
On the other hand, OS could cause epigenetic changes as
well by DNA methylation, silencing tumor suppressor genes
[25, 26]. Therefore, OS could be one of the major underlying
inducements of the increasing risk of gynecological cancers
in PCOS patients.

2. Altered Oxidative Stress in Polycystic
Ovary Syndrome

Oxidative stress (OS) reflects an imbalance between pro-
duction and scavenging of reactive oxygen/nitrogen species
(ROS/RNS) [27], and excess ROS accumulated in vivo would
induce cell [28, 29], protein [30–32], and lipid damage
[33]. ROS includes both free radical and non-free radical
oxygenated molecules, such as hydrogen peroxide (H

2
O
2
),

superoxide (O
2

∙−), singlet oxygen (1/2 O
2
), and the hydroxyl

radical (∙OH). Reactive nitrogen, iron, copper, and sulfur
species are also involved in OS [34, 35]. Free radicals are the
species possessing unpaired electron in the external orbit and
could exist independently [35, 36]. In general, chemical sub-
stances used for evaluating oxidative status could be divided
into chemical components modified by reactive oxygen,
ROS scavenging enzymes or antioxidative chemicals, and
transcription factors regulating ROS production. However,
it is hard to reflect OS status accurately with the same
biomarkers in various diseases, because OS usually plays
different roles and triggers different signaling pathways in
different diseases, so biomarkers used to evaluate OS in a
particular disease are limited and should be always filtrated
carefully [32, 37–40].

According to the modified criteria defined at Rotter-
dam meeting, polycystic ovary syndrome (PCOS) would be
determined when two of the following three criteria have
been discovered: (1) clinical and/or biochemical evidence of
androgen excess after the exclusion of other related disorders;
(2) oligoovulation or anovulation; (3) ultrasound appearance
of the ovaries: presence of more than 12 follicles in each
ovary measuring 29mm and/or increased ovarian volume
(>10mL) [3].Though the full pathophysiology of PCOS is still
not determined, hyperandrogenemia and insulin resistance

(IR) are frequently involved. The hyperandrogenemia that
accompanies PCOS may be caused by the abnormal ovaries,
adrenal glands, peripheral fat, and hypothalamus-pituitary
compartment. Insulin resistance, frequently appearing in
PCOS as well, results in a compensatory hyperinsulinemia,
which augments luteinizing hormone- (LH-) stimulated
androgen production, either via its own receptors or via
insulin growth factor (IGF-1) receptors [41]. As a syndrome,
PCOS is usually treated based on detailed clinical symptoms,
and therapeutic schedules mainly include ovulation induc-
tion, downregulating androgen and LH levels, attenuating IR,
and operation [41].

OS is also intimately involved in PCOS pathogenesis,
since PCOS patients show more serious OS compared with
the normal [4] (Table 1). However, results would not be
consistent absolutely, when different markers are employed
and the same marker is evaluated in different sources and
even with different investigation methods [42–44]. In addi-
tion, OS is involved in the pathological processes of IR,
hyperandrogenemia, and obesity as well, which accompany
PCOS frequently but not absolutely [45]. Thus, appropriate
markers should be chosen to evaluate the OS levels in PCOS
for the particular circumstance. Current employed circulat-
ingmarkersmajorly include homocysteine,malondialdehyde
(MDA), asymmetric dimethylarginine (AMDA), superoxide
dismutase (SOD), glutathione (GSH), and paraoxonase-1
(PON1) [4]. Because of the complicated cross-link of OS
and physiological and clinical characteristics of PCOS, the
interactions of OS and PCOS would be described below from
major nodes linking OS and PCOS.

2.1. Oxidative Stress, Obesity, and Polycystic Ovary Syndrome.
Obesity, a popular endocrine disease in the world, was firstly
divided into visceral obesity and peripheral obesity by Vague
in 1956 [46], also called central obesity and lower body
obesity. Visceral obesity, the so-called abdominal obesity,
in which visceral adipose tissues are mainly accumulated
in the abdomen and distributed widely on omentum and
mesenterium, around viscera, and in skeletal muscle, could
be determined by the increased waist circumference (WC).
Compared with visceral obesity, peripheral adipose tissues
are mainly accumulated under the peripheral skin, especially
in buttocks and legs, and are usually evaluated by body mass
index (BMI). About 42% of patients with polycystic ovary
syndrome (PCOS) have the complication of obesity [47].
Abdominal adipose tissue is considered to be correlated with
metabolic diseases more significantly than subcutaneous adi-
pose tissue [48]. Diagnosticmethod of abdominal obesity has
not been defined yet, but the size and the thickness of visceral
fat determined by electronic computer X-ray tomography
technology (CT) are often regarded as the golden standard
[49]. In addition,WC is a simple and reliable criterion usually
applied to evaluate abdominal obesity in clinic. Abdominal
obesity is regarded as a common complication of PCOS, and
the risk of abdominal obesity in PCOS women ranges from
40% to 80% because of the differences of people and nations
[50, 51]. Bodymass index (BMI) is used as a popular criterion
in clinic to evaluate obesity; however, about 50% of PCOS
patients with normal BMI still have abdominal obesity [51].
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Therefore, both BMI and WC should be considered when
considering the contribution of obesity to PCOS etiology.

Obese patients are expected to have more serious oxida-
tive stress (OS) levels [52], and significant correlations of
OS markers with obesity indexes, such as BMI and WC,
are discovered [53, 54]. Levels of markers that could reflect
the degrees of lipid peroxidation and protein peroxida-
tion, such as oxidized low density lipoprotein (ox-LDL),
malondialdehyde (MDA), thiobarbituric reactive substances
(TBARS), and advanced oxidation protein products (AOPP),
increase significantly in the obese patients compared with
the normal, and levels of markers that could reflect the
antioxidant ability, such as glutathione peroxidase (GSH-
Px) and copper- and zinc-containing superoxide dismutase
(CuZn-SOD), decreased significantly [55–57]. As an impor-
tant pathological and physiological process, OS is associated
with a number of chronic diseases, which are the main
complications of obesity. What is more, the investigation of
Khan et al. [58] reported that systemic OS levels of obese
females without smoking history, diabetes, hypertension,
dyslipidemia, dysfunctions of liver and kidney, and tumor
history were still significantly higher than nonobese females,
and GSH concentrations of erythrocytes were significantly
lower. In addition, obese patients havemore serious oxidative
stress as well while PCOS patients are ruled out [9, 59]. Thus,
obesity, besides abdominal obesity, is directly associated with
OS and contributes to the increased OS levels in PCOS [60].

However, obesity is not the only factor leading to the
more serious oxidative status of PCOS, and other factors
are considered to have contributions as well. While obese
patients are ruled out according to BMI, nonobese women
with PCOS still have more serious oxidative stress compared
with those without PCOS (Table 1). What is more, when
PCOS patients with abdominal obesity are excluded instead
of peripheral obesity, the result remains the same [61]. In
conclusion, obesity is a one of the impact factors contributing
to the increased OS levels in PCOS but not the only one.

2.2. Oxidative Stress, Insulin Resistance, and Polycystic Ovary
Syndrome. Insulin resistance (IR) is a physiological condi-
tion inwhich a given concentration of insulin produces a less-
than-expected biological effect, because cells fail to respond
to the normal actions of the hormone insulin, leading to dys-
functions of glucose transfer and utilization [62, 63]. Andres
clamp technique is the most accurate method to diagnose
IR, but its high cost limits the clinical acceptance; therefore,
fasting insulin (FINS) and homeostasis model assessment of
insulin resistance (HOMA-IR) are usually employed in clinic
[64, 65]. IR is regarded as the core mechanism of polycystic
ovary syndrome (PCOS) pathogenesis [3], and the IR rate of
PCOS patients ranges from 50% to 70% [66, 67]. In fact, IR
markers of women with PCOS, such as HOMA-IR, increase
significantly compared with normal women and are usually
significantly correlated with oxidative stress (OS) markers
[10, 68, 69].

IR encourages OS because hyperglycemia and higher
levels of free fatty acid lead to reactive oxygen species
(ROS) production [45, 70]. When excess glucose or free fatty
acid are absorbed in the cell, a large number of reducing

metabolites, just like pyruvic acid and acetyl coenzymeA,will
be transferred into mitochondria for oxidization, leading to
enhancing the activity of electron transport chain and single
electron transfer, finally resulting in increasing ROS produc-
tion. Furthermore, OS would be caused if reducing enzymes,
just like super oxidative dismutase (SOD), peroxidase, and
catalase, fails to scavenge the excess ROS in the cell [27, 71].
In the IR model of animals induced by high fructose, OS
is observed to be enhanced, with the increased protein car-
bonyl, nonesterified fatty acid (NEFA) and malondialdehyde
(MDA), O

2

−, reduced glutathione (GSH), and so on [72–74].
As it is known, IR is frequently accompaniedwith obesity and
exists in about half of the obese [47], so IR is also regarded as
one of the core mechanisms by which obesity contributes to
OS. In the study of Huber-Buchholz et al., reducing the body
weight by 11%, obese women were demonstrated to increase
insulin sensitivity by 71% and decrease fasting insulin levels
by 33% [75]. However, the correlation of oxidative stress and
IR is still significant independent of obesity [10].

Though the full mechanism of OS-induced IR remains
unclear, OS has been demonstrated to play crucial roles in
IR pathogenesis [70, 76]. In multiple studies, it was reported
that exposure to oxidative stress inhibits the metabolic
pathways induced by insulin in L6 myotube and 3T3-L1
adipocyte models [77, 78]. According to the investigation of
Bloch-Damti and Bashan, insulin-stimulated glucose uptake,
glycogen synthesis, and protein synthesis would be inhibited
after exposure to 50𝜇M H

2
O
2
for 2 hours [70]. Oxygen

radical plays an important role in glucose regulation [79].
For example, H

2
O
2
could regulate the insulin release of 𝛽

cell stimulated by glucose and participate in the regulation
of insulin signaling pathway [80]. In general, insulin receptor
substrate (IRS) is the key player of IR pathogenesis [81]. With
the increased OS, various protein kinases are activated to
induce serine/threonine phosphorylation of IRS and inhibit
normal tyrosine phosphorylation of IRS, reducing the capac-
ity of IRS to combine with insulin receptor, suppressing
IRS to activate the downstream phosphatidyl inositol 3-
kinase (PI3K); and finally insulin signal to the effector via
insulin receptor (InsR)/IRS/PI3K pathway is interfered with.
In addition, serine/threonine phosphorylation of IRS could
also induce the degradation of IRS and make IRS become the
inhibitor of InsR kinase [82, 83]. Insulin signaling pathways
could also be activated by OS mainly through Jun N-
terminal kinase/Stress Activated Protein Kinase (JNK/SAPK)
signaling pathway and inflammatory signaling pathway (I𝜅B
kinase/nuclear factor 𝜅B, IKK/NF-𝜅B), leading to IR via post-
insulin receptor defect [84–86].

IR in PCOS is alternative for glycometabolism, and the
synthesis of sex hormones is enhanced [87, 88]. The mecha-
nism of the alternative IR in PCOS still remains unclear, but
post-insulin receptor defect in insulin signaling is regarded
as the major pathogenesis mechanism of IR in PCOS [89].
Levels of Ser-phosphorylated IRS-1 of adipose tissue and
serum in PCOS women are significantly higher than those
in controls, whereas IRS-1 tyrosine phosphorylation levels in
PCOSwomen are lower than in controls [90, 91].The amount
of IRS-1 decreases in adipose tissue and granulosa cells but
increases in PCOS theca cells [61, 92]. Levels of activated
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Table 1: Oxidative stress (OS) markers employed in polycystic ovary syndrome (PCOS) patients are shown in the table.

Biomarkers evaluating OS level Location and source
OS levels of PCOS patients
compared with the normal References

Independent of obesity
Markers reflecting oxidative levels

Malondialdehyde (MDA) Serum; erythrocyte Higher Higher [4, 42, 43, 69, 126, 158, 177–182]
Advanced glycosylated end products (AGEs) Serum Higher [177, 183]
Xanthine oxidase (XO) Serum Higher [184]
8-Hydroxydeoxyguanosine (8-OHdG) Serum Lower Lower [185]
Lipid peroxidation (LPO) Follicular fluid; serum Higher [178, 186]
Protein carbonyl Serum Higher [187]

Reactive oxygen species (ROS)
Follicular fluid;
granulose cell;

mononuclear cell
Higher [186, 188, 189]

Total oxidant status (TOS) Serum Higher Higher [190, 191]
Oxidative stress index (OSI) Serum Higher [190]
Homocysteine (Hcy) Serum Higher Higher [4]
Asymmetric dimethylarginine (ADMA) Serum Higher Higher [4]
Prolidase (PLD) Serum Higher [190]
Nitrotyrosine (Ntyr) Serum Higher [192]
Uric acid Serum Higher [192]
Neopterin (NEO) Serum Higher Higher [193]

Markers reflecting antioxidative levels

Superoxide dismutase (SOD) Serum; erythrocyte;
follicular fluid Higher Higher [4, 42–44, 182, 194, 194]

Glutathione (GSH) Serum Lower Lower [4, 43]
Paraoxonase 1 (PON1) Serum Lower Lower [4, 69, 179, 184]
Heme oxygenase-1 (HO-1) Serum Lower [195]
Total antioxidant status (TAS) Serum Lower Lower [126, 187]
Total antioxidant capacity (TAC) Follicular fluid; serum Lower [69, 186]
Vitamin E Serum Lower [178]
Vitamin C Serum Lower [178]
Thiol Serum NS Lower [94, 184]
L-Carnitine Serum Lower [196]

extracellular signal-regulated kinase 1/2 (ERK1/2) of adipose
tissue and serum in PCOS women are observed to be higher
than those in controls, but levels of insulin receptor, glucose
transporter-4 (GLUT4), and PI3K are lower [61, 90].

Thus, OS is intimately associated with IR and is possible
to be the major inducement of IR in PCOS via post-insulin
receptor defect. In addition, studies with antioxidants such
as vitamin E, 𝛼-lipoic acid, and N-acetylcysteine indicate
a beneficial impact on insulin sensitivity and offer the
possibility of new treatment approaches for IR [93]. So, IR is
certainly involved in the physiological process of PCOS but
may well be a noninitial factor caused by OS. However, OS
still remains increased in PCOS independent of obesity and
IR [94, 95].

2.3. Oxidative Stress, Chronic Inflammation, and Polycystic
Ovary Syndrome. Chronic low-grade inflammation is con-
sidered as an important feature of polycystic ovary syndrome

(PCOS) and has been suggested to participate in the patho-
genesis and development of PCOS [96, 97]. Inflammatory
markers, such as C-reactive protein (CRP), tumor necrosis
factor (TNF), interleukin-6 (IL-6), interleukin-18 (IL-18),
monocyte chemotactic protein-1 (MCP-1), and acute phase
serum amyloid A (APSAA), increased in women with PCOS
comparedwith the normal [98–102]. It has been accepted that
there is a tight link of oxidative stress (OS) and inflammation,
and it is hard to distinguish inflammation fromOS absolutely;
they are usually accompanied with each other [37]. Reactive
oxygen species (ROS) could induce releasing inflamma-
tory factors and inflammatory response, via activating the
associated signaling pathways of nuclear factor-𝜅B (NF-𝜅B),
activated protein-1 (AP-1), and hypoxia-inducible factor-1
(HIF-1) [103]. On the other hand, ROS could be generated
by rheumatoid synovial cells via the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase system (Nox),
during exposure to two major rheumatoid arthritis (RA)
cytokines, interleukin-1𝛽 (IL-1𝛽) and TNF-𝛼 [104, 105].
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Inflammation has also been demonstrated to be associ-
ated with IR in PCOS [106]. It was reported that adipose-
derived TNF-𝛼 levels in mice were increased during the
advancement of obesity, but when TNF-𝛼 was neutralised,
insulin sensitivity was improved [107]. As well as OS,
inflammation could induce insulin resistance (IR) mainly
via interfering with post-insulin receptor signaling pathway,
insulin receptor substrate 1-phosphatidyl inositol 3 kinase-
protein kinase B (IRS1-PI3K-PKB/Akt) pathway [108].

2.4. Oxidative Stress, Hyperandrogenemia, and Polycystic
Ovary Syndrome. Hyperandrogenemia is a classical feature
of polycystic ovary syndrome (PCOS), and 70%–80% of
women with hyperandrogenemia are diagnosed with PCOS
[109]. Hyperandrogenemia is regarded as the core patho-
genesis of PCOS, as PCOS models of animals could be
established by excess androgen administration [110, 111]. For
the increased androgen levels in PCOS, insulin resistance (IR)
is regarded as the primary factor, by compensatory hyper-
insulinemia [112]. Insulin is reported to stimulate ovarian
androgen secretion directly alone and/or augment luteinizing
hormone- (LH-) stimulated androgen secretion [113–115].
In addition, insulin may also enhance the amplitude of
gonadotropin-releasing hormone- (GnRH-) stimulated LH
pulses, decrease hepatic production of serum sex hormone-
binding globulin (SHBG), and/or decrease insulin-like
growth factor binding protein-1 (IGFBP-1) [116–121]. Finally,
the availability of free insulin-like growth factor-1 (IGF-1) is
increased to stimulate androgen production [122, 123].

However, oxidative stress (OS) and inflammation seem
to contribute to hyperandrogenemia in PCOS, but detailed
interactions still remain unclear, as few investigations
have been discovered to focus on the subject. In multi-
investigations, OS and inflammation markers are discovered
to be positively correlated with androgen levels in PCOS
patients [124–126]. In vitro, OS was reported to enhance the
activities of ovarian steroidogenesis enzymes, which could
stimulate androgen generation, and antioxidative chemicals,
just as statins, inhibit the activities [127]. Tumor necrosis
factor-𝛼 (TNF-𝛼), an inflammatory marker associated with
tissue inflammation, was reported to have the ability to
promote the proliferation of mesenchymal cells of follicular
membrane and the synthesis of androgen in the rat [128].

Hyperandrogenemia seems to have the ability to cause
obesity, IR, andOS in females and female animals. Compared
with controls, PCOS models induced by excess androgen
have increased weights, triglycerides, nonesterified fatty acid
(NEFA), fasting serum insulin (FINS), fasting blood glucose
(FBG), homeostasis model assessment of insulin resistance
(HOMA-IR), and altered oxidative stress markers, such as
malondialdehyde (MDA), glutathione (GSH), and superox-
ide dismutase (SOD) [129–132]. In addition, afterwomenwith
normal body mass index (BMI) of reproductive age were
administered with oral dehydroepiandrosterone (DHEA) to
increase the androgen levels in vivo, blood samples were
obtained both under fasting state and after glucose stimula-
tion, and leukocytic reactive oxygen species (ROS) genera-
tion, p47(phox) gene expression, and plasma thiobarbituric
reactive substances (TBARS) were discovered to be increased

to promote oxidative stress [101]. Nuclear factor-𝜅B (NF-𝜅B)
is the potential crucial mediator of inflammation induced
by hyperandrogenemia [133–135]. Expression and phospho-
rylation level of NF-𝜅B increased, and interleukin-6 (IL-6)
and monocyte chemotactic protein-1 (MCP-1) synthesis was
enhanced in adipose cells after administering testosterone,
but IL-6 and MCP-1 levels decreased when NF-𝜅B inhibitors
were administered as well [136].

It is interesting to note that androgen may also play a role
in protecting cells or tissues from inflammation and oxidative
stress. In the obese PCOS patients, body mass, free fatty acid
level, IL-6 level, andC-reactive protein (CRP) level increased,
while androgen level was downregulated with GnRH agonist
for a long term [137]. In addition, androgen was reported
to have the ability to enhance the activity of hormones-
sensitive lipase (HSL) to promote lipolysis and inhibit adipose
tissue further growth [138]. Thus, a hypothesis was raised
that androgen may contribute to anti-inflammation by pro-
moting lipolysis, limiting adipose tissue addition, and further
reducing inflammatory factor synthesis [137, 139]. In human
decidual endometrial stromal cells, expressions of forkhead
box protein O1 (FOXO1) and superoxide dismutase 2 (SOD2)
could be promoted by dihydrotestosterone (DHT) to enhance
the resistance to oxidative stress [140]. It indicates that the
functions of androgenmay performmultiformity in different
circumstances and depend on the dosage.

3. Polycystic Ovary Syndrome and Cancers

A higher risk for cancers of the reproductive tract, especially
endometrial cancer, seems to be related to polycystic ovary
syndrome (PCOS) [141–144]. In addition, PCOS women also
manifest clinical features, correlated with risk factors for
breast cancer and ovarian cancer [13, 14, 145]. However,
defined associations of PCOS, breast cancer, and ovarian
cancer have not been found yet until recently [14]. The asso-
ciation of PCOS and endometrial was firstly reported in 1949,
and the complicated interrelationship between endometrial
cancer and PCOS has been recognized for several years,
involving multiple risk factors, such as obesity, diabetes,
hypertension, anovulation, nulliparity, and family history
[16, 17, 146]. The meta-analysis of the data collected by
Chittenden et al. [145] suggests that women with PCOS
are more likely to develop cancer of the endometrium (OR
2.70, 95% CI 1.00–7.29), and the risk would increase to 3-
fold, which was confirmed by Haoula et al. [143]. While the
same meta-analysis was done by Fearnley et al., a similar
conclusion was obtained, but the risk of endometrial cancer
in PCOS women was enhanced to 4-fold (OR 4.0, 95% CI
1.7–9.3) compared with controls in another study based on
Australian women younger than 50 years [147]. In addition,
the increased risk for endometrial cancer in PCOS women
is modified to 2.7-fold (95% confidence interval 1.0–7.3) by
AmsterdamESHRE/ASRM-Sponsored 3rd PCOSConsensus
Workshop Group [148].

3.1. Contributions of Oxidative Stress to Cancer Pathogenesis.
Oxidative stress (OS), which is altered in PCOS, increases in
malignant cells compared with normal cells in culture and in
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vivo [149, 150]. OS could induce directly genetic variation by
DNAdamage, such asDNA chain rupture, basemodification,
DNA-DNA crosslinking, DNA-protein crosslinking, and epi-
genetic change, including elevated DNA methylation level,
which both play important roles in the pathogenesis of cancer
[12, 22]. Most modifications of DNA bases locate on the
eighth carbon atom of deoxy guanine, forming 8-hydroxy-
deoxyguanosine (8-OHdG).The formation of 8-OHdG could
make the modified guanine replaced by thymine, leading to
gene mutation and resulting in the base pairing error of “G-
C→T-A” in the process of DNA replication [22, 151]. The 8-
OHdG level of tumor cell is found to be significantly higher
than that of normal cell and further regarded as a classical
biomarker of oxidative DNA damage [152]. Though 8-OHdG
could not kill cells directly, it could induce the nearby
DNA bases to be modified singularly, aggravating genome
instability and tumor cell transfer [153].While adducts, just as
8-OHdG, avoidDNA self-repair by 8-oxoguanine glycosylase
(OGG1) and mutY DNA glycosylase (MUTYH), genetic
mutations (point mutations mainly) could be caused, and
cancer would initiate if the DNA mutations locate in cancer-
related genes, such as Ras protooncogene and p53 cancer
suppressor gene [25, 26, 151, 154].

DNA methylation refers to the process that the methyl
group of S-adenosyl-L-methionine (SAM) is transferred to
adenine base or cytosine base of DNA catalyzed by DNA
transmethylase (Dnmt) after DNA replication, modifying the
DNA [155]. DNA methylation is involved in expression and
control of genes and acts specifically according to tissue and
gene. In the normal cells, the normal state of genome is
held by hypomethylation levels of the promoter region of
tumor suppressor genes and hypermethylation levels of some
repetitive sequences, such as long interspersed nuclear ele-
ment (LINE1) and Alu element [156]. DNA damage induced
by reactive oxygen species (ROS), especially ∙OH, could
influence the connection of DNA, as a substrate, with Dnmt,
decreasing the methylation levels of the whole genome [26].
However, ROS also could induce hypermethylation of the
promoter regions of cancer suppressor genes, promoting cell
malignant transformation [157].

3.2. Oxidative Stress-Induced DNA Damage in Polycystic
Ovary Syndrome. Micronucleus (MN) frequency, evaluated
by cytokinesis block micronucleus index, which reflects
genomic instability, is increased in PCOS patients compared
with controls [158–161]. Furthermore, women with PCOS
show a significant increase in DNA strand breakage and
H
2
O
2
-induced DNA damage [162]. In addition, elevated

chromosome malsegregation (assessed by X chromosome
chromogenic in situ hybridisation) and reduced mitochon-
drial DNA (mtDNA) copy number (reflecting mitochondrial
metabolism) are also found in PCOS [159, 163].

Serum MDA levels, an OS marker, were observed to
be positively correlated with MN in PCOS patients but not
the normal [158]. In addition, mtDNA copy number was
negatively correlated with indices of insulin resistance, waist
circumference, and triglyceride levels and positively corre-
lated with sex hormone-binding globulin levels [163]. Signif-
icant correlations were also found between free testosterone

and DNA strand breakage and H
2
O
2
-induced DNA damage

[162]. As stated above, there are intimate interactions between
OS and IR and obesity. It seems that the altered oxidative
stress in PCOS has increased the instability of genes and the
risk of DNA mutations and potentially contributes to the
pathogenesis of gynecological cancers.

3.3. Obesity and Endometrial Cancer. Obesity could sig-
nificantly aggravate OS and is usually accompanied with
PCOS and is well known to be associated with endometrial
hyperplasia and endometrial cancer, thus being regarded as
one of themost significant risk factors for endometrial cancer
[15]. Approximately 70–90% of Type 1 (estrogen-dependent)
endometrial cancer patients are obese [164], and Schouten
et al. demonstrated that obesity increased the risk of endome-
trial cancer by 4.5 times [165]. In fact, several studies show
that adiposity contributes to the increased incidence and/or
death from cancers of not only endometrium but also colon,
breast, kidney, ovary, esophagus, stomach, pancreas, gallblad-
der, and liver [166, 167]. Furthermore, this increased endome-
trial cancer risk related to PCOS is reduced by almost one-half
when adjusted for body mass index (BMI) (OR 2.2, 95% CI
0.9–5.7), emphasizing that obesity plays a key role in endome-
trial cancer pathogenesis, possibly via oxidative stress [15].

3.4. Insulin Resistance and Endometrial Cancer. Insulin resis-
tance (IR), which is also significantly associated with OS
regardless of obesity, is another common feature of PCOS and
endometrial cancer and is regarded as the potential mech-
anism of endometrial hyperplasia and endometrial cancer
pathogenesis in PCOS [14]. Elevated fasting serum insulin
levels and insulin responses after glucose administration have
been found in postmenopausal women with endometrial
cancer [168]. In the study of Zhang, it is statistically significant
that 12 of 19 PCOS patients with IR show endometrial
hyperplasia or endometrial canceration compared to 4 of 15
PCOS patients without IR [169].

Just as stated above, IR would induce compensatory
hyperinsulinemia, and excess insulin would increase insulin
growth factor-1 (IGF-1). Insulin and IGF have been shown to
accelerate the growth of endometrial cancer cells in vitro, and
the mitogenic effect of hyperinsulinemia may be mediated by
activation of the mitogen-activated protein kinase (MAPK)
pathway [170], increasing expression of vascular endothelial
growth factor (VEGF) [171]. Conversely, when endometrial
cancer cells are exposed to serum from metformin-treated
women with PCOS, cell growth is attenuated, and signaling
pathways associated with inflammation and tumor invasion
are altered [172]. Hyperinsulinemia reduces insulin-mediated
glucose uptake and also enhances steroidogenesis. As a result,
excessive insulin stimulates theca cell androgen secretion
activity and elevates serum-free testosterone levels through
the pathways stated above [173]. Testosterone level has been
shown to be positively correlated with p-ERK and p-AKT,
which are significantly higher in endometrial tissue of PCOS
patients with endometrial hyperplasia or canceration com-
pared with the normal controls, and play key roles in tumor
proliferation [169]. In addition, just as discussed above, OS is
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an important inducer of IR by post-insulin signaling defects
and has interassociation with hyperandrogenemia. Conse-
quently, IR and hyperandrogenemia may be the potential
converged mechanisms that oxidative stress influences on
during endometrial canceration process.

3.5. Estrogen and Endometrial Cancer. The prolonged expo-
sure to unopposed estrogen in the absence of sufficient
progesterone, which is induced by denominator anovulation,
is also regarded as a major factor causing endometrial
hyperplasia and canceration in PCOS [174–176]. Estrogen
could bind to its nuclear receptor, stimulating secretions of
various growth factors, such as IGF, and epidermal growth
factor (EGF), and activate ERK signaling pathway, to promote
endometrial proliferation and even canceration. In addition,
metabolites of estrogen also could be the inducers of endome-
trial canceration by binding to DNA and causing further

DNA damage, and the procedure is associated with oxidative
stress. Under oxidative stress, estrogen intermediate metabo-
lites, including 2-hydroxyl estrone (2-OHE1), 4-hydroxyl
estrone (4-OHE1), and 16𝛼-hydroxyl estrone (16𝛼OHE1),
could not be methylated and eliminated from the body
and would be oxidized to semiquinonoid compounds and
quinonoid compounds. The two abnormal types of metabo-
lites of estrogen with electron affinity bind to nucleophilic
group of DNA by covalent bond, causing DNAmutation, and
further lead to endometrial canceration process.

3.6. Polycystic Ovary Syndrome and Other Cancers. In the
investigation of Schildkraut et al. [142], ovarian cancer risk
is found to increase to 2.5-fold (95% confidence interval [CI]
1.1–5.9) among women with PCOS, and the association is
found to be stronger among women who never used oral
contraceptives (odds ratio [OR] 10.5, 95% CI 2.5–44.2) and
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women who were in the first quartile of body mass index
(13.3–18.5 kg/m2) at the age of 18 (OR 15.6, 95% CI 3.4–71.0).
Though PCOS perhaps could increase the risk of ovarian can-
cer based on the limited few studies, the association of them
has also been under the doubt and needs more evidences to
be proved. On the other hand, breast cancer seems to be not
associated with PCOS based on the current limited data [14].
In addition, powerful evidences are needed to evaluate the
associations between PCOS and vaginal, vulvar, and cervical
cancer or uterine leiomyosarcoma. Nevertheless, obesity and
estrogen excess are suggested as the two important factors
inducing cancers besides endometrial cancer [14].

4. Conclusion

It is known that DNA damage and methylation induced
by oxidative stress (OS) play key roles in the early stage
of tumor pathogenesis and tumor conversion by activating
protooncogene and silencing antioncogene. Mechanistically,
the abnormal oxidative stress in polycystic ovary syndrome
(PCOS) patients could cause genetic instability and raise the
risk of cancers. OS has been demonstrated to be significantly
associatedwith obesity, insulin resistance (IR), inflammation,
and hyperandrogenemia, which are the common characteris-
tics and potential inducers of PCOS and endometrial cancer
and could participate and be induced in an interweaving
way during disease physiology (Figure 1). ROS and proin-
flammatory factors, produced under OS, could induce IR
majorly through IRS-PI3K-Akt by activation of associated
signaling pathways, such as NF-𝜅B and JNK. Hyperinsuline-
mia, compensatory for IR, contributes to cancer pathogenesis
by activating cell proliferation signaling pathways and finally
leads to malignant transformation. In addition, OS, IR,
and inflammation could be induced by excess androgen in
vivo and involved in obesity. Thus, OS is considered as an
initial factor, leading to cancers in PCOS. It remains to be
determined whether other potential pathways mediated by
oxidative stress could play roles in the pathogenesis of PCOS
related cancers.
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[20] J. Krstić, D. Trivanović, S. Mojsilović, and J. F. Santibanez,
“Transforming growth factor-beta and oxidative stress inter-
play: implications in tumorigenesis and cancer progression,”
Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID
654594, 15 pages, 2015.

[21] S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal,
“Oxidative stress, inflammation, and cancer: how are they
linked?” Free Radical Biology & Medicine, vol. 49, no. 11, pp.
1603–1616, 2010.

[22] D. Ziech, R. Franco, A. Pappa, andM. I. Panayiotidis, “Reactive
Oxygen Species (ROS)—Induced genetic and epigenetic alter-
ations in human carcinogenesis,”MutationResearch, vol. 711, no.
1-2, pp. 167–173, 2011.

[23] M. A. Lebedeva, J. S. Eaton, andG. S. Shadel, “Loss of p53 causes
mitochondrial DNA depletion and altered mitochondrial reac-
tive oxygen species homeostasis,” Biochimica et Biophysica
Acta—Bioenergetics, vol. 1787, no. 5, pp. 328–334, 2009.

[24] H. Bartsch and J. Nair, “Chronic inflammation and oxidative
stress in the genesis and perpetuation of cancer: role of lipid
peroxidation, DNA damage, and repair,” Langenbeck’s Archives
of Surgery, vol. 391, no. 5, pp. 499–510, 2006.

[25] K. V. Donkena, C. Y. F. Young, and D. J. Tindall, “Oxidative
stress and DNA methylation in prostate cancer,” Obstetrics and
Gynecology International, vol. 2010, Article ID 302051, 14 pages,
2010.

[26] R. Franco, O. Schoneveld, A. G. Georgakilas, and M. I. Panayi-
otidis, “Oxidative stress, DNAmethylation and carcinogenesis,”
Cancer Letters, vol. 266, no. 1, pp. 6–11, 2008.

[27] A. M. Pisoschi and A. Pop, “The role of antioxidants in the
chemistry of oxidative stress: a review,” European Journal of
Medicinal Chemistry, vol. 97, pp. 55–74, 2015.

[28] R. De Bont and N. van Larebeke, “Endogenous DNA damage in
humans: a review of quantitative data,”Mutagenesis, vol. 19, no.
3, pp. 169–185, 2004.

[29] Y. Hiraku and S. Kawanishi, “Immunohistochemical analy-
sis of 8-nitroguanine, a nitrative DNA lesion, in relation to
inflammation-associated carcinogenesis,”Methods inMolecular
Biology, vol. 512, pp. 3–13, 2009.

[30] I. Dalle-Donne, R. Rossi, D. Giustarini, A. Milzani, and R.
Colombo, “Protein carbonyl groups as biomarkers of oxidative
stress,” Clinica Chimica Acta, vol. 329, no. 1-2, pp. 23–38, 2003.

[31] I. Dalle-Donne, D. Giustarini, R. Colombo, R. Rossi, and A.
Milzani, “Protein carbonylation in human diseases,” Trends in
Molecular Medicine, vol. 9, no. 4, pp. 169–176, 2003.

[32] I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, and A.
Milzani, “Biomarkers of oxidative damage in human disease,”
Clinical Chemistry, vol. 52, no. 4, pp. 601–623, 2006.

[33] T. Tezil and H. Basaga, “Modulation of cell death in age-related
diseases,” Current Pharmaceutical Design, vol. 20, no. 18, pp.
3052–3067, 2014.

[34] B. Halliwell, J. M. C. Gutteridge, and C. E. Cross, “Free radicals,
antioxidants, and human disease: where are we now?” The
Journal of Laboratory and Clinical Medicine, vol. 119, no. 6, pp.
598–620, 1992.

[35] P. A. Riley, “Free radicals in biology: oxidative stress and the
effects of ionizing radiation,” International Journal of Radiation
Biology, vol. 65, no. 1, pp. 27–33, 1994.

[36] J. M. C. Gutteridge, “Biological origin of free radicals, and
mechanisms of antioxidant protection,” Chemico-Biological
Interactions, vol. 91, no. 2-3, pp. 133–140, 1994.

[37] H. N. Siti, Y. Kamisah, and J. Kamsiah, “The role of oxidative
stress, antioxidants and vascular inflammation in cardiovascu-
lar disease (a review),” Vascular Pharmacology, vol. 71, pp. 40–
56, 2015.

[38] N. C. Brown, A. C. Andreazza, and L. T. Young, “An updated
meta-analysis of oxidative stress markers in bipolar disorder,”
Psychiatry Research, vol. 218, no. 1-2, pp. 61–68, 2014.

[39] S. Selek, A. Altindag, G. Saracoglu, and N. Aksoy, “Oxidative
markers of Myeloperoxidase and Catalase and their diagnostic
performance in bipolar disorder,” Journal of Affective Disorders,
vol. 181, pp. 92–95, 2015.

[40] M. Siwek, M. Sowa-Kuaema, D. Dudek et al., “Oxidative stress
markers in affective disorders,”Pharmacological Reports, vol. 65,
no. 6, pp. 1558–1571, 2013.

[41] A. Alchami, O. O’Donovan, and M. Davies, “PCOS: diagnosis
and management of related infertility,” Obstetrics, Gynaecology
& Reproductive Medicine, 2015.
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