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Abstract

Upstream reciprocity (also called generalized reciprocity) is a putative mechanism for cooperation in social dilemma
situations with which players help others when they are helped by somebody else. It is a type of indirect reciprocity.
Although upstream reciprocity is often observed in experiments, most theories suggest that it is operative only when
players form short cycles such as triangles, implying a small population size, or when it is combined with other mechanisms
that promote cooperation on their own. An expectation is that real social networks, which are known to be full of triangles
and other short cycles, may accommodate upstream reciprocity. In this study, I extend the upstream reciprocity game
proposed for a directed cycle by Boyd and Richerson to the case of general networks. The model is not evolutionary and
concerns the conditions under which the unanimity of cooperative players is a Nash equilibrium. I show that an abundance
of triangles or other short cycles in a network does little to promote upstream reciprocity. Cooperation is less likely for a
larger population size even if triangles are abundant in the network. In addition, in contrast to the results for evolutionary
social dilemma games on networks, scale-free networks lead to less cooperation than networks with a homogeneous
degree distribution.
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Introduction

Several mechanisms govern cooperation among individuals in

social dilemma situations such as the prisoner’s dilemma game.

Upstream reciprocity, also called generalized reciprocity, is one

such mechanism in which players help others when they

themselves are helped by other players. It is a form of indirect

reciprocity, in which individuals are helped by unknown others

and vice versa [1,2].

Cooperation based on upstream reciprocity has been observed

in various laboratory experiments. Examples include human

subjects in variants of the trust game, which is a social dilemma

game [3–5], human subjects participating in filling out tedious

surveys [6], and rats pulling a lever to deliver food to a conspecific

[7]. Even more experimental evidence is available in the field of

sociology in the context of social exchange [8,9] (also see [10,11]

for classical examples of the Kula ring).

Nevertheless, theory and numerical simulations have revealed

that upstream reciprocity in isolation does not promote cooper-

ation (but see Barta et al. [12] for an exception). Upstream

reciprocity usually supports cooperation only when combined with

another mechanism that can yield cooperation on its own.

Cooperation appears when the population size is small [13,14],

upstream reciprocity is combined with direct reciprocity or spatial

reciprocity [15], players move across groups [16], players interact

assortatively [17], or players inhabit heterogeneous networks [18].

In their seminal study, Boyd and Richerson analyzed an

upstream reciprocity game on a directed cycle and showed that it

yields cooperation only when the cycle is small [13]. The shortest

possible cycle with indirect reciprocity consists of three players

( Fig. 1) because a cycle composed of two players only involves

direct reciprocity. Cooperation is intuitively less likely for longer

cycles because a player that helps a unique downstream neighbor

on the cycle has to ‘‘trust’’ too many intermediary players for their

tendency to cooperate before the player eventually receives help.

Real social networks are full of short cycles represented by

triangles, a feature known as transitivity [19] or clustering [20–22].

Therefore, a natural expectation is that larger networks with a

high level of clustering (i.e., many triangles) may facilitate

cooperation based on upstream reciprocity [8]. In the present

study, I address this issue theoretically. I extend the model of Boyd

and Richerson [13] to general networks and derive the condition

under which the unanimity of players using upstream reciprocity is

resistant to invasion of defectors. Then, I apply the condition to

model networks to show that clustering does little to promote

cooperation except in an unrealistic network. This conclusion

holds true for both homogeneous and heterogeneous networks,

where heterogeneity concerns that in the degree, i.e., the number

of neighbors for a player.

My results seem to contradict previous results for spatial

reciprocity in which clustering enhances cooperation in the

prisoner’s dilemma game [23] and those for heterogeneous

networks in which heterogeneity enhances cooperation in various

two-person social dilemma games [24–27] and in the upstream

reciprocity game [18]. These previous models are evolutionary,

however, whereas mine and the original model by Boyd and
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Richerson [13] are nonevolutionary and based on the Nash

equilibrium. I opted to use a nonevolutionary setting in this study

because interpretation of evolutionary games seems elusive for

heterogeneous networks [28,29] (see Discussion for a more

detailed explanation).

Results

Preliminary: upstream reciprocity on a directed cycle
Boyd and Richerson proposed a model of upstream reciprocity

on the directed cycle [13]. By analyzing the stability of a

unanimous population of cooperative players, they showed that

cooperation is unlikely unless the number of players, denoted by

N , is small.

In their model, the players are involved in a type of donation

game. Each player may donate to a unique downstream neighbor

on a directed cycle at time t~0 by paying cost c(w0). The

recipient of the donation gains benefit b(wc). Among the

recipients of the donation at t~0, those who comply with

upstream reciprocity donate to a unique downstream neighbor at

t~1 by paying cost c. Chains of donation are then carried over to

downstream players, who may donate to their downstream

neighbors at t~2. At t~1, defectors that have received a

donation at t~0 terminate the chain of donation. Such defectors

receive benefit b at t~0 and lose nothing at t~1. This procedure

is repeated for all players until all the chains of donation terminate.

If all the players perfectly comply with upstream reciprocity, the

chains never terminate. In contrast, if there is at least one defector,

all the chains terminate in finite time.

As in iterated games [30,31], w (0ƒwv1) is the probability that

the next time step occurs. We can also interpret w as the

probability that players complying with upstream reciprocity do

donate to their downstream neighbors, such that they erroneously

defect with probability 1{w in each time step. Each player’s

payoff is defined as the discounted sum of the payoff over the time

horizon. In other words, the payoff obtained at time t (§0)

contributes to the summed payoff with weight wt.

It may be advantageous for a player not to donate to the

downstream neighbor to gain benefit b without paying cost c over

the time course. However, a player that complies with upstream

reciprocity may enjoy a large summed payoff if chains of donation

persist in the network for a long time.

Each player is assumed to be of either classical defector (CD;

termed unconditional defection in [13]) or generous cooperator

(GC; termed upstream tit-for-tat in [13]). By definition, a CD does

not donate to the downstream neighbor at t~0 and refuses to

relay the chain of donation received from the upstream neighbor

to the downstream neighbor at t§1. A GC donates at t~0 and

donates to the downstream neighbor if the GC received a donation

from the upstream neighbor in the previous time step.

For this model, Boyd and Richerson obtained the condition

under which the unanimity of GCs is robust against the invasion of

a CD (i.e., conversion of one GC into CD). When all players are

GC, the summed payoff to one GC is equal to

(b{c)(1zwzw2z . . . )~
b{c

1{w
: ð1Þ

If N{1 players are GC and one player is CD, the unique CD’s

summed payoff is given by

b(1zwzw2z . . . zwN{1)~
b(1{wN{1)

1{w
: ð2Þ

Therefore, GC is stable against the invasion of CD if the right-

hand side of Eq. (1) is larger than that of Eq. (2), that is,

wN{1
w

c

b
: ð3Þ

Equation (3) generalizes the result for direct reciprocity [30,31],

which corresponds to the case where N~2. Equation (3) also

implies that cooperation is likely if w is large. However,

maintaining cooperation is increasingly difficult as N increases.

Model
I generalize the Boyd-Richerson model on a directed cycle to

the case of general networks. Consider a network of N players in

which links may be directed or weighted. I denote the weight of

the link from player i to j by Aij§0. I assume that the network is

strongly connected, i.e., any player is reacheable from any other

player along directed links. Otherwise, chains of donation starting

from some playes never return to them because of the purely

structural reason. In such a network, it would be more difficult to

maintain cooperation than in strongly connected networks. Even

for strongly connected networks that might accommodate

upstream reciprocity, I will show that cooperation is not likely

for realistic network structure.

Assume that all the players are GC and that each GC starts a

chain of donation of unit size at t~{?. Therefore, the total

amount of donation flowing in the network in each time step is

equal to N. In the steady state, the total amount of donation that

each player receives from upstream neighbors is equal to that each

player gives to downstream neighbors in each time step. I denote

the total amount of donation that reaches and leaves player i by

Nvi, where
PN

i~1 vi~1. In this situation, the amount of donation

that player i imparts to player j in each time step is equal to

NviAij=kout
i , where kout

i :
PN

‘~1 Ai‘ is the outdegree of player i.
Player i receives payoff (b{c)Nvi in each time step.

In our previous work [18], we assumed that each GC starts a

unit flow of donation at t~0. In the present study, however, I wait

until the flow reaches the steady state before starting the game at

t~0.

The definition of CD for general networks is straightforward; a

CD donates to nobody for t§0. I extend the concept of GC to the

case of general networks as follows. On a directed cycle, a GC

quits helping its downstream neighbor once the GC is not helped

by the upstream neighbor [13]. On a general network, the total

amount of donation that GC i receives per unit time in the

absence of a CD is equal to Nvi~
PN

‘~1 Nv‘A‘i=kout
‘ . If there is a

CD, the total amount of donation that GC i receives may be

smaller than the amount that player i would receive in the absence

of a CD. By definition, the GC responds to this situation by

relaying the total amount of the incoming donation proportionally

to all its downstream neighbors in accordance with the weights of

the links outgoing from player i.

Figure 1. Directed cycle with N~3 nodes.
doi:10.1371/journal.pone.0025190.g001
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As an example, suppose that one upstream neighbor of GC i,
denoted by j, is CD and all the other N{1 players, including

player i, are GC. At t~0, the total amount of donation that i

receives is equal to
PN

‘~1,‘=j Nv‘A‘i=kout
‘ , which is smaller than

Nvi. Player i donates Nvi in total. Therefore, player i’s payoff at

t~0 is equal to b
PN

‘~1,‘=j Nv‘A‘i=kout
‘ {cNvi. In response to the

amount of donation that player i received at t~0, player i adjusts

the total amount of donation that it gives the downstream

neighbors from Nvi to
PN

‘~1,‘=j Nv‘A‘i=kout
‘ at t~1. Therefore,

player i donates
PN

‘~1,‘=j (Nv‘A‘i=kout
‘ )|(Aij

0 =kout
i ) to its down-

stream neighbor j
0
. This quantity is smaller than the donation that

player i would give player j
0

in the absence of CD j, which would

be equal to NviAij
0 =kout

i .

An implicit assumption is that the GC cannot identify the

incoming links along which less donation is received as compared

to the case without a CD. In other words, even if a GC is defected

by the CD in the upstream, the GC cannot directly retaliate.

Instead, the GC distributes the retaliation equally (i.e., propor-

tionally to the weight of the link) to its downstream neighbors.

Stability of upstream reciprocity in networks
In this section, I derive the condition under which no player is

motivated to convert from GC to CD when all the players are

initially GC.

The steady state v~(v1 . . . vN ) is equivalent to the stationary

density of the simple random walk in discrete time. It is given as

the solution of

v~vD{1A, ð4Þ

where A~(Aij) is the N-by-N adjacency matrix, where Aij

represents the weight of the link from i to j, and the diagonal

matrix D is defined as D~diag(kout
1 , . . . ,kout

N ). The (i,j) element

of D{1A is equal to Aij=kout
i , that is, the probability that a walker

at node i transits to node j in one time step. If the network is

undirected, the solution of Eq. (4) is given by vi~ki=
PN

‘~1 k‘,

where ki~kout
i ~

PN
‘~1 Ai‘~

PN
‘~1 A‘i.

The summed payoff to player i is equal to

X?
t~0

(b{c)wtNvi~
(b{c)Nvi

1{w
: ð5Þ

To examine the Nash stability of the unanimity of GC, I analyze

the situation in which player i is CD and the other N{1 players

are GC. At t~0, the N{1 GCs pay cNvj (j=i), and player i pays

nothing. Therefore, the benefits to the N players, including player

i, at t~0 are given in vector form by

bNv(I{Ei)D
{1A, ð6Þ

where I is the N-by-N identity matrix, and Ei is the N-by-N
matrix whose (i,i) element is equal to one and all the other

elements are equal to zero. The benefit to player j (1ƒjƒN ) at

t~0 is equal to the jth element of the row vector given by Eq. (6).

At t~1, the downstream neighbors of player i donate less

because player i defects at t~0. The amount of donation given to

player j, where j is not necessarily a neighbor of i, at t~0 is equal

to the jth element of the row vector Nv(I{Ei)D
{1A. Therefore,

the total amount that GC j(=i) donates to its downstream

neighbors at t~1 is equal to the jth element of Nv(I{Ei)D
{1A.

Player i, who is CD, does not donate to others at t~1. Therefore,

the amount of the donation issued by the players at t~1 is

represented in vector form as Nv(I{Ei)D
{1A(I{Ei). The

discounted benefits that the players receive at t~1 are given in

vector form by

wbNv (I{Ei)D
{1A

� �2
: ð7Þ

By repeating the same procedure, we can obtain the summed

benefits to the players in vector form as

bNv
X?
t~0

wt (I{Ei)D
{1A

� �
tz1~bNv(I{Ei)D

{1A I{w(I{Ei)D
{1A

� �{1
: ð8Þ

To derive Eq. (8), I used the fact that the spectral radius of

w(I{Ei)D
{1A is smaller than unity (that of D{1A is equal to

unity). The ith element of Eq. (8) is equal to the summed payoff to

player i because player i does not pay the cost to donate at any t.
If the ith element of Eq. (8) is smaller than the quantity given by

Eq. (5), player i is not motivated to turn from GC to CD.

Therefore, the unanimity of GC is stable if and only if

bNv(I{Ei)D
{1A I{w(I{Ei)D

{1A
� �{1jiv

(b{c)Nvi

1{w
(1ƒiƒN), ð9Þ

where ji indicates the ith element of a vector. By rearranging terms

of Eq. (9), I obtain

v I{(I{Ei)D
{1A

� �
: I{w(I{Ei)D

{1A
� �{1jiw

c

b
vi (1ƒiƒN): ð10Þ

Because vD{1A~v, Eq. (10) can be reduced to

Ai1

ki

� � � AiN

ki

� �
I{w(I{Ei)D

{1A
� �{1jiw

c

b
(1ƒiƒN): ð11Þ

Equation (11) is never satisfied when w~0 because Aii~0. It is

always satisfied when w&1 because the left-hand side of Eq. (10)

tends to vi as w?1.

For a directed cycle having N nodes, v~(1 . . . 1)=N, kout
i ~1

(1ƒiƒN ), and Aij is equal to 1 if (iz1) mod N~j and 0
otherwise. Owing to the symmetry with respect to i, we only have

to consider the condition (i.e., Eq. (9) or Eq. (11)) for player 1 and

obtain the following:

v(I{Ei)D
{1A~

1

N
(1 0 1 . . . 1), ð12Þ

v (I{Ei)D
{1A

� �2
~

1

N
(1 0 0 1 . . . 1), ð13Þ

v (I{Ei)D
{1A

� �N{1
~

1

N
(1 0 . . . 0), ð14Þ

v (I{Ei)D
{1A

� �N
~(0 . . . 0): ð15Þ

Therefore, Eq. (11) can be read as wN{1
wc=b, which reproduces

the result by Boyd and Richerson [13].

Clustering Does Not Promote Upstream Reciprocity
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Numerical results for various networks
For general networks, calculating I{w(I{Ei)D

{1A
� �{1

, which

is used in Eqs. (9) and (11), is technically difficult because this

matrix may have nondiagonal Jordan blocks. Standard formulae

for decomposing matrices under independence of different

eigenmodes do not simply apply. The method for efficiently

calculating I{w(I{Ei)D
{1A

� �{1
is described in the Methods

section.

I conducted numerical simulations for different networks to

determine the threshold value of w, denoted by wth, above which

the unanimity of GC is stable against invasion of CD. The

conclusions derived from the following numerical simulations are

summarized as follows: (a) abundance of triangles (and other short

cycles) hardly promotes cooperation, and (b) networks with

heterogeneous degree distributions yield less cooperation than

those with homogeneous degree distributions.

Network models. I use five types of undirected networks

generated from four network models. It would be even more

difficult to obtain cooperation in directed networks because

undirected networks generally allow more direct reciprocity than

directed networks (see Discussion for a more detailed explanation).

The regular random graph (RRG) is defined as a completely

randomly wired network under the restriction that all nodes (i.e.,

players) have the same degree k [21,22]. The RRG has low

clustering (i.e., low triangle density) and is homogeneous in degree

[21,22,32].

To construct a network from the Watts-Strogatz (WS) model

[32], nodes are placed in a circle and connected such that each

one is adjacent to the k=2 closest nodes on each side on the circle.

In this way, each node has degree k. A fraction p of the links is

then rewired, and a selected link preserves one of its end nodes and

abandons the other end node. Then, I randomly select a node

from the network as the new destination of the rewired link such

that self-loops and multiple links are avoided. I use two cases, one

in which p~0 and the other in which p is small but greater than

zero. In both cases, the network has a high amount of clustering.

When p~0, the network is homogeneous in degree and unrealistic

because it has a large average distance between nodes. When p is

positive and appropriately small, the degree is narrowly distributed

and the network has a small average distance [32].

As an example of networks with heterogeneous degree

distribution, I use the Barabási-Albert (BA) model. It has a

power-law (scale-free) degree distribution p(k)!k{3, a small

average distance, and low level of clustering [20,33].

To probe the effect of triangles in scale-free networks, I use a

variant of the Klemm-Eguluz (KE) model [34,35]. For appropriate

parameter values, my variant of the KE model generates scale-free

networks with p(k)!k{3, small average distances, and a high

level of clustering.

The effect of clustering. For a fixed network and a fixed

value of cost-to-benefit ratio c=b, the threshold value of w above

which the unanimity of GC is stable against conversion of player i
into CD depends on i. I denote this value by wth(i). I determine

wth as the largest value of wth(i) (1ƒiƒN ). This is true because

once a certain player i turns from GC to CD, other players may be

also inclined to turn to CD. It is straightforward to extend the

condition shown in Eq. (9) to the case of multiple CD players. For

example, we can similarly derive the condition under which player

j turns from GC to CD when player i (=j) is CD and all the other

N{2 players are GC. For example, on the left-hand side of Eq.

(9), we just need to replace Ei with EizEj . I confirmed for all the

following numerical results that once a player turns from GC to

CD, some others are also elicited to turn from GC to CD

according to the Nash criterion and that such a transition from

GC to CD cascades until all players are CD. In loose terms, this

phenomenon is reminiscent of models of cascading failure of

overloaded networks, which mimic, for example, blackouts on

power grids [36].

The relationship between wth and c=b is shown in Fig. 2(a) for

the five networks with N~20 and mean degree k~4. The

parameter values for the networks are explained in the caption of

Fig. 2. A small c=b value results in a small wth value, indicating

that cooperation is facilitated. This is generally the case for various

mechanisms for cooperation [2,37].

For reference, the results for direct reciprocity (wth~c=b) and

upstream reciprocity on the directed triangle (Fig. 1; wth~
ffiffiffiffiffiffiffi
c=b

p
)

are also shown in Fig. 2(a) by thin black lines. Except for small c=b

Figure 2. Relationship between threshold discount factor (wth)
and cost-to-benefit ratio (c=b). I use the five types of networks and
set (a) N~20, k~4, and (b) N~200, k~6. The results for direct
reciprocity (i.e., wth~c=b) and upstream reciprocity on the directed
triangle (i.e., wth~

ffiffiffiffiffiffiffi
c=b

p
) are also shown by thin black lines for

comparison. In (a), I set the rewiring probability for the WS model to
p~0 and p~0:1. For the BA model, there are initially m0~2 nodes (i.e.,
dyad), and the number of links that each added node has is set to m~2.
For my variant of the KE model, the initial number of nodes and the
number of links that each added node has are set to m~2, and an
active node i is deactivated with probability proportional to (kiza){1 ,
where a~2. After constructing the network based on the original KE
model [34], I rewire fraction p~0:1 of randomly selected links to make
the average distance small. In (b), I set p~0 and p~0:05 for the WS
model, m0~m~3 for the BA model, and m~a~3 and p~0:05 for the
KE model.
doi:10.1371/journal.pone.0025190.g002
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values, the five networks with N~20 possess higher wth values as

compared to these reference cases.

The two networks generated from the WS model yield smaller

values of wth than those obtained from the RRG, indicating that

the WS model allows more cooperation than the RRG. Because

the degree distributions of these networks are almost the same and

the average distances of the RRG and the WS model with p~0:1
do not differ by much [32], I ascribe this difference to clustering.

An abundance of triangles and short cycles in networks (i.e., the

WS model) enhances cooperation. However, the difference in wth

is not very large. In quantitative terms, clustering does little to

promote cooperation.

The same conclusion is supported for heterogeneous networks

(the BA and KE models). Values of wth for the KE model, which

yields a high level of clustering are smaller than those for the BA

model, which yields a low level of clustering. However, the wth

values for the KE model are considerably larger than those for the

RRG and the WS model, and the differences between the results

for the BA and KE models are small.

To summarize, clustering promotes cooperation but only to a

small extent. To further substantiate this finding, I looked at

different cases. Figure 2(b) compares wth and c=b values for the

networks with N~200 and k~6. Figure 3(a) shows the

dependence of wth on N when c=b~1=3. These cases also suggest

that clustering hardly promotes cooperation.

Scale-free versus homogeneous networks. Figure 2

indicates that scale-free networks (i.e., the BA and KE models)

allow less cooperation than networks with a homogeneous degree

distribution (i.e., the RRG and WS model). This is in contrast with

the results for the evolutionary two-person social dilemma games

[24–27] and those for the evolutionary upstream reciprocity game

[18] on heterogeneous networks in which scale-free networks

promote cooperation. The difference stems from the fact that

players in evolutionary games mimic successful neighbors, whereas

in my Nash equilibrium model, players judge whether GC or CD

is more profitable when the other players do not change the

strategies (see Discussion for a more detailed explanation).

To probe the reason why cooperation is reduced on scale-free

networks, I examine the dependence of the player-wise threshold

value, i.e., wth(i) for player i, on node degree ki. I generate a single

network from each of the RRG, the BA model, and the KE model

with N~200 using the same parameter values as those used in

Fig. 2(b). For c=b~1=3, the relationship between wth(i) and ki is

shown in Fig. 4 for all nodes in the three networks. wth(i) decreases

with ki in the BA and KE models. In the RRG, ki is equal to 6 for

all the nodes, and the value of wth(i) is approximately the same for

all the nodes.

wth(i) and ki are negatively correlated because the amount of

donation flow that a putative CD i stops is strongly correlated with

vi. At t~0, it is equal to vi. At t§1, it is generally smaller than vi,

but player i having a large vi value tends to receive a large inflow

of donation, which player i stops in the next time step. For

undirected networks, vi~ki=
PN

‘~1 k‘!ki holds true. Players with

small degrees are therefore tempted to convert to CD because the

impact of the player’s behavior (i.e., to donate or not to donate) on

the entire network is small. Therefore, a small ki leads to a large

wth(i). Even for directed networks, vi and kout
i are often strongly

correlated [38–40]. Because the minimum degree in a scale-free

network is smaller than that in a homogeneous network if the

mean degree of the two networks is equal, scale-free networks have

larger wth as compared to homogeneous networks.

Cooperation in large networks. A comparison of Figs. 2(a)

and 2(b) suggests that a large N makes cooperation unlikely. To

examine this point further, I set c=b~1=3, generated 100

networks for each N value and each network type, calculated

wth, and obtained the mean and the standard deviation of wth.

Because the WS model with p~0 is unique for a given N, the

mean and standard deviation are not relevant in this network.

The mean and standard deviation of wth for the five networks of

various sizes are shown in Fig. 3(a). The results for the BA and KE

models heavily overlap. Cooperation is less likely as N increases in

all models, except for the WS model with p~0. This result is

consistent with that for a directed cycle [13].

wth increases with N not entirely owing to the decreased level

of clustering in the network. To show this, I plot the mean

and standard deviation of the clustering coefficient C([½0,1�),
which quantifies the abundance of triangles in a network [32], in

Fig. 3(b). The clustering coefficient is defined as C:(1=N)|P
N
i~1 (number of triangles including node i)= ½ki(ki{1)=2�.

Figure 3(b) indicates that C decreases with N for the RRG and the

BA model. Therefore, the effect of N and C on wth may be mixed

in these two network models. However, C stays almost constant

Figure 3. Effects of network size (N). (a) Dependence of the
threshold discount factor (wth) on N . (b) Dependence of the clustering
coefficient (C) on N . I use the five types of networks and set c=b~1=3.
The parameter values for the networks are the same as those used in
Fig. 2(b). In (a), the results for the BA and KE models heavily overlap.
doi:10.1371/journal.pone.0025190.g003
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for the WS and KE models. At least for these models, an increase

in wth is considered to originate primarily from an increase in N,

not from changes in the level of clustering.

In Fig. 3(a), wth seems to approach unity as N increases except

for the WS model with p~0. As previously stated, the WS model

with p~0 is unrealistic because it has a large average distance

between pairs of nodes [20–22,32]. Therefore, I conclude that

cooperation based on upstream reciprocity is not likely for

homogeneous and heterogeneous networks in general.

Discussion

I generalized the upstream reciprocity model proposed for a

directed cycle [13] to general networks and reached two primary

conclusions.

First, cooperation based on upstream reciprocity is not likely in

general networks regardless of the abundance of triangles and

heterogeneity in the node degree. Because the networks that I

examined are undirected, some amount of direct reciprocity is

relevant; GC neighbors partially retaliate directly against a CD.

My result that cooperation is unlikely for undirected networks

implies that cooperation would be even more difficult for directed

networks in which direct reciprocity is less available. In directed

networks, direct reciprocity occurs only on reciprocal links

between a pair of players.

Second, I showed that scale-free network models allow less

cooperation (i.e., large wth) as compared to networks with

homogeneous degree distributions. This result is opposite of those

for two-person social dilemma games [24–27] and the upstream

reciprocity game [18]. The difference stems from the fact that the

previous studies assumed evolutionary games and the present

study (and the original model by Boyd and Richerson [13]) is

based on nonevolutionary analysis.

I adopted a nonevolutionary setup and examined the condition

for the Nash equilibrium because the concept of the evolutionary

game on heterogeneous networks seems elusive. Evolutionary

games on heterogeneous networks imply that a player imitates the

strategy of a successful neighbor that is likely to have a different

node degree. However, players with different degrees are

involved in essentially different games because the number of

times that each player plays the game per generation necessarily

depends on the degree. Therefore, for example, a small-degree

player cannot generally expect a large payoff by mimicking a

successful neighbor with a large degree. In this situation, defining

the game and payoff for players with various degrees is compli-

cated [26,28,29]. Use of the Nash criterion does not incur this

type of problem.

The overall conclusions of the present study are negative. To

explain the occurrence of upstream reciprocity in real societies, it

may be advantageous to combine upstream reciprocity with other

non-network mechanisms, such as the ones mentioned in the

Introduction.

Methods

Numerical methods for calculating Eqs. (9) and (11)
I determined wth by applying the bisection method to Eq. (9) or

(11). To calculate I{w(I{Ei)D
{1A

� �{1
for different values of

w, it is beneficial to use the expansion of (I{Ei)D
{1A in terms of

independent modes. This is possible when the adjacency matrix A
for the subnetwork composed of the GCs is diagonalizable, as

shown below.

I assume that there are Ns:N{Nd GCs and Nd CDs. In the

main text, I focused on the case Nd~1. However, the case Nd§2
is also relevant because I verified in the main text that the

appearance of a single CD leads to the further emergence of CDs.

Without loss of generality, I assume that players 1, 2, …, Ns are

GC and players Nsz1, Nsz2, . . ., N are CD, and that the

network is strongly connected. We need to identify all the

(generalized) eigenmodes of EsD
{1A, where

Es:
XNs

i~1

Ei: ð16Þ

I first partition Es, D{1, and A into two-by-two blocks, each

partition corresponding to the set of GC and that of CD. For a

candidate of a left eigenvector of EsD
{1A, denoted by v(i),

v(i)EsD
{1A: v(i)

s v(i)
d

� � INs O

O O

 !
D{1

s O

O D{1
d

 !
Ass Asd

Ads Add

 !

~ v(i)
s D{1

s Ass v(i)
s D{1

s Asd

	 

,

ð17Þ

where INs is the identity matrix of size Ns; Ds and Dd are

diagonal matrices whose diagonal entries are equal to the

outdegrees of the GCs and CDs, respectively; Ass is the Ns-by-

Ns matrix corresponding to the adjacent matrix within the GCs;

and Asd, Ads, and Add are similarly defined blocks of the original

adjacency matrix A. Note that Ads and Add are absent on the

right-hand side of Eq. (17) and as such are not relevant to the

following discussion.

First of all, v(i)~(v(i)
s v(i)

d )~eTi (Nsz1ƒiƒN) is a trivial zero

left eigenvector of EsD
{1A. Here, T denotes transpose, and ei is

the unit column vector in which the ith element is equal to unity

and all the other elements are equal to zero.

To obtain the other Ns generalized eigenmodes of EsD
{1A, I

consider the case in which D{1
s Ass is diagonalizable. Otherwise,

efficiently calculating I{wEsD
{1A

� �{1
via matrix decomposi-

tion is difficult. D{1
s Ass is diagonalizable if the network is

undirected. A diagonalizable D{1
s Ass possesses Ns nondegenerate

left eigenvector v(i)
s (1ƒiƒNs) with the corresponding eigenvalue

li. It is possible that li~lj for i=j.

 

Figure 4. Relationship between threshold discount factor
(wth(i)) and node degree (ki). I use the RRG, the BA model, and
the KE model with N~200 and k~6, and set c=b~1=3. The parameter
values for the networks are the same as those used in Fig. 2(b).
doi:10.1371/journal.pone.0025190.g004
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If li=0, li is an eigenvalue of EsD
{1A, and the corresponding

left eigenvector is given by v(i)~(v(i)
s v(i)

d ), where

v(i)
d ~

v(i)
s D{1

s Asd

li

: ð18Þ

If li~0, Eq. (17) implies that v(i)~(v(i)
s v(i)

d ) is not a left

eigenvector of EsD
{1A. An example network with N~3 that has

nontrivial zero eigenvalues is presented in the next section for a

pedagogical purpose. When li~0, I set v(i)
d ~0 such that

v(i)EsD
{1A~( 0|{z}

Ns zeros

v(i)
s D{1

d Asd|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
of size Nd

): ð19Þ

Because (0 v(i)
s D{1

d Asd) can be represented as a linear sum of eTi
(Nsz1ƒiƒN), v(i) is a type of generalized eigenvector corre-

sponding to li~0.

I denote by u(i) (1ƒiƒNs) the nontrivial generalized right

eigenmodes of EsD
{1A corresponding to v(i). To obtain u(i), I

denote by u(i)
s (1ƒiƒNs) the normalized right eigenvectors of

D{1
s Ass with eigenvalue li. Then,

u(i):
u(i)

s

0

 !
gsize Ns

gNd zeros
(1ƒiƒNs) ð20Þ

are right eigenvectors of EsD
{1A that respect the orthogonality

v(i)u(j)~dij , where d is the Kronecker delta.

For completeness, I obtain the expression of the other Nd right

eigenvectors of EsD
{1A corresponding to the trivial zero

eigenvalue as follows. I align v(i) and u(i) (1ƒiƒNs) such that

nonzero eigenvectors correspond to 1ƒiƒNs{N0 and general-

ized zero eigenmodes correspond to Ns{N0z1ƒiƒNs. Then,

the orthogonality condition v(i)u(j)~dij reads

v(1)
s

v(1)
s D{1

s Asd

l1

..

. ..
.

v
(Ns{N0)
s

v
(Ns{N0)
s D{1

s Asd

lNs{N0

v
(Ns{N0z1)
s

..

.
0

v(Ns)
s

0 INd

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

u(1)
s u(2)

s � � � u(Ns)
s M

0 INd

 !
~I ð21Þ

for an Ns-by-Nd matrix M. Equation (21) yields

M~{ u(1)
s � � � u

(Ns{N0)
s

� �
v(1)

s D{1
s Asd

l1

..

.

v
(Ns{N0)
s D{1

s Asd

lNs{N0

0
BBBBBBB@

1
CCCCCCCA
: ð22Þ

Finally, the decomposition of EsD
{1A is given by

EsD
{1A

~
u(1)

s u(2)
s � � �u(Ns)

s M

0 INd

 !

l1v(1)
s v(1)

s D{1
s Asd

..

. ..
.

lNs{N0
v

(Ns{N0)
s v

(Ns{N0)
s D{1

s Asd

v
(Ns{N0z1)
s D{1

s Asd

0 ..
.

v(Ns)
s D{1

s Asd

0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

~
XNs{N0

j~1

lj

u(j)
s

0

 !
v(j)

s

v(j)
s D{1

s Asd

lj

� �
z

XNs

j~Ns{N0z1

u(j)
s

0

 !
0 v(j)

s D{1
s Asd

	 

:

ð23Þ

Combining Eq. (23) and the orthogonality condition v(i)
s u(j)

s ~dij ,

I obtain

EsD
{1A

� �‘
~

XNs{N0

j~1

l‘j
u(j)

s

0

 !
v(j)

s

v(j)
s D{1

s Asd

lj

� �
(‘§2): ð24Þ

Using Eqs. (16), (23), and (24), we can express the quantities

appearing on the left-hand sides of Eqs. (9) and (11) as

I{w(I{Ei)D
{1A

� �{1
~Iz

XNs{N0

j~1

wlj

1{wlj

u(j)
s

0

 !
v(j)

s

v(j)
s D{1

s Asd

lj

� �

zw
XNs

j~Ns{N0z1

u(j)
s

0

 !
0 v(j)

s D{1
s Asd

	 

,

ð25Þ

(I{Ei)D
{1AI{w(I{Ei)D

{1A
� �{1

~
XNs{N0

j~1

lj

1{wlj

u(j)
s

0

 !
v(j)

s

v(j)
s D{1

s Asd

lj

� �

z
XNs

j~Ns{N0z1

u(j)
s

0

 !
0 v(j)

s D{1
s Asd

	 

:

ð26Þ

If Ass is symmetric, D
{1=2
s AssD

{1=2
s is also symmetric and

therefore diagonalizable by a unitary matrix. Denote the

eigenvalue and the right eigenvector of D
{1=2
s AssD

{1=2
s by l̂li

and ûu(i), respectively. Note that l̂li and ûu(i) are both real and can be

computed relatively easily. Then, we can obtain the relationships

li~l̂li, u(i)
s ~D

{1=2
s ûu(i), and v(i)

s ~ûu(i)TD
1=2
s . We can also obtain

vd~ûu(i)TD
{1=2
s Asr=li when li=0.

Example network yielding nontrivial zero eigenmodes
Consider the undirected network having N~3 nodes as shown

in Fig. 5. For this network I obtain
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D{1A~

0 0 1

0 0 1
1

2

1

2
0

0
BB@

1
CCA: ð27Þ

By turning player 3 from GC to CD, I obtain

(I{E3)D{1A~(E1zE2)D{1A~

0 0 1

0 0 1

0 0 0

0
B@

1
CA: ð28Þ

All of the eigenvalues of matrix (28) are equal to zero, one trivial

and two nontrivial. The one trivial zero eigenvalue originates from

removing player 3 from the network of GCs. The trivial zero left

eigenvector is given by v3~eT3 ~(0 0 1). I select the two

generalized zero left eigenmodes to be vi~eTi (i~1,2). The choice

of v1 and v2 is not unique. The right eigenmodes are given by

ui~ei(1ƒiƒ3).

Equation (19), for example, then reads v1(E1zE2)D{1A~

v2(E1zE2)D{1A~v3 and v3(E1zE2)D{1A~0.
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