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Abstract: A low-cost optical sensor based on reflective color sensing is presented. 

Artificial neural network models are used to improve the color regeneration from the 

sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. 

The artificial intelligent models presented in this work enable color regeneration from 

analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent 

technique enables the sensor probe for use of a colorimetric sensor that relates color 

changes to analog voltages. 
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1. Introduction 

Color sensing is one of the important subjects of optical sensors. Color sensors have a variety of 

applications including detection of environmental, biological, and chemical parameters [1-7]. Color 

detection based chemical sensing is mostly implemented with particular emphasis on colorimetric 

sensors because many parameters, like pH [6], concentration [3], and chemical gases [4,8,9] can cause 

direct or indirect color changes in biological and chemical species. 

Optical sensors usually have a non-linear relationship between the sensor’s response and the effect 

to be sensed or the measurand. Due to the fact that optical sensors have highly sensitive and non-linear 

nature, an unexpected change in the measurand may cause considerably changes and measurement 

errors in the sensor’s responses. Furthermore, it is expected that in modern sensor technology, a sensor 

OPEN ACCESS 



Sensors 2010, 10                            

 

 

8364 

has to adapt itself to the changing or unexpected conditions. In order to meet the expectations and to 

predict the sensor’s response more accurately, artificial intelligent techniques become a useful tool for 

the design of intelligent sensors [10-12]. 

Artificial Neural Networks (ANNs) are inspired by the brain’s complex, nonlinear, and parallel 

computing ability and therefore they have some exceptional properties for data processing, such as 

adaptation, learning, and generalization [13]. Intelligent optical sensors incorporate the abilities of 

ANNs with optical sensors inherently having high accuracy, long term stability, and immunity to 

electromagnetic interference. ANN based intelligent techniques have more significance if the sensor is 

highly nonlinear and/or a precise mathematical relationship cannot be established between the sensor’s 

response and the measurand. For example, when optical color sensors are used for classification of 

emerged colors, ANNs exhibit good performance in versatility of the measurement system [14,15]. 

The study we present in this paper is a low-cost reflective color sensor whose detection principle is 

similar to that of designs in [16-18] but overcomes the drawbacks reported therein with the aid of 

artificial intelligence. All parts of the sensor consist of cheap and easily available components. For 

example, the reflected signal from colored surface is produced by a RGB LED driven by a 

microcontroller and is detected by a photodiode. The analog signal from the photodiode is then 

amplified by an Op-Amp and applied to the microcontroller where it is converted to digital signals and 

processed. As it is well known, dark-colored surfaces degrade the performances of the reflective color 

sensors. In order to overcome this degradation and to improve sensor responses, we used ANN models 

utilizing multilayer perceptron (MLP) algorithms. 

2. Brief Description of the Neural Networks 

Neural Networks are perhaps the most popular intelligent technique in the design of intelligent 

sensors [19] and intelligent optical sensors [11,12]. This is especially because of their abilities in 

modeling of highly non-linear functions and generalizing of unseen data.  

There are different types of neural networks, such as multilayer perceptron (MLP), radial basis 

function (RBF) and generalized regression neural networks (GRNN), for modeling of non-linear 

functions and data estimation/prediction problems [20]. The three network types have not only many 

similarities but also significant discrepancies. Figure 1 [13] shows general structure of the three types 

of neural networks consisting of an input layer, one or more hidden layers and an output layer. The 

processing units of an MLP apply a linear function to their inputs while they typically have a non-linear 

activation function whereas the RBF and GRNN include radial processing units. Besides, MLPs can 

exhibit better performances when they are used for data estimation/prediction problems (see Table 3 of 

Foody et al. [20]) while some other network types such as RBF, GRNN and probabilistic neural 

network (PNN) can successfully solve classification problems [21]. Since our problem is typically a 

data estimation/prediction problem, we preferred to use MLP neural network whose brief description is 

given below. Performance comparisons of the network types may be a subject of further studies. 

An MLP neural network consists of neurons (also called as nodes) connected to each other with 

weights. Each neuron has individual weights that are multiplied by the inputs when they enter to the 

processing unit. Then the processing unit sums up the inputs multiplied by the weights and produces 

the output of the neuron after the summation is applied to an activation function. The activation 
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function must be a continuously differentiable function (preferably a non-linear function so that the 

network has a non-linear behavior). The function mostly used in MLP neural networks has sigmoidal 

nonlinearity whose types are logistic and hyperbolic tangent functions [13]. 

Figure 1. General structure of a multilayer perceptron (MLP). 

 

 

The input variables are transferred via the neurons at the input of the network. This group of the 

neurons is called input layer while the neurons producing of the network responses at the output are 

called output layer. An MLP network also includes one or more hidden layers between the two layers. 

In most nonlinear problems, two or more hidden layers improve the generalization ability of the 

network [13]. 

In order to train an MLP neural network, a learning algorithm is used to adjust the weights of the 

connections between the neurons in the layers. The performance of a learning algorithm generally 

changes from one problem to another and consequently, a trial-and-error method is mostly  

considered to determine the more efficient algorithm for a given problem. The learning algorithms 

having satisfactory performances used in this work are Gradient descent with momentum and  

adaptive learning rate backpropagation (GDX), Bayesian regularization backpropagation (BR),  

Levenberg-Marquardt backpropagation (LM), Resilient backpropagation (RP), and Broyden Fletcher 

Goldfarb Shanno quasi-Newton backpropagation (BFG). 

GDX has an algorithm that updates weights and bias values according to gradient descent 

momentum and an adaptive learning rate. LM algorithm is a network training function that updates 

weight and bias values according to Levenberg-Marquardt optimization and it is the fastest (at the 

expense of the more memory usage) backpropagation algorithm in MATLAB Neural Network 

Toolbox. In BR algorithm, the weight and bias values are updated according to LM optimization that 

minimizes a combination of squared errors and weights. RP algorithm updates weight and bias values 

according to the resilient backpropagation algorithm and it works by modifying each weight by a 

learning parameter in order to minimize the overall error. Weights and bias values are updated 

according to the BFGS quasi-Newton method where the new weight is computed as a function of the 
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gradient and the current weight. More details about the ANNs and learning algorithms can be found 

in [13,22]. 

3. Reflective Color Sensing 

A typical reflective color sensor consists of three parts: a target, a source illuminating the target and 

a detector capturing the reflected light from the target. The most important parts of the design are the 

source and the detector. Reflective color sensors use either a broadband white-light source and three 

photo-detectors mounted behind of individual color filters or three narrow-light source generating RGB 

colors and a photo-detector. The sensor described in this section is the second and its general structure 

is given in Figure 2. 

Figure 2. (a) Schematic illustration of RGB LED based color. (b) Photo of sensor tip.  

(c) Sensor probe connected with PC. 

 

 

In a reflective color sensor, three phenomena take place when the light beams impinge onto the 

target: reflection, absorption, and transmission. A portion of incident light is reflected while the 

remaining is transmitted after a partial absorption regarding to the properties of the target. Two types of 

the reflected signal, i.e., diffuse and specular reflections, contribute to detector’s response. The diffuse 

reflection carries the useful information about the surface color; however varying specular reflection 

and fluctuating transparency can degrade the performance of the sensor. Fortunately, the specular 

reflection and the transparency remain almost constant for a given target and some small fluctuations in 

these parameters can be tolerated by intelligent approaches. 
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The cycle starts checking out whether the device is connected with PC. Then, minimum and 

maximum analog voltages produced by the probe are determined to calibrate the probe according to the 

properties of the surface to be measured. Minimum and maximum voltages are obtained from black 

and white colored surfaces, respectively. After calibration, the automatic measurement intervals are 

selected for each LED to be driven and the photodiode to be read. Time intervals are selected as 

100 ms in this work. Microcontroller then drives R-LED during a duty-cycle of 100 ms as first and 

reads the photodiode’s output at the same time (Figure 3). This step is repeated averagely by 10 times 

until readouts remain stable. After completion of the R-LED period the microcontroller sends the 

readouts to the PC and initiates the G-LED period, and so on. When the three periods complete, (i) a 

new period can be started on the same surface, (ii) a new measurement can be started on another 

surface, or (iii) the procedure can be ended. A typical readout in terms of analog voltages and 

corresponding RGB contents is given in Table 1. 

Figure 3. Switching of LEDs and the photodiode. 

 

 

 100 ms 100 ms 

 

 

 

 

 

 

 

 

The sensor uses RGB LEDs controlled by a microcontroller as the light source. A photodiode 

converts the optical signal reflected from the target into analog voltages. Then the microcontroller 

converts analog voltages into digital data and sends to computer after completion of a measurement 

cycle. This digital data is utilized to determine R, G, and B values, since the reflected intensity (i.e., 

diffuse reflection) is proportional to RGB content of the target. Figure 4 describes how the 

measurement cycle completes. 
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Figure 4. Flowchart of the measurement procedure. 
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Table 1. Typical photodetector readout in terms of analog voltages depending on RGB 

contents of the surface. 

 Photodetector readouts (volts) RGB contents 

Surface Color VR, R-LED VG, G-LED VB, B-LED R G B 

Black 0.159 0.253 0.163 0 0 0 

(Any) 0.800 1.25 1.77 135 90 225 

White 3.67 3.66 3.66 255 255 255 

 

4. Results and Discussion 

An MLP neural network having an input layer with three inputs, two hidden layers, and an output 

layer with three outputs is used. The activation function of the output layer is a linear one while that of 
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the other layers is the hyperbolic tangent function. The network is trained by five different training 

algorithms where the hidden neuron numbers in each layer are adjusted for the best performances. The 

inputs of the network are analog voltages obtained from the photonic circuit and the outputs are RGB 

contents of the surface. In order to obtain optimal network structures and neuron numbers in the hidden 

layers we used a trial and error approach. Although we started to train the networks with a minimum 

number of hidden layers and neurons in it, the best performances were obtained by different structures. 

Network structures of the proposed models are summarized in Table 2. 

Although RGB content of any surface can be one of the 16 million possible combinations, we used a 

dataset consisting of only 246 data for training of the networks given in Table 2. Test dataset that is 

randomly selected and completely different from training dataset consists of 33 data. In order to 

constitute the dataset, we prepared a color palette whose a small part is given in Figure 5 and printed 

out them on a glossy paper by using a color laser printer. Then, for each color cell in the palette we 

obtained corresponding analog voltages by measuring with the probe given in Figure 2. 

Table 2. Network structures of the proposed models 

Training algorithm 
Network type (neuron numbers in the layers) 

Input 1st hidden 2nd hidden Output 

Gradient descent with momentum and adaptive 

learning rate backpropagation (GDX) 
3 8 9 3 

Bayesian regularization backpropagation (BR) 3 10 5 3 

Levenberg-Marquardt backpropagation (LM) 3 5 9 3 

Resilient backpropagation (RP) 3 5 9 3 

Broyden Fletcher Goldfarb Shanno quasi-

Newton backpropagation (BFG) 
3 12 9 3 

Figure 5. A part of color palette to constitute training/test dataset. 

 

 



Sensors 2010, 10                            

 

 

8370 

Computational performances of the networks are summarized in Table 3. It is useful to note that in 

the table, absolute error between the real and the networks’ values should be considered instead of 

usual error notations such as Root Mean Squared (RMS) and mean squared errors (MSEs), because 

absolute deviation from the real RGB content is more instructive than the others for this problem. 

Nevertheless, the MSEs of the models are also given in the table calculated with un-normalized values 

of the RGB contents. As can be seen from Table 3, BR and RP algorithms exhibit the best results in 

terms of maximum absolute error and time consumption. 

Table 3. Network structures of the proposed models. 

Algorithm 
Maximum 

absolute error 

Un-normalized 

MSE 
Epoch number 

Time 

consumption (s) 

GDX 38 268 75,000 416 

BR 30 259 410 13 

LM 33 270 2,200 62 

RP 32 232 4,000 22 

BFG 34 265 2,200 110 

 

For a better comparison of the performances, the best results (BR and RP) and the worst result 

(GDX) of the proposed models are given in Table 4. Numerical meaning of RGB contents is that if the 

absolute error is more than 30, human eye can distinguish the difference. In this context, RP and GDX 

results have two and four values, respectively, whose absolute errors are more than 30 while all of 

absolute errors of BR results are less than 30. Visual results of the networks are given in Table 5 as 

another performance comparison. 

Table 4. The best results (BR and RP) and the worst result (GDX) of the proposed networks. 

No 

Inputs  

(analog voltages) 

Outputs (RGB contents) 

Real values BR results RP results GDX results 

VR VG VB R G B R G B R G B R G B 

1 0.88 1.59 0.48 90 135 45 91 146 33 102 142 19 98 150 30 

2 2.14 1.62 0.46 180 135 45 190 145 24 182 143 13 184 151 21 

3 0.35 0.73 0.91 45 45 135 42 39 165 48 33 164 40 37 172 

4 1.00 0.57 0.69 135 45 135 144 37 130 144 16 143 138 13 153 

5 3.55 0.71 0.87 225 45 135 248 17 157 240 16 145 243 15 165 

6 1.30 0.93 0.38 135 90 45 147 97 20 135 103 18 131 95 19 

7 1.91 3.64 0.73 135 225 45 110 244 15 104 244 20 97 249 11 

8 0.54 1.83 1.46 45 135 135 18 143 137 22 144 134 33 140 132 

9 0.94 3.25 1.27 45 225 135 54 225 152 30 226 137 66 222 145 

10 0.58 0.64 0.93 135 45 180 126 25 200 133 17 200 123 18 205 

11 0.60 1.77 0.82 45 135 90 29 142 78 31 147 81 46 140 87 

12 0.48 1.96 2.58 45 135 225 20 146 251 29 135 240 21 143 233 

13 1.36 1.93 0.90 135 135 90 123 136 95 137 150 75 130 145 93 

14 3.66 1.89 0.97 225 135 90 251 134 84 242 141 96 255 130 92 
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Table 4. Cont. 

15 1.28 1.06 1.11 135 90 135 145 93 149 147 93 157 137 87 139 

16 3.66 1.00 1.01 225 90 135 253 67 139 252 68 148 253 60 133 

17 1.80 3.00 1.01 135 180 90 154 170 115 149 205 104 135 196 95 

18 0.88 2.03 1.60 90 135 135 88 147 147 100 149 129 107 148 144 

19 1.23 3.64 1.48 90 225 135 76 253 153 92 249 154 91 253 151 

20 0.80 1.25 1.77 135 90 225 134 97 227 139 90 239 147 89 238 

21 0.63 1.97 2.59 90 135 225 98 142 251 89 137 242 93 141 252 

22 2.36 1.73 1.19 180 135 135 182 125 131 196 140 121 177 141 127 

23 1.61 2.96 1.55 135 180 135 141 169 164 137 198 139 131 187 150 

24 1.17 1.98 2.07 135 135 180 137 134 186 133 143 181 146 152 174 

25 1.94 1.62 1.64 180 135 180 179 120 180 182 131 179 167 138 162 

26 3.65 1.88 1.85 225 135 180 251 128 178 254 132 188 254 139 190 

27 2.16 2.93 1.40 180 180 135 170 157 154 174 197 127 150 184 139 

28 1.45 3.01 2.36 135 180 180 143 183 204 133 200 182 140 193 200 

29 1.53 3.65 2.17 135 225 180 123 254 197 123 249 186 118 249 184 

30 3.09 3.66 2.06 180 225 135 199 250 152 205 241 144 200 251 145 

31 1.65 1.75 2.16 180 135 225 183 123 227 175 132 227 180 140 213 

32 2.95 1.74 2.11 225 135 225 226 123 242 243 129 225 232 139 229 

33 1.67 3.65 3.56 135 225 225 162 238 254 143 247 255 154 236 253 

 

As can be seen from Table 5, all proposed networks can successfully model any RGB content of a 

given surface regarding analog voltages. In other words, the artificial intelligent models presented in 

this manner enable color regeneration from analog outputs of the color sensor (or from any voltage 

information). Besides, with the aim of an inverse modeling supported by an intelligent technique, the 

sensor probe can be used for a colorimetric sensor that relates color changes to analog voltages. 

Table 5. Visual comparisons of the real RGB contents and proposed neural network results. 

No Real BR RP LM BFG GDX 

1             

2             

3             

4             

5             

6             

7             

8             

9             

10             

11             

12             

13             



Sensors 2010, 10                            

 

 

8372 

Table 5. Cont. 

14             

15             

16             

17             

18             

19             

20             

21             

22             

23             

24             

25             

26             

27             

28             

29             

30             

31             

32             

33             

5. Conclusions 

A low-cost optical sensor based on reflective color sensing is presented. Moreover, some neural 

network models are used as artificial intelligent technique to improve the color regeneration from the 

sensor signals. That is to say, analog voltages of the sensor can be successfully converted to RGB 

colors. The artificial intelligent models presented in this work enable color regeneration from analog 

outputs of the color sensor. Besides, an inverse modeling supported by an intelligent technique enables 

the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages. 
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