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intestinal infective larvae
Hua Nan Ren, Ruo Dan Liu, Yan Yan Song, Tong Xu Zhuo, Kai Xia Guo, Yao Zhang, Peng Jiang, 
Zhong Quan Wang* and Jing Cui*

Abstract 

Molting is a key step for body-size expansion and environmental adaptation of parasitic nematodes, and it is 
extremely important for Trichinella spiralis growth and development, but the molting mechanism is not fully under-
stood. In this work, label-free LC–MS/MS was used to determine the proteome differences between T. spiralis muscle 
larvae (ML) at the encapsulated stage and intestinal infective larvae (IIL) at the molting stage. The results showed 
that a total of 2885 T. spiralis proteins were identified, 323 of which were differentially expressed. These proteins were 
involved in cuticle structural elements, regulation of cuticle synthesis, remodeling and degradation, and hormonal 
regulation of molting. These differential proteins were also involved in diverse intracellular pathways, such as fatty 
acid biosynthesis, arachidonic acid metabolism, and mucin type O-glycan biosynthesis. qPCR results showed that five 
T. spiralis genes (cuticle collagen 14, putative DOMON domain-containing protein, glutamine synthetase, cathepsin 
F and NADP-dependent isocitrate dehydrogenase) had significantly higher transcriptional levels in 10 h IIL than ML 
(P < 0.05), which were similar to their protein expression levels, suggesting that they might be T. spiralis molting-
related genes. Identification and characterization of T. spiralis molting-related proteins will be helpful for developing 
vaccines and new drugs against the early enteral stage of T. spiralis.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Introduction
Trichinella is an obligate parasitic nematode of animals 
worldwide. Human T. spiralis infection primarily results 
from eating raw or semiraw animal meat infected with 
Trichinella spiralis muscle larvae (ML). Trichinello-
sis outbreaks were reported in 55 countries around the 
world, resulting in 65 818 cases and 42 deaths, from 1986 
to 2009 [1]. In Chinese Mainland, 14 of 15 trichinellosis 
outbreaks were due to infected pork during 2004–2009, 
and pork is the predominant infection source [2, 3]. 
Trichinella is not only a public health harm but also a 
serious hazardous to animal food safety. Vaccine devel-
opment is needed to eliminate the transmission of Trich-
inella among domestic animals [4–6].

After being eaten, ML encapsulated in animal meat 
emerges in the host’s stomach and develops into its first 
stage, called intestinal infective larvae (IIL1), at 0.9 hours 
post-infection (hpi). The IIL1 penetrate the intestinal 
epithelium and undergo the first molting to develop into 
IIL2 at 10 hpi. They subsequently molt three times into 
IIL2–IIL4 to develop into the adult worm (AW) within 
10–30 hpi [7–9]. A cuticle covers the surface of the Trich-
inella worm body, and molting is the basis of Trichinella 
growth and development, which occurs in the develop-
ment of all members of the nematode. The presence of 
various enzymes in cuticles of T. spiralis IIL suggests that 
the cuticles may contain the molting-related enzymes 
[10]. Each molting consists of the new cuticle format-
ting, old cuticle loosening and rupturing, and larval 
escape from previous-stage larval cuticle [11]. Molting 
is controlled by ex-sheathing fluid secreted by the lar-
vae; however, which kinds of proteins in ex-sheathing 
fluid participate in the shedding of old cuticle and the 
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formation of neocuticle are not yet understood. Hence, 
agents that inhibit or block molting have been a focus 
for developing new drugs or vaccines against nematode 
infection. In addition, studies on molting will be valuable 
to understand the growth and developmental processes 
of nematodes [12].

Molting is an important strategy for T. spiralis to adapt 
to the environmental intestinal milieu. Previous studies 
revealed that T. spiralis infective larvae molted and devel-
oped to the adult stage after they were inoculated onto 
intestinal epithelial cell monolayers cultured in  vitro. 
Approximately 50% of IIL larvae molted when they were 
cultivated in an epithelial cell monolayer for 5–9  days 
[13]. If the old cuticle was not completely shed, the larvae 
were still enclosed in the sheath and could not develop 
into the adult stages [14]. However, the biological pro-
cesses that regulate T. spiralis molting are not fully clear.

The encapsulated-stage ML lodge in the nurse cells of 
the host’s skeletal muscle, and their surrounding envi-
ronment is relatively stable. The ML may live from 1 to 
2  years to 10–15  years without any major harm [15]. 
Hence, ML has been used as a normal control for T. spi-
ralis protein expression. Following ingestion, T. spiralis 
ML are liberated from their capsules in the host’s stom-
ach and activated into IIL1 by exposure to enteral content 
or bile at 0.9 hpi. After they invade the host’s intestinal 
epithelium, the IIL completes four molts from IIL1 to 
IIL4 at approximately 10, 10–14, 15–22 and 23–30  hpi, 
respectively [16]. The 10  h IIL might express multiple 
molting-related proteins that are involved in new cuti-
cle generation, old cuticle loosening and ex-sheathing 
for the first molting of this parasitic nematode. Further-
more, since the enteral-stage IIL and AW parasitize the 
complicated intestinal environment, the IIL at 10–30 hpi 
and AW possibly express various proteins that participate 
in other processes of Trichinella development, such as 
digestion, immune escape, detoxification, reproduction, 
and so on [6, 17–19]. To screen and identify the T. spi-
ralis molting-related proteins as far as possible, 10 h IIL 
were selected for quantitative proteomic analysis. In this 
study, the proteomic profile variation between T. spiralis 
ML and 10 h IIL was determined using label-free quan-
titative proteomic technology with bioinformatics, which 
is expected to provide new insight to guide the study of T. 
spiralis larval molting, growth and development [20].

Materials and methods
Worm and mice
Trichinella spiralis strain (ISS534) from a domestic pig in 
central China was kept by mouse serial passaging in our 
department [21]. Specific-pathogen-free (SPF) 8-week-
old female mice were obtained from the Experimental 
Animal Center of our university. The animal experiment 

protocol was approved by the Life Science Ethics Com-
mittee of Zhengzhou University (No. SCXK 2017–0001).

Intestinal infective larvae at different times post‑infection
The MLs were obtained from artificially digesting T. spi-
ralis-infected mouse muscles with 1% pepsin [22, 23]. 
Each mouse was orally inoculated with 5000 ML, and IIL 
were isolated from the small intestine at 8, 10, 12, 14, 16, 
and 18 hpi [24]. The IIL molting process was observed 
and counted under microscopy. Fifty IIL were randomly 
selected from each time point, and three replicates were 
observed. All larvae were washed thoroughly with sterile 
PBS and then stored in liquid nitrogen.

Protein extraction
The ML and 10  h IIL were homogenized in a tissue 
grinder. The larval fragment was further homogenized 
by ultrasonication as reported [25]. The homogenate was 
boiled for 15 min. Following centrifugation at 14 000 g for 
40 min, the supernatant was filtered using 0.22 µm filters. 
The protein concentration was determined using a BCA 
kit (Bio-Rad, USA).

Protein digestion
Approximately 200  μg of larval proteins was added to 
30 μL of SDT buffer (150  mM Tris–HCl, 4% SDS and 
100  mM DTT) and filtered with UA buffer (8  M urea, 
150 mM Tris–HCl). To inhibit the cysteine residues, lar-
val proteins were incubated with 100 μL iodoacetamide 
for 30 min in darkness. After washing, the protein sample 
was digested with 4 μg trypsin at 37 °C overnight, and the 
resulting peptides were recovered, desalted and concen-
trated as described [26]. The contents of peptides were 
determined using a UV light spectral density at 280 nm.

LC–MS/MS and protein datum analysis
LC–MS/MS was carried out using a Q Exactive mass 
spectrometer (Thermo Fisher Scientific, USA) as 
reported [27]. The MS data were analyzed by MaxQuant 
software (version 1.5.3.17) against the Trichinella data 
from the UniProt database. The differentially expressed 
T. spiralis proteins between the ML and 10 h IIL stages 
were those with a 2.0-fold change compared with one 
another [12]. Molecular pathway analyses through Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) were conducted to analyze the possi-
ble enrichment of differentially expressed proteins with 
specific biological features. The mapping of protein inter-
actions was performed by statistical analysis at a low con-
fidence score in the STRING database [27].
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qPCR
Eight genes from differently expressed T. spiralis pro-
teins were selected to investigate their transcription lev-
els using qPCR [9]. Total RNA of ML and 10 h IIL was 
extracted with Trizol reagent (Takara, Japan) and tran-
scribed into cDNA as templates for qPCR. The gene-
specific primers were designed using Primer 5.0 software 
(Table  1) and synthesized by Sangon Biotechnology Co. 
(Shanghai, China). The T. spiralis GAPDH gene (Gen-
Bank: AF452239) was also amplified as an internal con-
trol gene [28]. The gene transcription level was evaluated 
using the comparative Ct (2−ΔΔCt) method as described 
[29, 30]. Each sample was run in triplicate.

Statistical analysis
The data were analyzed with SPSS for Windows (version 
20.0, SPSS Inc., Chicago, IL, USA). Relative gene expres-
sion levels in ML and 10 h IIL stages are shown as the 
mean ± standard deviation (SD), and the differences 
between two groups were assessed using Student’s t test. 
P < 0.05 was regarded as statistically significant.

Results
Molting and ecdysis
The molting of Trichinella IIL at 8, 10, 12, 14, 16, and 
18 hpi is shown in Figure 1. The IIL began to molt at 10 
hpi, and the larval molting rate was up to 28% at 12 hpi 
(Figure 2). The copulatory appendages of the males were 
clearly observed at 16 hpi under microscopy.

Protein identification and quantification
The proteomic analysis allowed confident identifica-
tion of 2885 T. spiralis soluble proteins. Of these pro-
teins, 2740 co-existed in both ML and 10  h IIL stages, 
29 solely in the ML and 116 only in 10 h IIL. Out of the 
2740 co-existing proteins, 100 were significantly upregu-
lated in the 10  h IIL stage (P < 0.05), and 78 were sig-
nificantly downregulated in the 10  h IIL stage (P < 0.05) 
(Figure  3). In this cohort, the downregulation of ADP-
ribose pyrophosphatase, serine proteinase, angioten-
sin-converting enzyme, glycine c-acetyltransferase and 
carbonic anhydrase was more significant at the ML than 
at the 10 h IIL stage. At the same time, the upregulation 
of fatty acid synthase, purine nucleoside phosphorylase, 
prolyl 4-hydroxylase subunit alpha-2, cuticle collagen 14 
was over twofold at the 10 h IIL compared with the ML 
stage. The significantly upregulated proteins that might 
be involved in molting are listed in Table 2. A clustering 
analysis of those 178 proteins common to ML and IIL 
is shown in Figure 4. A clear set of proteins was signifi-
cantly downregulated at 10  h IIL, while the majority of 
IIL larva proteins were upregulated in comparison to the 
ML stage.

Gene Ontology annotation
To determine the biological functions of the differ-
entially expressed T. spiralis proteins, the proteins 
were categorized into three types: biological process, 
molecular function and cellular components, based on 
their GO hierarchy. Based on their P value, 20 of the 
most prominent terms for ML and IIL larval proteins 

Table 1  Primers used in the quantitative real-time PCR assays 

Gene description NCBI accession Primer sequence Product 
size (bp)

Cuticle collagen 14 (E5RZT0) XM_003381945.1 F 5′-TCT​GGT​GAT​GCA​TCG​GAT​CG-3′
R 5′-TCC​TTC​AGC​ACA​CGC​TTC​AT-3′

113

Cytochrome P450 4V2 (E5SY27) XM_003370180.1 F 5′-CGC​AAA​CTG​CTC​ACA​CCA​TC-3′
R 5′-CGC​AGA​TGA​TGT​CCA​AAG​CG-3′

172

Endoplasmic oxidoreductin-1 (E5SKW7) XM_003373203.1 F 5′-AGG​TAA​TGC​GAA​CAA​GGC​GA-3′
R 5′-ATG​GGT​CTG​CAA​CTT​TCC​CC-3′

124

Putative DOMON domain-containing protein (E5SFI2) XM_003378229.1 F 5′-GCT​GAT​TCC​GCT​TCT​CCA​GT-3′
R 5′-CGG​GTC​TGG​TTT​TTC​GCT​TG-3′

157

Glutamine synthetase (E5SIC2) XM_003374954.1 F 5′-CCC​GTT​TCG​ACT​GGG​AAA​GA-3′
R 5′-CGA​GAT​CGA​GCA​GCG​TGT​AT-3′

167

RNA-binding protein 47 (E5S1I0) XM_003378983.1 F 5′-CGC​AAT​ACG​CGT​CCA​AGA​AG-3′
R 5′-AGA​GAC​CGA​TGA​TGG​TGG​GA-3′

174

Cathepsin F (E5SFB3) XM_003378197.1 F 5′-ATG​GCC​CCA​CAA​TTT​TTG​CC-3′
R 5′-TCC​ATT​CGC​TCG​CTG​ATG​TT-3′

133

Isocitrate dehydrogenase, NADP-dependent (E5S5M3) XM_003380431.1 F 5′-TGT​ACT​CAT​GTG​CCC​GGA​TG-3′
R 5′-GGG​GTT​CGT​TTC​GAT​CCA​GT-3′

176

GAPDH (Reference) AF452239 F 5′-GAT​GCT​CCT​ATG​TTG​GTT​ATGGG-3′
R 5′-GTC​TTT​TGG​GTT​GCC​GTT​GTAG-3′

196
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are presented in Figure  5. In the molecular function 
ontology, the majority of protein function is relevant 
to ADP-ribose diphosphatase activity, endonuclease 
activity, structural components of cuticle, serine hydro-
lase activity and catalytic activity. Binding of iron ion, 
carboxylic acid, L-ascorbic acid and organic acid were 
the significant and enriched terms of binding activi-
ties. Under biological processes, most of the regulated 
proteins were involved in cellular processes and meta-
bolic processes. DNA-templated transcription, ini-
tiation and protein maturation by iron-sulfur cluster 
transfer were the significant biological processes. There 
is a close relationship between a protein’s subcellular 

location and its function. The cellular components 
collagen trimer and collagen-containing extracellu-
lar matrix were among the most significant 20 terms. 
These findings suggest that new cuticle formation and 
a large amount of energy metabolism may be a crucial 
adaptive method for T. spiralis larval molting. Interest-
ingly, among the structural constituents of cuticle, we 
found that all upregulated proteins were collagens. Two 
proteins (E5RZT0 and E5SQP6) were upregulated at 
IIL compared with ML. At the same time, many cuti-
cle collagen proteins (E5SQP9, A0A0V1BMR6, E5SR67, 
E5SAG9, A0A0V1BL19 and E5S488) were expressed 
only at the 10 h IIL stage.

Figure 1  Molting of T. spiralis IIL larvae at different time points post-infection. Larval molting was observed at various times post-infection by 
microscopy. The larvae carrying a sheath at the posterior end were counted as molting worms. A, B, C, G, I, K: IIL without molting. D, E, F, H, J, L: IIL 
encased in cuticle (arrow). Copulatory appendage is indicated with a triangle.
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Kyoto Encyclopedia of Genes and Genome (KEGG) 
annotation
The biological functions of these 323 differentially 
expressed T. spiralis proteins was further analyzed with 
the KEGG database, which mapped them to a total of 
160 pathways. The most enriched 3 pathways are shown 
in Figure  6, including fatty acid biosynthesis, arachi-
donic acid metabolism and mucin type O-glycan bio-
synthesis. The pathway map of fatty acid biosynthesis is 
presented in Figure 7, which consists of several relevant 
proteins: fatty acid synthase (A0A0V1BWJ4, E5SGN7), 

mitochondrial malonyl-CoA-acyl carrier protein transac-
ylase (A0A0V1BUL1) and 3-oxoacyl-[acyl-carrier-
protein] synthase (E5SA15). Two fatty acid synthase 
proteins were upregulated, and the other two proteins 
were downregulated. 

Protein interaction analysis
Network analyses of differentially expressed T. spira-
lis protein were conducted using the STRING database. 
These differential proteins were associated with each 
other to generate a network (Figure  8). Proteins situ-
ated in the central area were closely connected with lar-
val molting, and the proteins in the core node had high 
values. In comparison, proteins such as uncharacterized 
protein (A0A0V1C2F3), ribosome biogenesis protein 
WDR12-like protein (A0A0V1ARC8), angiotensin-con-
verting enzyme (A0A0V1C1P4), WD repeat-containing 
protein 3 (A0A0V1BYS3), 28S ribosomal protein S11, 
mitochondrial (A0A0V1BAZ1) and uncharacterized 
protein (A0A0V1BIH0) were situated in the connected 
nodes of the protein functional interaction network. 
These proteins are involved in intrinsic components of 
membranes, metallopeptidase activity, ribosome biogen-
esis, and serine-type endopeptidase inhibitor activity.

qPCR validation of differentially expressed T. spiralis genes
To further assess the differential expression of the molt-
ing-related proteins in ML and 10 h IIL, the transcription 
levels of eight genes, which we chose based on interest 
and their different ratios, were determined via qPCR, and 
the results are shown in Figure  9. Out of these eight T. 
spiralis genes, five (cuticle collagen 14, putative DOMON 

Figure 2  The percentage of molting larvae at different times 
post-infection. T. spiralis IIL were collected at different times after 
infection. One hundred fifty IIL were randomly divided into three 
groups (50 IIL each group). The molting at 8, 10, 12, 14, 16, and 18 hpi 
was observed by microscopy. The maximum molting rate was 28%, 
at 12 hpi.

Figure 3  Results of LC–MS/MS of ML and 10 h IIL proteins. A The cartoon showing the intersection of differentially expressed T. spiralis proteins 
between the ML and 10 h IIL. Twenty-nine proteins were found solely in ML (■) and 116 only in 10 h IIL (■). Of the identified proteins, 2562 
co-existed in both ML and IIL without a significant difference in expression level (■), 78 were obviously upregulated in the ML (■), and 100 were 
upregulated in IIL (■). B The plot exhibiting the distribution of quantified proteins based on their statistical significance (P value) and fold change. 
The proteins over the dotted line are considered statistically significant (P < 0.05), and those beyond the two vertical dotted lines show 2.0-fold 
changes compared with the ML stage. Differentially expressed proteins between the two larval stages are represented as red dots.
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domain-containing protein, glutamine synthetase, cath-
epsin F and NADP-dependent isocitrate dehydrogenase) 
had a significantly higher transcriptional levels in 10 h IIL 
than that at the ML stage (P < 0.05), which were similar 
to their protein expression levels. However, the transcrip-
tion levels of three genes (cytochrome P450 4V2, endo-
plasmic oxidoreductin-1 and RNA-binding protein 47) 
showed low compliance with their protein expression 
levels.

Discussion
Trichinella infection begins when infective muscle lar-
vae are ingested. This larval phase has been used as the 
starting time for investigating larval ecdysis and the 
development of this nematode. Muscle larvae main-
tain a relatively stable state in the intracellular micro-
environment. Once they enter the intestinal epithelium 
niche, four molts ensue that the larvae quickly grow to 
adulthood, within 31 h [7]. The selective pressures favor 
the larvae’s completing the ecdysis during such a short 
time. However, the first molting times of the IIL larvae 
vary from 6 to 12 h [16]. The difference in larval molting 
time might be related to different hosts or/and isolates. 

Therefore, we observed the molting times of T. spiralis 
IIL using an individual isolate (ISS534) in the same host 
(BALB/c mice). Our results revealed that IIL began the 
first molting at 10 hpi, which was consistent with the 
results of others [16]. Hence, we selected ML and 10 h IIL 
to investigate their differentially expressed proteins.

Trichinella larvae might require a physical barrier 
against which to rub for removing their outer cuticle 
layer and need a complex regulatory system to complete 
the sloughing of old cuticle and generation of new cuti-
cle. Although complete larval ecdysis has been observed 
while the larvae were cultured in vitro, the molting mech-
anism was not clarified in as much detail as, for instance, 
in certain free-living nematodes such as Caenorhabditis 
elegans [12, 13, 31]. Advances in proteomics, genomics 
and bioinformatics techniques have provided a feasible 
way to study the molecular basis of nematode larval ecdy-
sis and development [32]. In the present work, proteomic 
profiles of T. spiralis ML and 10 h IIL were analyzed with 
LC–MS/MS to identify the molting-related proteins. A 
total of 2885 proteins of T. spiralis were identified, 323 of 
which were differentially expressed.

Our results showed that some peptidases were upregu-
lated in 10 h IIL, including cathepsin (E5SFB3, S5M797), 
metalloprotease (E5S4Y1, A0A0V1C237), and carboxy-
peptidase (E5SP83). However, we did not know whether 
these peptidases were molting-related enzymes. Previous 
studies showed that during the development of L3 to L4 
larvae of lymphatic filarial Brugia pahangi, larval molting 
depended on the cathepsin L enzymatic activity, which 
was identified in excreted/secreted proteins of molting 
L3 larvae [33]. In C. elegans, an elevation of cathepsin L 
transcription level was observed in the intermolt period 
approximately 4 h before each molting. RNA interference 
with the enzymatic activity of cathepsin L brought about 
embryonic fatality and a prolonged development of lar-
vae to adulthood, demonstrating a major function of this 
protease for embryogenesis and larva growth [34]. A pre-
vious study indicated that cathepsin L and Z were indis-
pensable for ecdysis of Onchocerca volvulus L3–L4 larvae 
by immune-electron microscopy [35]. Similar to cathep-
sin, metalloproteases play an important role in cuticle 
ecdysis. The C. elegans nas-36 and nas-37 genes encode 
astacin metalloproteases. When they are mutated, larva 
molting defects result, e.g., the incapacity of the larvae 
to shed previous old cuticle [36]. In addition, carboxy-
peptidase is necessary for new cuticle generation and 
body morphogenesis in free-living and parasitic nema-
todes, and it is located at the hypodermis and interacts 
with other collagen-modifying enzymes [37]. Therefore, 
hydrolases play an important role in the molting process.

There are other types of proteases that play impor-
tant regulatory roles in molting, such as E3 ligase 

Figure 4  Heat map of differently accumulated T. spiralis proteins 
at the ML and 10 h IIL stages. These T. spiralis proteins were 
ranked according to their Log2 fold change abundance value. Blue: 
downregulation; red: upregulation.
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(A0A0V1B0D3) and serine/threonine-protein kinase 
RIO1 (A0A0V1BAH6). Similarly, our results indicated 
that the expression of these two proteases was elevated 
in the 10  h IIL. In C. elegans, the expression level of 
E3-ligase RNF-5 is raised, especially during larval molt-
ing, and this enzyme ubiquitinates the dense body protein 
so that the old cuticle sheds [38]. NEKs are serine-threo-
nine protein kinases that participate in cellular mitosis. 

Using a genetic approach, a previous study revealed that 
NEKL-3 was indispensable for completing larval molt-
ing. A hypomorphic mutation of NEKL-3 and sv3 in C. 
elegans resulted in the inability of larvae to escape from 
the old cuticle. Inhibition of NEKL-2 produced the mis-
localization of leucine-responsive regulatory protein-1 
(LRP-1)/megalin, a cell surface receptor of low-density 
lipoprotein binding protein [39]. The LRP mutations of 

Figure 5  Enrichment analysis of the 20 most significant GO terms of differentially expressed T. spiralis proteins between ML and 10 h IIL 
larvae. The differentially expressed proteins were categorized into biological process, molecular function, and cellular component according to 
their GO signatures. The number denotes the number of proteins with the given GO annotation.

Figure 6  The most enriched KEGG pathways of differentially expressed T. spiralis proteins between ML and 10 h IIL larvae. The number 
denotes the number of proteins involved in the related pathways. The P value was calculated by Fisher’s exact test.
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C. elegans resulted in an obvious defect, an inability to 
remove all old cuticles at each larval molting stage [40]. 
Genetic mosaic analysis suggests that the LRP-1 gene 
plays a role in the major epidermal syncytium hyp7, a 
polarized epithelium that secretes cuticle from its api-
cal surface. Consistent with this, NEKL-2 and NEKL-3 
are expressed at the apical surface of epidermal syncyt-
ium hyp7 [39, 40]. In our study, the expression of T. spi-
ralis low-density lipoprotein receptor-related protein 
(A0A0V1AUS8) was consistent with serine/threonine-
protein kinase.

In a GO enrichment analysis, the structural constitu-
ent of the IIL cuticle was the major category of molec-
ular function. We found that some collagen proteins 
(E5RZT0, E5SQP6) were upregulated at 10  h IIL, and 
many cuticle collagen proteins (E5SQP9, A0A0V1BMR6, 
E5SR67, E5SAG9, A0A0V1BL19 and E5S488) were 
expressed only in 10 h IIL. Collagen is a structural pro-
tein of extracellular matrices. Nematodes can alter cuti-
cle surface protein components between two molting 
stages or when the ambient environment changes; sur-
face protein alteration can allow parasitic nematodes to 

Figure 8  Protein interaction analysis of differentially expressed T. spiralis proteins between ML and 10 h IIL larvae. The upregulated (red) 
and downregulated (green) proteins are marked as nodes.
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escape from the host’s immune defenses in the process 
of infection [41]. Previous studies revealed that schisto-
some tegument plays an important role in Schistosoma 
infection, such as by promoting juvenile worm growth, 
nutrition and immune evasion and modulation [42]. 
Other studies have indicated that the C. elegans cuti-
cle consists of a complex collagen matrix. A single gene 
mutation of cuticle collagen could result in a cuticle 
defect that changes the nematode’s morphology [43]. 
Nuclear hormone receptors (NHRs) play a vital role in 
collagen synthesis. A putative nuclear hormone recep-
tor, NHR3 (A0A0V1AYJ5), was expressed only at the 
10  h IIL stage. In C. elegans, CHR3 is crucial for cuti-
cle formation and molting, while the NHR-23 expres-
sion and decreased NHR3 function during the intermolt 
time lead to a subsequent molt defect [44, 45]. Carbox-
ylic acid binding proteins (A0A0V1B0P6, A0A0V1B0I4 
and A0A0V1B0M0) occupied the greatest proportion of 
binding activity proteins, and all these proteins were up-
regulated in 10 h IIL. However, the function of these pro-
teins in the process of molting is unclear and needs to be 
further studied. T. spiralis undergoes a process of molt-
ing 4 times, which involves an interplay between various 
intracellular pathways. KEGG pathway analysis indicated 
that differentially expressed proteins were involved in 
three signaling pathways: fatty acid biosynthesis, mucin 
type O-glycan biosynthesis and arachidonic acid metabo-
lism. Knockdown of the genes that encode fatty acid bio-
synthesis proteins with RNAi resulted in serious defects 
in triglyceride production and C. elegans larval molt-
ings. Downregulation of these protein’s gene expression 
impaired the new cuticle generation and destroyed the 

larval cuticle integrity [46]. Other studies demonstrated 
that a lipoxygenase pathway product is necessary for ecd-
ysis of infective larvae of filarial parasites. When inhibi-
tors of arachidonate metabolism were added to in  vitro 
cultures containing B. malayi L3, they were capable of 
preventing larval development [47]. The relationship 
between mucin type O-glycan biosynthesis and ecdysis is 
unclear. Trypanosoma cruzi is capped with a dense coat 
of mucin-type glycoproteins, which is vital to facilitate 
this protozoon’s intrusion and parasitism in the host cell 
[48]. Our results also showed that the protein interaction 
network center contained ribosome biogenesis protein 
WDR12-like protein (A0A0V1ARC8), Sel1 repeat family 
protein (E5S6N7), U3 small nucleolar RNA-interacting 
protein 2 (A0A0V1B0C4), 28S ribosomal protein, and 
mitochondrial (S11A0A0V1BAZ1). These proteins might 
be key for ecdysis and the development of IIL.

In this work, the qPCR results demonstrated that the 
transcription levels of five T. spiralis genes (cuticle col-
lagen 14, putative DOMON domain-containing protein, 
glutamine synthetase, cathepsin F, and NADP-dependent 
isocitrate dehydrogenase) were significantly higher at the 
IIL stage than at the ML stage, which was consistent with 
the quantitative proteomic analysis results. However, 
the protein and mRNA levels of the other three genes 
(cytochrome P450 4V2, endoplasmic oxidoreductin-1, 
RNA-binding protein 47) were not consistent. The con-
tradiction might be due to post-translational control, in 
which negative regulatory factors are possibly activated 
in the translation process, or the intrinsic mRNA is 
regulated by specific molecules such as microRNA [23]. 
The proteomic information obtained from this study is 
important for T. spiralis molting and development. These 
proteins are comparable to the homologous proteins of 
other nematodes and might be valuable as molecular tar-
gets to exploit vaccines and new drugs against this para-
sitic nematode. Furthermore, studies on molting-related 
protein function will further clarify the mechanism and 
control of molting in parasitic nematodes [31].

Our results are the first to establish extensive pro-
teomic information on the molting larvae of T. spiralis. 
A total of 323 differentially expressed T. spiralis proteins 
were identified by LC–MS/MS analysis combined with 
bioinformatics, and their molecular functions (binding, 
catalytic and transporter activity) were annotated. Some 
proteins are primarily involved in cuticle structural ele-
ments, cuticle synthesis, maintenance, remodeling and 
degradation, hormonal regulation of molting and intra-
cellular trafficking components and regulators. Five T. 
spiralis genes (cuticle collagen 14, putative DOMON 
domain-containing protein, glutamine synthetase, cath-
epsin F and NADP-dependent isocitrate dehydrogenase) 
had significantly higher transcriptional levels at the 10 h 

Figure 9  qPCR validation of differentially expressed T. spiralis 
genes. Comparison of the relative quantitation of each gene 
expressed in ML and 10 h IIL. The transcriptional levels of all eight T. 
spiralis genes were significantly different in the two stages of worms 
(P < 0.05).
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IIL than at the ML stage (P < 0.05), which were similar 
to their protein expression levels, suggesting that they 
might be T. spiralis molting-related genes. Further under-
standing of the regulatory mechanism of larval ecdysis 
and the function of ecdysis-related proteins will offer an 
important foundation to develop new vaccines and drugs 
against T. spiralis infection.

Abbreviations
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