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COVID-19 Exposure Assessment Tool (CEAT): Exposure 
quantification based on ventilation, infection 
prevalence, group characteristics, and behavior
Brian J. Schimmoller1,2*, Nídia S. Trovão2,3, Molly Isbell1, Chirag Goel2,4, 
Benjamin F. Heck5, Tenley C. Archer2,6, Klint D. Cardinal7, Neil B. Naik7, Som Dutta2,8, 
Ahleah Rohr Daniel9, Afshin Beheshti2,10,11*

The coronavirus disease 2019 (COVID-19) Exposure Assessment Tool (CEAT) allows users to compare respiratory 
relative risk to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for various scenarios, providing 
understanding of how combinations of protective measures affect risk. CEAT incorporates mechanistic, stochastic, 
and epidemiological factors including the (i) emission rate of virus, (ii) viral aerosol degradation and removal, 
(iii) duration of activity/exposure, (iv) inhalation rates, (v) ventilation rates (indoors/outdoors), (vi) volume of 
indoor space, (vii) filtration, (viii) mask use and effectiveness, (ix) distance between people (taking into account 
both near-field and far-field effects of proximity), (x) group size, (xi) current infection rates by variant, (xii) preva-
lence of infection and immunity in the community, (xiii) vaccination rates, and (xiv) implementation of COVID-19 
testing procedures. CEAT applied to published studies of COVID-19 transmission events demonstrates the model’s 
accuracy. We also show how health and safety professionals at NASA Ames Research Center used CEAT to manage 
potential risks posed by SARS-CoV-2 exposures.

INTRODUCTION
The novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) that causes the coronavirus disease 2019 (COVID-19) has 
quickly spread around the world and was formally recognized as a 
pandemic by the World Health Organization (WHO) on 11 March 
2020 (WHO, 11 March 2021). COVID-19 poses a great public health, 
clinical, economical, and societal burden worldwide. SARS-CoV-2 
transmission occurs mainly through close contact (WHO, 11 March 2021) 
and through the air via respiratory airborne particles (i.e., aerosols) (1).

The global and local transmission dynamics drove an urgent 
need for assessing potential risk of transmission while performing 
different activities in various facilities. Public health officials have 
had to reevaluate how the public should interact to reduce and con-
tain viral spread (2), leading to assessment of worker and group risks 
associated with viral exposure in various settings (3). Risk assess-
ment and planning regularly consider the contribution of an array 
of factors, using largely qualitative guidance from public health and 
media sources (3), such as the viral exposure pathways, risk of infec-
tion (e.g., number of cases per population), efficacy of interventions 
and personal protective equipment (PPE; e.g., masks and gloves), 
human behavior (e.g., adhering to public health guidelines, hand 
washing, and social distancing), and environmental factors (e.g., 
ventilation). Given the numerous factors that affect exposure to the 

virus, qualitative assessments are insufficient when trying to com-
pare various courses of action or potential mitigation options.

The WHO and the Centers for Disease Control and Prevention 
(CDC) have released guidance for risk assessment and management 
of exposure in the context of COVID-19 at work (4), toward health 
care personnel (5), community-related (6), and associated with do-
mestic and international travel (7). However, the qualitative nature 
of these guidelines makes it difficult to quantify the exposure risk in 
varied settings.

Researchers have developed tools that predict the risk of trans-
mission from exposure through inhalation of emitted SARS-CoV-
2– containing aerosols. Risk assessment tools provide an important 
means of gaining understanding of dynamics of transmission and 
evaluating and comparing risks associated with local environmental 
conditions, community epidemiological factors, and mitigation 
options. Typically, the infectious disease risk assessment tools use 
either a deterministic dose-response approach or, alternatively, a 
Wells-Riley approach (8). A detailed comparison of dose-response 
models and Wells-Riley models applied to infectious disease risk 
assessment is provided in the study by Sze To and Chao (8), ad-
dressing both models’ advantages and limitations. Specific to SARS-
CoV-2, Miller et al. (9) offer a Wells-Riley–based method to model 
transmission and have developed a companion COVID-19 Aerosol 
Transmission Estimator spreadsheet-based tool (10). The Wells- 
Riley–based method addresses physical factors that contribute to 
indoor transmission, applying a uniform well-mixed box (WMB) 
assumption and transmission estimates using the Wells-Riley equation. 
Bazant and Bush (11) provide a comprehensive physical model of the 
factors that affect indoor transmission and released a spreadsheet- 
based tool and online app (12) that calculates safety guidelines to 
limit the viral transmission based on Wells-Riley and WMB as-
sumptions. This tool recommends the total number of hours of 
exposure that are permissible given the number of people, their 
behavior, characteristics of the room and its ventilation, and the 
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prevalence of COVID-19 and variants in the community. Peng et al. 
(13) recently provided a similar airborne transmission model applied 
to COVID-19 outbreaks based on a box model for indoor aerosol 
concentration combined with the Wells-Riley model. Parhizkar et al. 
(14) developed a dose-response approach and model that uses a WMB 
assumption and a treatment of the inhaled and deposited doses. 
They demonstrate the model’s capability against well-documented 
COVID-19 outbreaks and offer a demo version of an online tool 
(15). Wagner et al. (16) offer a comprehensive modeling study that 
examines both indoor and outdoor exposures from two-person in-
teractions, examining near-field (NF) and far-field (FF) effects and 
modeling the behavior of particulates of various sizes. Other mod-
eling efforts have focused on predicting transmission risks using 
epidemiological and behavioral factors and population statistics 
(17, 18), without addressing facility- and event-specific physical 
mechanisms that would affect transmission risk.

Rigorous study of the physics of aerosol behavior in indoor spaces 
has also been accomplished using both experiments and computa-
tional fluid dynamic (CFD) numerical simulations. These studies 
analyzed key aspects of the hydrodynamics produced by expiratory 
events, including sneezing, coughing, talking, singing, and breathing, 
and the dispersion processes of the resulting aerosol cloud (19, 20). 
While these experiments and modeling studies produce important 
understanding of the aerosol behavior in the environment and the 
respiratory system, their results are specific to the defined scenarios 
that were modeled and are too computationally intensive to be used 
directly and routinely by nonexperts.

Our goal was to develop a simple-to-use, quantitative exposure 
and risk assessment tool that addresses the factors summarized in 
Fig. 1 and was based on principles of epidemiological, physics, and 
engineering to provide benefit to risk assessors and decision-makers 
in a variety of settings. In addition, we wanted to incorporate recent 
findings regarding disease characteristics and virus dynamics. Our 
focus was to create a tool that could be easily used by people who are 
tasked with making recommendations or decisions for their organi-
zations or groups (e.g., businesses, schools, and civic groups) on 
approaches to reducing viral exposure. The result of our project has 
been the development of the COVID-19 Exposure Assessment Tool 
(CEAT) and is a natural extension of the currently available tools.

An important distinction between the CEAT model and the other 
models discussed above is that CEAT assesses the additional higher 
concentration of virus-containing aerosols that may occur when 
people are in close proximity and applies this approach to groups 
between 2 and 250 people, both indoors and outdoors. The effect of 
proximity is evaluated through estimating NF concentrations using 
a method that uses estimates of eddy diffusivity and does not rely on 
the simplifying assumption that the volume can be considered a 
WMB, as is done in other models discussed above (10–15).

The CEAT model is embedded in an Adobe PDF (portable document 
format) file and was coded in JavaScript using Adobe Acrobat’s 
“Prepare a Form” function. The model’s user interface is shown in 
Fig. 1A and is available for download at www.cov-irt.org/exposure- 
assessment-tool/ as a PDF. The PDF platform was chosen instead of 
a web app, because the PDF allows organizations to use the tool 
within the privacy and security of their own networks and devices, 
eliminating any concern that an organization’s private worker safety 
information was being shared externally. In addition, the PDF of-
fers the ability to save and disseminate the results for specific events 
and scenarios as individual PDF files. The underlying algorithm 

used in CEAT leverages aspects of both Wells-Riley models and 
dose-response models. The model relies on information that the 
users would have available or could reasonably estimate, addresses 
the mechanisms that are within the organization’s control (e.g., 
distancing, duration, ventilation rates, filtration, mask wearing, vac-
cination requirements, and option for indoor/outdoor activities), 
and communicates a clear and easily interpretable result. The model 
attempts to address the full range of exposure risks within a com-
munity, from highest-exposure risk to people known to be infected, 
typical of a clinical environment, to lowest-risk exposure to people 
who rigorously follow public health guidance.

RESULTS
Model overview
CEAT allows users to estimate group-wide and individual relative 
dose, an individual dose, and transmission risk from potential 
SARS-CoV-2 exposure in various scenarios, based on the key mech-
anistic, viral, and epidemiological factors summarized in Table 1 
and fig. S1B. Here, we present (i) a brief overview of the CEAT 
model; (ii) the demonstration of the model applied to real-world, 
well-documented transmission scenarios; and (iii) the description 
of how CEAT was applied operationally by NASA Ames Research 
Center (ARC)’s Health and Safety office to manage exposure risk of 
its staff. Full details of the mathematical model used for CEAT can 
be found in Materials and Methods.

Exposure is defined as the contact of an agent with an external 
boundary of a receptor (exposure surface) for a specific duration 
(21). For simplicity, exposure dose is defined as the amount of ma-
terial that passes through the boundary based on the intake rate, 
concentration, and exposure time, although some inhaled particles 
do not deposit in the airways and are exhaled (22). In this case, the 
boundary is the entrance to the respiratory system (i.e., through the 
nose, mouth, and other mucosa) (21), and the intake rate is the in-
halation rate. Rather than a mass of material, we are only concerned 
with the quantity of material that contributes to transmission of dis-
ease. For viral dose-response models, the disease-causing quantity 
is often expressed in plaque-forming units. A Wells-Riley–based 
model expresses dose as an amount of quanta, and when applied in 
a Poisson probability distribution, the complement of the Poisson 
distribution’s probability mass function (with the assumption num-
ber of occurrences is zero) can be used to predict an infection rate 
(8, 23). Engaging in activities with high inhalation and exhalation 
rates, such as group exercise, strenuous work tasks, or singing (24), 
is thought to correlate with higher doses and transmission risks 
(25). Dose is the appropriate end point for a risk model, because it 
captures the contributions of concentration, exposure time, and in-
halation rate. Because the model is meant to evaluate risks for events 
that include groups of people and the number of people in each 
group is a variable that can be adjusted when planning events, we 
use a total group-wide dose (G) as the basis for our model

  G =   
_

 C   Q  Inhale   ΔtP  e  Total    (1)

where   Q  Inhale    is the average inhalation rate for the group,    
_

 C    is the 
average concentration of the agent (in this case, aerosols containing 
SARS-CoV-2), t is the duration of group exposure, and PeTotal is 
the number of people exposed in the group, which we will as-
sume are all of the people in the group. The G represents the total 

http://www.cov-irt.org/exposure-assessment-tool/
http://www.cov-irt.org/exposure-assessment-tool/
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quantity of infectious material that enters the respiratory tracts of 
all members of the group by inhalation over the duration of the po-
tential event.

Rather than using an explicit calculation of group dose, the 
CEAT model takes the form of a relative dose model, comparing 

a specific evaluated scenario to a defined high-risk baseline by  
a ratio

  Ratio of Group Doses =   
 G  i (Evaluated Scenario)    ───────────   G  BL (Baseline Scenario)  

    (6)

Fig. 1. CEAT interface and background on the model used. (A) User interface of the interactive PDF for CEAT. (B) The equations (Eqs. 2 to 5) that the CEAT model uses 
to calculate results. Figures 1A and 1B were created by Jim Gibson of Signature Science, LLC, Charlottesville, Virginia, USA.
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When the specific scenario results in a value that is equal to the 
baseline scenario, the ratio is 1. The ratio may be orders of magni-
tude greater or less than 1 depending on the specific evaluated sce-
nario. By benchmarking the dose calculations to a baseline scenario 
that is considered high risk by the Occupational Safety and Health 
Administration (OSHA), the model’s results can be aligned with 
the OSHA classifications of exposure risks (see table S1) (26). The 
OSHA risk classifications depend on the industry type, the need for 
close contact (i.e., within 6 ft or approximately 2 m) with people 
known to be or suspected of being infected with SARS-CoV-2, or 
requirement for repeated or extended contact with persons known 
to be or suspected of being infected with SARS-CoV-2 (26). We de-
fine the baseline scenario to represent a person (perhaps a health 
care worker) who is exposed to a COVID-19–infected person for 
15 min in an indoor setting with typical ventilation. We apply a 
range of assumptions to this scenario, addressing each of the factors 

in table S2 to arrive at a baseline scenario. This scenario was estimated 
to be consistent with between 4 and 9% likelihood of infection, based 
on the range of infection rates reported in various studies due to 
close contacts, presumably involving wild-type SARS-CoV-2 trans-
mission based on the dates of the cases included in the studies in 
early 2020 (27). The inhalation dose values for other scenarios are 
compared to the baseline value through the simple ratio.

A critical variable that must be estimated by the model is the 
concentration of virus-containing aerosols that occurs as a result of 
the exhalation from people in the group at the event. The underly-
ing concentration model used in CEAT assesses both the contribu-
tions of concentration due to the proximity of people (i.e., people in 
the “near field” whether indoors or outdoors) and the buildup of 
concentration in a room over time (i.e., “far field”) after Nicas (28). 
As presented in Materials and Methods, to determine the NF con-
centration, we use a method that captures the effect of turbulent 

Table 1. Summary of factors. Mechanistic and epidemiological factors included in the nomogram model that affect exposure and inhalation dose. 

Factors considered in exposure 
dose calculation Factor type CEAT step # Basis and/or range of values used in CEAT

Group’s infectiousness likelihood 
compared to the community Stochastic 1

The model assumes that the likelihood could be between 100× lower 
than the community average to 10× higher than the community 
average. The user can also specify that there is 100% probability of 
infectiousness, irrespective of the community conditions.

Number of people in the group Mechanistic/stochastic 2 Ranges from 2 to 250 people.

Distance between people Mechanistic 3 Users are given discrete options: 4.5 m (~15 ft), 3 m (~10 ft), 2 m (~6 ft), 
1 m (~3 ft), and 0.5 m (~1.5 ft).

Mask effectiveness Mechanistic 4 Range of mask effectiveness values based on published data for cloth, 
surgical, and N-95 masks (7, 47).

Mask compliance on the group Stochastic 4 Ranges between 0 and 100%.

Emission rate of infectious aerosols 
released through respiration Mechanistic 5 Range of viral RNA emissions rates by activity in viral quanta per hour (68, 69)

Inhalation rate Mechanistic 6 Typical inhalation rates for adults at various activity intensities (21)

Duration of exposure Mechanistic 7 Varies between 5 min and 12 hours

Indoors or outdoors activity Mechanistic 8 Indoor or outdoor options affect the form of the concentration model used.

Ventilation rates [air changes per 
hour (ACH) or air exchange rate] Mechanistic 8 Values based on published sources (53, 72)

Aerosol settling rate Mechanistic 8 Removal by deposition on surfaces (10)

Virus degradation rate Mechanistic 8 An ACH contribution from viral aerosol degradation (10)

Recirculating room filtration rate 
and removal efficiency Mechanistic 8 Recirculation of filtered air assumed to occur at a rate of 5 (liters/s)/m2 

(1 cfm/ft2) (72)

Volume of room or activity space Mechanistic 9

Varies based on user-specified dimensions, with constraints based on 
number of people and specified distancing. Ceiling height ranges 
between 2.15 m (7 ft) and 20 m (65 ft). Room side dimensions range 
between 2 m (7 ft) and 200 m (650 ft).

Prevalence of COVID-19 in the 
community

Epidemiological/
stochastic 10

Active cases per 100,000 is estimated by the published “average daily 
cases per 100,000 in the last week” available from various sources and 
estimates of the “average days infectious” and “undiagnosed factor.”

Difference in the variants 
transmission rates versus 
wild-type virus

Epidemiological 10 CEAT lets users adjust the equivalent exposure dose upward by a factor 
proportional to the reported increased variant transmission.

Impact of community’s or group’s 
immunity from recovery and 
vaccination

Epidemiological 1 and 10
Immunities are addressed in two ways: (i) reduced shedding (3× reduction 

is used) (67); (ii) user can enter value vaccine efficacy (70, 71) to function 
as “effective immunity barrier” at a level consistent with its

Impact of surveillance testing for 
the group Epidemiological 1 Estimated based upon knowledge of the group testing approach and 

testing efficacy.
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mixing that occurs because of higher air changes through ventila-
tion or increased mixing of the air (e.g., through the heating, venti-
lation, and air conditioning (HVAC) system recirculating the air). 
Specifically, we use equations that use the air change rate and total 
volume for an indoor space to calculate an eddy diffusivity based 
on relationships previously proposed (29, 30). We apply the calcu-
lated eddy diffusivity that still allows us the advantage of using the 
computationally simple NF and FF approach. Outdoors, only the 
NF concentration contributions are used because the FF concentra-
tion is considered to be negligible (31). Furthermore, also presented 
in detail in Materials and Methods, the CEAT concentration algorithm 
uses an approach for extending the NF and FF approach to groups 
of people at set distancing intervals through the application of the 
superposition principle. The superposition principle has been ap-
plied in the modeling of outdoor air pollutants from multiple sources 
(32) and to indoor air quality modeling of gaseous pollutants (30).

An important driver of the dose calculation is a stochastic ap-
proach that estimates the expected value of the number of infec-
tions in the group, because this is correlated to the quantity of 
virus-containing aerosols emitted in the modeled scenarios. In the 
baseline scenario, we assumed there to be one infected person. For 
the evaluated scenario, the number of infections in the group is 
dependent on the user's estimate of the group’s behavior character-
istics and an estimate of the number of active cases in the community 
population, calculated using the prevalence of diagnosed COVID-19 in 
the community, an estimate of the duration of infectiousness, and an 
estimate of the fraction of cases thought to be undiagnosed. The re-
sulting number of active infections may be less than or greater than 1.

We adjust the calculated dose ratio result by additional factors: 
(i) concentration of virus-containing aerosols that occurs as a result 
of the exhalation from people in close proximity, (ii) number of 
infections in the group, (iii) current community prevalence of vari-
ants, (iv) relative infectiousness of the prevalent variants, (v) current 
prevalence of immunity in the community of group gained by recovery 
or vaccination, (vi) efficacy of immunity in preventing transmission, 
and (vii) efficacy of surveillance testing of the group. The full CEAT 
dose ratio equation (Eq. 2) is shown in Fig. 1B, along with a map-
ping of where each of the CEAT step’s inputs is applied in the equa-
tion. The expanded version of the CEAT dose equation showing the 
NF and FF terms is found in Eqs. 49 and 50, respectively.

Users can use the tool to assess two side-by-side scenarios, and 
results are shown for the worst-case individual dose ratio, total 
group dose ratio, and NF and FF contributions to the total group 
dose ratio. In the CEAT tool user interface, we refer to this dose as 
an “exposure” rather than a “dose,” because exposure is a more rec-
ognized term and will not be misconstrued by a user to have any 
association with a vaccine dose or medication dose. The group dose 
ratios for both scenarios are then categorized into four exposure 
risk bins, ranging from “lower exposure” to “very high exposure” 
and presented graphically (Fig. 1A). The model’s results include the 
following:

1) Group-wide exposure (dose) ratio (Fig. 1B, Eq. 2): Ratio of the 
group-wide dose to the baseline group-wide dose. This result is also 
shown in the bar graph. This result takes into account the dose that 
group members are exposed to, as well as the size of the group. Ac-
cordingly, this group-wise result provides an evaluation of the over-
all risk of the event.

2) FF group-wide exposure (dose) ratio: Portion of the group-
wide dose that is due to the well-mixed concentration in the room.

3) NF group-wide exposure (dose) ratio: Portion of the group-
wide dose that is due to the localized concentration in the room due 
to the proximity of people.

4) Individual exposure (dose) ratio (Fig. 1B, Eq. 3): Ratio of the 
individual dose to the baseline individual dose.

5) Individual dose (Fig. 1B, Eq. 4): An estimate of the highest-ex-
posed person’s dose in units of quanta.

6) Infection rate (%): To determine the infection rate, the indi-
vidual dose is applied to a Poisson distribution to calculate the 
probability that the exposed group will become infected. The esti-
mated rate of infection within the group can be inferred from this 
probability. The relationship between the dose and the infection 
rate can be adjusted through using a variable in the model called the 
“Poisson distribution adjustment factor” in step 10, which provides 
a linear adjustment factor to that relationship. The dose is multi-
plied by 1 over the adjustment factor.

7) Number of index infectors: This provides the assumed num-
ber of the infected individuals who were present on the basis of the 
selections and inputs in steps 1, 2, and 10 in the model. The model 
used this value to estimate the initial source(s) of infection in the 
room or at the event. This value can be a less than one person or 
fraction of a person, because it represents a probabilistically deter-
mined number of people.

Demonstration of the model applied to documented 
transmission events
We have demonstrated the effectiveness of CEAT results to predict 
infection rates for known transmission events by assembling data 
from eleven transmission events that were documented in the liter-
ature (listed in Table 2). All the events, except for one, occurred before 
the vaccines were available and before the emergence of SARS-CoV-2 
variants. To evaluate each of these scenarios in CEAT, we collected 
the data needed for each step and set the average daily cases per 
100,000, such that the “number of people initially infected” in the 
results would be equal to one, assuming that there was one index 
case in each scenario. There are two ways of conceptualizing how the 
CEAT model is addressing this scenario of a known infected person 
(or index case), which are both mathematically equivalent:

1) A receptor at the center and all others are potential sources. 
The emissions may occur from any one of the sources. We calculate 
an expected value of the dose for the person at the center, assuming 
that all of the people are equally likely to be the emitter, with a prob-
ability of φ, where φ = 1/(Number of People − 1), and the one emitter 
has a quanta-based emission rate of   M ̇   . CEAT sums the results from 
all people (both FF and NF) and multiplies by φ. This is the expected 
value of dose that the person located at the center of the group 
would receive if there was one emitter in the room, given that the 
emitter could have been anywhere in the room.

2) The source is at the center and all of the people are receptors. 
We calculate the expected value of the dose for each receptor (i.e., 
each susceptible person) given an emitter at the center, emitting at   
M ̇   . CEAT sums the results from all people (both FF and NF) and 
then divides by the number of receptors (i.e., number of people − 1) 
to arrive at an average. The result is the expected value of the mean 
dose that all people would receive in the room from the one emitter.

When examining CEAT performance for transmission events, 
we use the event’s number of infections and the infection rate, P, 
which is the number of secondary cases (total infected) divided by 
the total susceptible people, yielding  P =   Total Infected _ Total Susceptible  . The total 
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number of total susceptible is equal to the total people minus the 
index cases (typically equal to one). Using the information describ-
ing the event’s duration, room size, ventilation rate, activity type, 
and any information on the location or the spacing of the people, 
we calculate the CEAT individual dose. To facilitate a direct 

comparison with results generated from a Well-Riley model, we 
predicted the infection rate using the same statistical approaches 
that are used in the Wells-Riley model (30), in which the probability 
of at least one infection is computed using an assumed Poisson dis-
tribution, with shape parameter equal to DCEAT i, as shown in Eq. 7

Table 2. Reported COVID-19 transmission events.  

Case number Event description
Volume of 

room or 
facility (m3)

People at 
event

Total cases attributed 
to the event 

(secondary cases)
Total infected or 
total susceptible Primary reference

Case 1 Bus, Zhejiang Province, 
China, 19 January 2020 80.0 68 23 34% Shen et al. (73)

Case 2 Big bus, Hunan Province, 
China, 22 January 2020 60.4 48 8 17% Luo et al. (74)

Case 3 Little bus, Hunan Province, 
China, 22 January 2020 29.2 17 2 13% Luo et al. (74)

Case 4 Restaurant, Guangzhou, 
China, 24 January 2020 480.4 89 9 10% Li et al. (20)

Case 5 Meeting, Munich, Germany, 
21 February 2020 210.0 13 11 85% Hijnen et al. (75)

Case 6

Commercial aircraft, Flight 
VN54 (London, United 

Kingdom–Hanoi, Vietnam), 
1 March 2020

662.2 217 15 7% Khanh et al. (76)

Case 7
Recreational squash game, 
Maribor, Slovenia, 4 March 

2020
458.5 2 1 100% Brlek et al. (77)

Case 8 Call center, South Korea, 8 
March 2020 3267.0 216 93 43% Park et al. (78)

Case 9 Choir rehearsal #1, Berlin, 
Germany, 9 March 2020 1200.0 78 69 90% Kriegel et al. (33)

Case 10
Choir rehearsal, Skagit 

Valley, WA, USA, 10 March 
2020

808.0 61 52 87% Miller et al. (9)

Case 11 Choir rehearsal, France, 12 
March 2020 136.5 27 18 69% Kriegel et al. (33) and  

Charlotte (34)

Case 12 Meat packing, Gutersloh, 
Germany, 2 April 2020 1659.2 78 20 26% Kriegel et al. (33)

Case 13 School, Jerusalem, Israel, 18 
May 2020 150.2 67 29 44% Kriegel et al. (33)

Case 14
Recreational hockey, Tampa 

Bay, Florida, USA, 16 June 
2020

16,080.0 23 14 64% Atrubin (79)

Case 15 Restaurant, Jeonju, South 
Korea, 17 June 2020 231.8 14 2 15% Kwon et al. (80)

Case 16
Fitness class (instructor A), 
Honalulu, HI, USA, 29 June 

2020
114.7 11 10 100% Kriegel et al. (33)

Case 17 School, Berlin 1, Germany, 
August 2020 180.8 28 3 11% Kriegel et al. (33)

Case 18 School, Berlin 2, Germany, 
August 2020 150.2 21 1 5% Kriegel et al. (33)

Case 19
Court room, Vaud, 

Switzerland, 30 September 
2020

149.5 10 4 44% Vernez et al. (50)

Case 20
(Omicron)

Holiday party, Oslo, Norway, 
30 November 2021 434.9 117 81 70% NIPH (38)
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   P  CEAT Pred.   = 1 − exp(−  D  CEAT i  )  (7)

The CEAT-predicted infection rate is plotted against the observed 
cases among the susceptible people (Fig. 2A). Information on vacci-
nation, variant, and mask usage (which was none) was gathered 
from the reported events (Table 2). The CEAT results show a high 
correlation with the observed infection rates, with an almost one-
to-one relationship (i.e., R2 = 0.93) (Fig. 2A). If we remove case 11 
(i.e., Choir rehearsal, France, 12 March 2020) (33, 34) from the data 
points included, then we achieve an even higher correlation between 
CEAT and the observed infection rate (i.e., R2 = 0.96). For case 11, 
CEAT predicted a 100% infection rate, while the actual event had 
69% reported infections (Table 2). Given the characteristics of this 
event, with a reported very small room volume (at 136.5 m3), 27 people 
singing, and a low ventilation rate, both the CEAT model and the 
Wells-Riley approach predict a 100% infection rate. As noted in (34), 
it is possible that cases were underreported; 19 of the 27 individuals 

reported having COVID-19, including 7 cases confirmed with reverse 
transcription polymerase chain reaction (RT-PCR) and 12 probable 
cases that showed symptoms. Because not all individuals were tested 
with RT-PCR nor directly interviewed by the researcher, we cannot 
know whether the other assumed that eight negative individuals 
were asymptomatic and COVID-19 positive or just had unreported 
symptoms. We believe that including this case shows that although 
some situations might lack all the optimal parameters needed, 
CEAT will provide reasonable predictions of the relative magni-
tude of exposure risk. This is also an argument for testing all indi-
viduals in the room in an event such as case 11.

In addition, CEAT correctly binned the events as high risk, and there 
is a statistically significant positive correlation between the number of 
observed infections and CEAT group-wise dose ratio (Fig. 2E). As dis-
cussed in the previous section, to assess infection rate, the initial 
relationship between the dose and the infection rate is unadjusted 
and then through the “Poisson distribution adjustment factor” in 
step 10, we achieve the corrected adjustment. With CEAT, even 

Fig. 2. Validation of the CEAT with known COVID-19 spreading events. (A and B) The adjusted and unadjusted scatter plot comparing the observed infection rates of 
known events (found in Table 2) to CEAT-predicted infection rates. (C and D) The adjusted and unadjusted scatter plot comparing the observed infection rates of known 
events to Wells-Riley model–predicted infection rates. For (A) to (D), linear fits were made to the data points, and the residuals of these fits are plotted underneath each 
plot. The R2 values for the fits are shown in the plots. (E) Correlation plot of the observed infection rate to both the CEAT and Wells-Riley adjusted predicted infection rates. 
Correlation with additional parameters from the event is shown. The size of the nodes reflects the degree of correlation (i.e., larger the size, the higher the correlation). 
Positive correlation is related to the higher shades of red, while negative correlation is related to higher shades of blue. Statistically significant correlations are denoted 
by ***P < 0.001, **P < 0.01, and *P < 0.05. (F) Scatter plot of the exposure risk for all 20 events determined by CEAT found in Table 2.
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before this adjustment takes place, we still observe a strong correla-
tion to the observed infection rates (Fig. 2B).

As a comparison to the CEAT results, the traditional Wells-Riley 
result that assumes a well-mixed dose,   D  WMB    is calculated using

   P  Wells‐Riley Pred.   = 1 − exp(−  D  WMB  )  (8)

Using the same assumptions applied to the CEAT model for each 
of the events, including the same quanta-based emission rate, the 
Wells-Riley–predicted infection rates for both the adjusted (Fig. 2C) 
and unadjusted (Fig. 2D) clearly show poor predictions when com-
pared to the observed infection rates. The CEAT approach clearly 
outperforms the Wells-Riley in predicting infection rate in these cases 
(Fig. 2E). We also observe that the CEAT outperforms the Wells-Riley 
model with several other important parameters that include distanc-
ing, density, breathing rate, and volume of the room (Fig. 2E).

CEAT use to determine risk assessment for social gatherings
To demonstrate how CEAT can estimate potential exposure risk to 
COVID-19 for gatherings and events, we used CEAT to assess a set 

of hypothetical gathering scenarios that could have occurred in three 
locations in the United States (Fig. 3) using published CDC county- 
level COVID-19 7-day average new case data for the locations on 
31 January 2022 (35). We chose three representative locations: (i) a 
county with a low vaccination rate and a high 7-day average new 
case rate (Knox County, TN), (ii) a county with a moderate vaccina-
tion rate and a 7-day average case equivalent to the national average 
(Suffolk County, MA), and (iii) a county with a high vaccination 
rate and low daily cases (Montgomery Country, MD). At the time of 
analysis for all counties, the Omicron variant accounted for >99% 
of COVID-19 cases (6). We assumed that the gatherings lasted 
5 hours and would be held both indoors and outdoors. We also in-
cluded a range of scenarios for distancing, type of masks being used, 
composition for the group of people, and location (i.e., indoors or 
outdoors). Last, we included analysis for three different group char-
acteristic scenarios for the gatherings: (i) the general public (i.e., 
“equal to the community average”); (ii) groups of people that are 
100% vaccinated and follow all public guidelines; and (iii) groups 
of people that are 100% vaccinated and follow all public guidelines, 
and testing was required before the gathering.

Fig. 3. COVID-19 exposure assessment for gathering lasting 5 hours. Data were analyzed on 31 January 2022 for three U.S. counties from the lowest (Montgomery 
County, MD) to the highest (Knox County, TN) COVID-19 cases. The time was kept constant for all data points, which assumes an average gathering of around 5 hours. The 
vaccination rates and population recovered rates are displayed on top of the plot for each county. Different scenarios were represented for location (outdoors, triangle; 
indoors, circle), distancing (increasing point size relates with increasing distance), and mask usage (no masks, red; average masks, blue; N95/KN95, yellow). The back-
ground shading of the plot indicates whether the data points are considered low risk (light blue), medium risk (yellow), or high risk (red) for COVID-19 exposure.
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The exposure assessment from this analysis can help guide indi-
viduals to safely plan gatherings and events. As expected in all sce-
narios, if the gathering is composed of 100% vaccinated individuals 
that were tested and follow all public guidelines, then the exposure 
risk is very low both indoors and outdoors; with the best masks and 
with an increasing number of people, it increases to medium risk 
(Fig. 3). When considering the gathering in a general public scenario 
(e.g., eating at a restaurant), for all indoor scenarios in all counties 
without a mask with >10 people in the room, the group is at high 
risk of exposure to SARS-CoV-2 even when spaced 3 m (approxi-
mately 10 ft) apart. Overall, we demonstrate with CEAT that the 
more precautions are followed, the greater the reduction of expo-
sure. This approach could be used as a guide for the public on how 
to use CEAT to properly determine the safest way to assemble while 
keeping the risk of exposure to COVID-19 low.

NASA ARC used CEAT to determine the safest method 
for allowing workers to return to work
CEAT has been used by the NASA ARC safety office to assist 
them in planning for workers to return to their campus. Starting on 
11 December 2020, NASA ARC began to use the first beta version 
of CEAT to assess whether the tool could assist in gaining under-
standing on how to keep essential workers safe when having to work 
in person on the NASA ARC campus. To demonstrate how NASA 
ARC safety office has used this tool, we provide their assessment of 
exposure potential in 73 different scenarios throughout the campus 
(Fig. 4 and table S3). Since NASA ARC has been using this tool 
throughout the COVID-19 pandemic, every assessment used the 
latest COVID-19 case numbers from the state of California (36). As 
is shown in Fig. 4, the case numbers will vary because of the chang-
ing number of cases for that particular date of assessment, so it is 
essential to analyze the risk continuously with the most up-to-date 
COVID-19 case rates.

For each scenario, CEAT was used to determine the maximum 
number of personnel that could be allowed to be in each location 
such that the exposure risk was the lowest, while still allowing the 
work to be performed (Fig. 4 and table S3), which during prepan-
demic would have been occupied by more personnel. These maxi-
mum occupancy numbers were included in the project’s return to 
onsite work (RTOW) plan that was reviewed by the safety office. In 
general, most operations could occur with one to two people, thus 
reducing the potential exposure and resulting in a lower exposure 
risk. However, some operations required up to 10 personnel to be fully 
functional. As expected, these conditions increased the COVID-19 
exposure risk to medium level. NASA ARC considered the group of 
people at work to be composed of people following all public health 
guidance that had the effect of reducing the assumed probability of 
COVID-19 prevalence in the group below the average for the com-
munity, with exception of a few locations where employees from 
organizations outside NASA ARC would participate. Social distanc-
ing was assumed to be the maximum possible for that work to 
be performed. For some locations such as “Critical activities 
when spacecraft arrives and extra hands needed - location C,” social 
distancing could not be achieved while performing the work, so 
other factors were considered, such as limiting the project duration, 
to find the lowest risk exposure estimate possible for that location 
and operation.

The breathing rate and vocalization for each location were also 
part of the decision in determining the maximum number of people 
in each location. Of all the locations and operations analyzed, only 
one location/operation resulted in the worst-case scenario that pro-
duced the highest risk exposure assessment (i.e., “High-medium 
risk exposure”). The operation “Material testing such as compres-
sion testing and fatigue testing” typically involved high exertion 
physical activities and heavy exertion for the breathing rate and 
speaking over a long duration. Most of the other locations and 

Fig. 4. COVID-19 exposure assessment for determining the lowest exposure risk for in-person work by NASA ARC. Exposure risk ratios using CEAT were calculated 
for 73 different scenarios (i.e., various locations and operations) at NASA ARC. The variables used for all 10 steps are depicted for each scenario highlighting how various 
inputs affect the exposure risk ratios. The data for this figure are available in table S5.
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operations only required passive breathing rate and standing/
speaking. The various operations that required elevated breathing 
rate and vocalization to light exertion typically had shorter project 
durations to reduce the COVID-19 exposure risk.

To provide inputs for the air changes per hour (ACH), the ven-
tilation rates for each location were provided by the building man-
agers, were directly measured, or were assumed using the guidelines 
in step 8 in the CEAT. The most accurate ventilation rates available 
to the safety office were used in the model for each scenario. With 
the available data and estimated parameters in some cases, CEAT 
allowed NASA ARC to determine the operation-specific mitigation 
approaches, allowing its essential workers to return to work in- 
person with the low exposure risk to COVID-19.

CEAT has also been effective in allocating project resources and 
PPE where they would be most beneficial. When reviewing RTOW 
plans, NASA ARC safety office used the CEAT as a resource to rec-
ommend whether limited KN95/N95 masks would be effective at 
reducing potential exposure risk. Similarly, projects used CEAT 
when purchasing portable air cleaners (PACs), calculating the 
number of ACH needed to reduce risk to acceptable levels, typically 
lower exposure. Multiple projects found that the number of PACs 
needed to reduce risk to acceptable levels was not financially feasi-
ble and other controls such as increasing mask effectiveness and/or 

working in a different location were more cost effective for the same 
risk reduction. This allowed projects to spend their budgets more 
efficiently.

When the workplace face mask policy became optional for vac-
cinated personnel, CEAT was used to identify potential locations 
and operations where face masks would be required regardless of 
vaccination status. Personnel working in locations and/or opera-
tions where the relative exposure risk was in the “medium” or 
“high” category were required to wear face coverings regardless of 
vaccination status. CEAT was especially effective in this regard, as it 
allowed the safety office to provide this guidance using a consistent 
and unbiased method.

When tracking the CEAT model results over time, one can ex-
amine how the model responds to changes under community con-
ditions and changes in organizational policies. NASA ARC tracked 
their worksite-specific relative group-wide exposure ratios with the 
California 7-day case rate (Fig. 5). There was a strong correlation 
(correlation coefficient = 0.98) between the two results, as would be 
expected, because the 7-day case rate is an input into the CEAT 
model in step 10 (Fig. 1B, Eq. 3). Specifically, NASA ARC used the 
location- and operation-specific exposure risk ratios that were 
assessed on a biweekly basis to calculate a “centerwide accepted 
median exposure risk ratio.” The fact that the CEAT results moved 

Fig. 5. NASA ARC accepted exposure risk in relation to community case rates. Exposure risk ratios were calculated on a biweekly basis for 73 different scenarios (i.e., 
various locations and operations) at NASA ARC starting 1 March 2020 upon approval to RTOW to 1 September 2021. Biweekly reassessments included changes in com-
munity conditions such as case rate, variant prevalence, and vaccination rates in California. The median of all projected exposure risk ratios was calculated on a biweekly 
basis to establish a “NASA ARC accepted median exposure risk” (blue). These values were plotted along with the California state 7-day case rate per 100,000 (orange). 
Notations were made designating major events and/or policy changes that may have influenced trends and deviations. The background shading of the plot indicates 
whether the data points are considered low risk (light blue) or medium risk (yellow) for COVID-19 exposure.
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up and down with the community conditions allowed the NASA ARC 
safety office to adjust its guidance and mitigation strategies accordingly.

Beginning 14 May 2021, NASA ARC implemented the updated 
CEAT that included variant prevalence. It was noted that the cor-
relation between the centerwide accepted median exposure risk ra-
tio and the California case rate immediately decreased. However, at 
the same time this updated CEAT iteration was implemented, the 
NASA ARC face mask policy became optional for vaccinated per-
sonnel. Once NASA ARC reinstated their face mask policy for all 
individuals regardless of vaccination status, the correlation between 
centerwide accepted median exposure risk ratio and the California 
case rate appeared to return to similar values before 14 May 2021.

DISCUSSION
By establishing a set of equations that included mechanistic factors 
affecting NF and FF concentration, filtration, group behavior, and 
SARS-CoV-2 infection and immunity prevalence in the community, 
we developed a flexible, simple-to-use CEAT. The tool achieved our 
goal of allowing businesses, schools, government agencies, and indi-
viduals to assess COVID-19 exposure to the risk for groups and orga-
nizations. The tool is easy to use, computationally fast, and built 
on a well-developed and documented mathematical model that 
includes aerosol behavior, knowledge of SARS-CoV-2 transmis-
sion dynamics, and the effect of proximity. Here, through our 
comparison of CEAT results against observed transmissions for 
documented events, we demonstrate that CEAT can provide the 
accurate predictions compared to known cases with observed in-
fection rates (Fig. 2), an example of how CEAT can be used for 
gatherings (Fig. 3), and real-time usage of this tool demonstrating 
how the NASA ARC safety office has, over the past year since the 
tool’s original release in December 2020, been evaluating how to 
allow essential employees to work in person with the lowest possible 
risk to COVID-19 exposure (Fig. 4). Although previous existing air-
borne transmission models exist as we have discussed throughout 
this manuscript, CEAT provides a logical advancement in the field 
for more accurate risk exposure assessment.

As the CDC notes, the inhalation of fine respiratory droplets and 
aerosol particles is the primary means of SARS-CoV-2 transmission 
(37). This is in line with recent publications that have shown that 
SARS-CoV-2 is spread by airborne transmission through the aero-
sols produced from breathing, talking, and singing (9). Given this, 
the CEAT’s mathematical model addresses the aerosol dynamics 
and transport, not only treating the suspended aerosols as if they are 
dispersed as gasses would be using a eddy diffusivity approach but 
also addressing deposition as a sink, using the same approach for 
aerosol deposition that was presented in the COVID-19 Aerosol 
Transmission Estimator spreadsheet-based tool (10), where an aerosol 
deposition factor of 0.24 hour−1 was used.

To demonstrate the model, we examined 20 literature-documented 
events with one of the events occurring in November 2021 with 
known the Omicron variant and vaccine data (Fig. 2 and Table 2) 
(38). When comparing CEAT results to the Wells-Riley model, CEAT 
better predicted the infection rate compared to the observed infec-
tion rates reported (Fig. 2). In addition, the exposure scores for all 
events predicted a high risk of exposures, which correlates to what 
was reported for each of these cases.

Schools and universities that have opened to in-person classes 
have been able to maintain low to no COVID-19 cases by applying 

many of the mitigation methods that are included in the CEAT, albeit 
independent of CEAT. The scenarios included in our assessment of 
gatherings (Fig. 3) can be applied to these environments and seem 
to match the observations that are being reported by schools and 
universities. Known outbreaks or superspreader events related to 
school openings have been chiefly reported occurring outside the 
classroom environment, including events during spring breaks (39) 
or athletic-related events (40), where enforcement of specific guide-
lines to reduce spread was not implemented. Other COVID-19 
models for school reopenings have also shown similar recommen-
dations as CEAT (41–43). Brooks-Pollock et al. (41) provided a sto-
chastic transmission model based on social contact data and patterns 
of student mixing to determine the impact and risk of COVID-19 
transmission for universities in the United Kingdom. Because their 
model only targets social patterns and behavior of students contrib-
uting to COVID-19 infections, the focus for their mitigation strate-
gies was with reducing the number of students in in-person classroom 
settings (i.e., increase social distancing), reducing living circles for 
students, and included regular testing. Although their model only 
takes into account one parameter from our model, the social dis-
tancing measures are in agreement with the exposure risk assess-
ment results from our CEAT analysis. There also have been two 
independent agent-based models developed to assess SARS-CoV-2 
transmission (43) and COVID-19 cases (42). Similar to the model 
described above, the agent-based model of Phillips et al. (43) focus-
es on SARS-CoV-2 transmission based on children’s household siz-
es in the Ontario childcare centers and school buildings. They have 
also included parameters to take into account classroom sizes, 
sibling influence, symptomatic and asymptomatic rates, and physi-
cal distancing. Hernández-Hernández and Huerta-Quintanilla (42) 
presented an agent-based model that uses the students’ community 
network to predict spread of COVID-19 within a school setting. They 
also considered the following parameters: (i) status of COVID-19, 
(ii) physical distancing, (iii) viral load, (iv) hygiene standards, (v) 
confined spaces, and (vi) social interactions. As expected, both models 
demonstrated the importance of social distancing and following the 
proper guidelines to prevent spread of COVID-19 that is in agree-
ment with our model.

The recently published model by Miller et al. (44) uses CDC’s 
COVIDTracer Advanced tool to provide a transmission model for 
SARS-CoV-2 in schools. They took into account scenarios for in-
fection in the community and public compliance to CDC guidelines 
to mitigate COVID-19 spread. Similar to other models, they found 
that social distancing is key to reduce spread and that the COVID-19 
community case rate is crucial when assessing exposure risk. Although 
all these models provide a good basis for predicting the optimal 
conditions for having in-person classes, they miss key parameters 
incorporated in CEAT that are important to determine the most 
effective and accurate assessment of exposure risk to COVID-19. 
The lessons learned from classroom scenarios can also be applied to 
other gatherings, such as family gatherings. We demonstrated that 
depending on the location and people’s behavior, there are scenarios 
that have low risk for viral exposure (Fig. 3). Currently, there are no 
models specifically focused on family gatherings, but the literature 
available confirms the risk assessment analysis that CEAT generates. 
Whaley et al. (45) reported an assessment of COVID-19 risk associ-
ated with social gatherings, specifically during birthdays. They used 
data from 2.9 million households from a large insurance database that 
included COVID-19 prevalence from 1 January to 8 November 2020 
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and household birthdays across geographical regions in the United 
States. They estimated that increased cases of COVID-19 correlated 
with social gatherings (i.e., birthdays), with increased cases for 
households in counties with higher COVID-19 prevalence. This 
study can serve as a population confirmation for the assessment 
that we provided for gatherings with CEAT (Fig. 3).

Since the beta version release of CEAT in December 2020, we 
have made several changes to the tool to improve it including the 
following: (i) added an eddy diffusivity–based NF concentration al-
gorithm, (ii) added an infection rate calculation, (iii) accounted for 
new SARS-CoV-2 variants, (iv) addressed COVID-19 surveillance 
testing for groups, and (v) addressed immunity within the population 
gained from recovery or vaccination. These additional functionalities 
were added to adapt to new information that was available since the 
initial release and reflect the team's increased understanding of the 
risk dynamics related to SARS-CoV-2 transmission.

To determine the capability of CEAT being used by an organiza-
tion to safely regulate employees working in-person, we have pro-
vided an example of it being applied by the NASA ARC safety office 
(Fig. 4 and table S3). NASA ARC adjusted parameters related to group 
size, duration of time, and ventilation for the project to bring the 
exposure level to the lowest possible risk. The analysis shows how 
NASA ARC continued to monitor the changing case numbers within 
the community and used CEAT to provide the safest possible sce-
nario for essential employees to work in-person. The use of CEAT 
by NASA ARC represents a blueprint for other organizations, busi-
nesses, and schools to use the tool to manage their organizations 
exposure and risks to allow the organization to optimize mitigation 
strategies for employees to work in-person with lower exposure risk 
to COVID-19. The case study at NASA ARC has shown that as the 
push for employer vaccine mandates increases (46), employers can 
calculate the potential exposure risk reduction among their work-
force compared to the community. This will be especially useful for 
workplaces in communities with low vaccination rates, where an 
employer vaccine mandate could have a large reduction in risk.

There are certain parameters in CEAT’s model that will have a 
greater influence on the assessment for exposure risk to COVID-19. 
As the examples that we have provided show, the location of the 
gathering makes a big impact on the outcome (i.e., indoors versus 
outdoors) (Figs. 3 and 4). This is due to the fact that the exchange of 
aerosols between people outdoors will obviously be greatly reduced 
because of open circulation of the air versus in a confined space. 
The compliance to public health guidance policies is another pa-
rameter that will greatly change the outcome of the exposure risk 
assessment (Figs. 3 and 4). Last, the type of mask will make a con-
siderable difference on the outcome of the model. From existing 
literature on effectiveness of masks (47, 48), our model takes into 
account that the better the mask and the greater the adherence to 
mask wearing result in a reduction of dose ratio (Figs. 3 and 4).

We believe that this tool and model can be easily modified and 
applied for guidance in current and future epidemics/pandemics 
from respiratory pathogens. In addition to SARS-CoV-2, a system-
atic review of the literature has shown that measles, tuberculosis, 
chickenpox, influenza, smallpox, and SARS have strong and suffi-
cient evidence of an association between their transmission and 
ventilation and air movement (49). Accordingly, if pathogens have 
similar transmission mechanisms through aerosols, then the CEAT 
model can be modified to include the aerosol and viral dynamics to 
accommodate their pathogen-specific exposure risk assessment. 

We believe that by providing CEAT to the general public and build-
ing on its capabilities will have a long-lasting beneficial impact for 
both the current COVID-19 pandemic and many other scenarios.

Limitations of the study
As with any mathematical model, there will be parameters that cannot 
be fully captured. Our model has some inherent limitations; none-
theless, it has been demonstrated to be used to predict COVID-19 
exposure risk for a limited number of 20 documented transmission 
event cases. In some of these cases, key parameters were not available 
but were instead estimated. A full validation of the model is needed 
where a separate complete training set and test dataset were com-
piled and applied to the model validation.

Several simplifying assumptions were made in the development 
of CEAT that resulted in more conservative results. One conserva-
tive assumption was using the highest exposed person to represent 
all people in a group. In future versions of CEAT, we may calculate 
location-specific exposure values that account for the location of 
each person in the space versus every other person in the space. This 
approach would result in a lower group exposure estimate than we 
currently calculate.

The CEAT concentration model assumes that exhalations be-
have isotropically (i.e., they disperse equally in all directions), are 
nonbuoyant, and are continuous exhalations. In reality, exhalations 
are more complex and may range from violent expiratory events or 
more regular puffs (11). Exhalation plumes are typically anisotropic 
jets and have a buoyant nature due to their relative warmth and 
higher humidity. CFD modeling has captured these dynamics (26–28). 
To compensate for the fact that CEAT assumes plumes are non-
buoyant, which likely results in CEAT overpredicting concentra-
tions at breathing heights, we adjust the height of the NF volume to 
be equal to the distance between the source and the receptor, mixing 
the emission in all directions and in a larger NF volume. The anisot-
ropy is more difficult to capture in a model, given that people in 
groups may be facing in different directions at any point in time and 
in some events, such as a classroom, people may have a more uni-
form directionality. In addition, the direction of the airflow in an 
indoor space is dependent on the flow rate characteristics of the 
ventilation system, geometry of the space, geometry and type of air 
vents, doors, windows, differential heating and cooling, other fans 
in the building, movement of people, and indoor/outdoor environ-
ment interactions. The simple approach used by CEAT to arrive at 
a concentration certainly could be improved upon for any specific 
situations using CFD modeling; however, the computational com-
plexity and run times would greatly increase. Experiments that 
included high temporal and spatial measurement of CO2 from people 
in a variety of indoor conditions may be useful for testing and opti-
mizing the concentration modeling approach used in CEAT. Ex-
perimentation, similar to the studies conducted by Vernez et al. 
(50), but using exhaled CO2 and inert aerosols as tracers, could be 
accomplished and compared with results obtained using CEAT’s 
algorithms to validate its concentration models and possibly calcu-
late adjustments for the eddy diffusivity.

The aerosol deposition and virus decay behavior are simplistically 
handled in CEAT by adding additional terms to the air change rate 
resulting in a lower concentration since the effective ACH is in-
creased. CEAT uses the same values for aerosol deposition and virus 
decay of 0.24 and 0.63 hour−1, respectively, for all conditions, using 
the same values recommended in CIRES (10). The deposition and 
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virus decay rates should vary on the basis of environmental condi-
tions and the nature of the exhalation conditions (breathing, cough-
ing, sneezing, singing, and speaking). In future versions of CEAT, 
exhalation-specific deposition rates and the environment-specific 
decay rates (i.e., varying by humidity, temperature, and ultraviolet 
radiation) could be calculated (51).

The model could benefit from the incorporation of vaccine- 
specific values for the efficacy of a vaccine to prevent transmission, 
recognizing that this approach is an oversimplification of a very 
complex process. In our model, we currently have “protective effec-
tiveness of immunity” being considered as one universal number 
for the population being assessed. We believe that differences for 
efficacy between the vaccines can be averaged for the overall com-
munity. Our model also lacks the ability to incorporate the length of 
time that has passed since being vaccinated or previously infected. 
This might change the risk assessments because we now know that, 
for both cases, the levels of antibodies against SARS-CoV-2 reduce 
over time (52). However, more research is needed to determine how 
this affects the protection against SARS-CoV-2, which is the reason 
we have not incorporated this parameter into our model at the mo-
ment. In addition, CEAT does not account for the buildup of viral 
particles between groups using the same space one after another. 
This limitation will affect groups gathering in a room separately but 
sequentially. One way to overcome this limitation is for groups to 
allow a certain amount of time between occupancy. Calculating the 
amount of time needed for a ventilation system to remove 99% of 
contaminants, similar to that provided by the CDC for infection con-
trol in health care facilities (53), can allow groups to calculate their 
exposure risk ratio during separate but successive events. Similarly, 
groups can estimate their relative risk of back-to-back gatherings by 
adding the total duration of all meetings throughout the day.

MATERIALS AND METHODS
Relative dose ratio approach and exposure risk 
model derivation
CEAT’s relative dose ratio approach is based on a mechanistic dose- 
response framework. The starting point for the inhalation dose 
model is to use the relationship that defines group-wide inhalation 
dose as a linear system

  G =   
_

 C    Q  Inhale   Δt  Pe  Total    (9)

where   Q  Inhale    is the average inhalation rate for the group,    
_

 C    is the 
average concentration of the agent (in this case, aerosols containing 
SARS-CoV-2), t is the duration of group exposure, and PeTotal 
is the number of people exposed in the group, which we assume is 
equal to the total number of people in the group. The G represents 
the total mass of contaminant that enters the respiratory tracts of all 
of the group by inhalation over the duration of the potential expo-
sure or event. The fate or dynamics of the virus within the respira-
tory tract is not considered in the model and would be part of a 
transmission process. The critical variable that must be estimated 
by the model is the concentration of virus-containing aerosols 
that occurs as a result of the exhalation (i.e., breathing, speaking, 
coughing, and singing) from people who are in close proximity 
and build up in a room over time.

There are a variety of ways of estimating concentration of con-
taminants in the air. Several commonly used methods include WMB 

models (54), CFD models (55), and Gaussian dispersion models 
(32). CFD-based models use numerical solutions of the first-principle 
equations of fluid flow and contaminant transport that are tailored 
to the specific geometry, scale and temporal lengths, and flow re-
gimes and are capable of modeling the complexities of particle 
dynamics, inhalation, exhalation, and interaction with flows in a 
building (55). Gaussian models use an explicit solution of the con-
taminant transport equations and are, therefore, computationally 
fast compared to CFD models. Gaussian models are typically used 
at larger scale lengths (hundreds of meters or more) and are used in 
outside environments, not typically used in indoor modeling (56). 
The WMB model is a simple model that can be used to estimate 
concentrations of contaminants in the air. It treats a room as if it 
were a continuous stirred-tank reactor and uses the basic equations 
for concentration that were developed for modeling continuous re-
actors in chemical engineering.

The WMB (or zone) approach is widely used and, for example, is 
the basis for the National Institutes of Standard and Technology’s 
(NIST’s) CONTAM indoor air quality model (57). NIST has also 
applied a single-zone WMB approach in its Fate and Transport 
of Indoor Microbiological Aerosols (FaTIMA), where it assumes 
rooms are single well-mixed zones (58).

The basic equation for the single-zone WMB is shown below

  Vdt =  M ̇  dt −  Q  Vent   C dt  (10)

where V is the volume of the box, QVent is the ventilation rate (in units 
of volume per time) through the box, and   M ̇    is the emission rate (in 
units of mass per time) (fig. S1B).

If we assume that the emission rate is constant starting at time 
equals zero, then the time varying equation takes the form

   C(t ) =    M _  Q  Vent  
  ̇   (  1 −  e   −   Q  Vent   _ V  Δt  )     (11)

Once enough time has passed to achieve equilibrium, the model 
takes the simple form

     
_

 C    eq   =    M _  Q  Vent  
   ̇    (12)

The basic simplifying assumption of the WMB model is that it 
assumes that a contaminant is instantaneously completely mixed 
throughout a volume of air. This instantaneously well-mixed as-
sumption is a significant limitation when looking to determine the 
exposure between people in a room or space if they are in close 
proximity relative to the size of the room. The single-zone well-
mixed assumption results in the same exposure no matter how close 
or far people are located. Accordingly, methods that can assess the 
potential for higher concentrations (and exposures) that would 
result between closely clustered people would be useful for quanti-
fying exposure, doses, and associated risks.

NF and FF box model
In the field of industrial hygiene, it is recognized that the single-zone 
box model may underestimate exposures experienced by receptors 
(i.e., people) close to a hazard, because it assumes that the concentration 
is instantaneously well mixed over the volume of the room. While 
CFD is one option to resolve the spatial complexity of dispersion 
and mixing of a contaminant, industrial hygienists have devised a 
simpler way of estimating the high concentrations near a source using 
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a “box within a box,” with an inner box or NF box containing the 
contaminant source and a receptor and a larger FF box that rep-
resents entire volume (e.g., room) (fig. S1C). The time-dependent 
concentration at the receptor is estimated by adding the NF and FF 
concentration contributions (28, 31)

  C(t ) = C  (t)  NF   + C  (t)  FF   =    M _  Q  NF     
̇   (  1 −  e   −  Q  NF   _  V  NF    t  )   +    M _  Q  FF     

̇    (  1 −  e   −  Q  FF   _  V  FF    t  )     (13)

where   M ̇    is the continuous mass release rate per minute of the con-
taminant of concern, QNF (or as referred to by Nicas as ) is the NF 
volumetric flow rate (in cubic meters per minute), QFF is the FF 
volumetric flow rate (in cubic meters per minute), VNF is the NF 
volume (in cubic meters), VFF is the FF volume (or volume of the 
room or activity space) (in cubic meters), and t (in minutes) is the 
elapsed time since the start of the release.

If one assumes both boxes to be at equilibrium, then the equa-
tion takes the simpler form

     
_

 C    eq   =    
_

 C    eq,NF   +    
_

 C    eq,FF   =    M _  Q  NF    
̇   +    M _  Q  FF    

̇    (14)

Calculating the ventilation rates, QNF (or as referred to by Nicas 
as ) and QFF using the room volume and appropriate air change 
rate specific for each volume yields

     
_

 C    eq   =     M _ 
 V  NF     ACH  NF   _ 60  

   ̇   +    M _ 
 V  FF     ACH  FF   _ 60  

   ̇    (15)

where ACHNF is the NF air change rate (per hour) and ACHFF is the 
FF air change rate (per hour). For the time-dependent form, be-
cause the volumes in the exponential term cancel themselves out, 
the following results

  C (t ) =     M ̇   ─ 
 V  NF     ACH  NF   _ 60  

    (  1 −  e   −  ACH  NF   _ 60  t  )   +    M ̇   ─ 
 V  FF     ACH  FF   _ 60  

    (  1 −  e   −  ACH  FF   _ 60  t  )     (16)

In the application of NF and FF models, it is recommended 
(28, 59) that the NF flow rate, QNF (or ), be equal to   1 _ 2  × S × FSA , 
where FSA is the free surface area of the assumed NF control volume, 
S is a random air speed (instantaneous in random direction) at the 
interface of the NF and FF zones, and   1 _ 2   is used assuming that half of 
the air volume is entering the control volume and half of the air is 
leaving the control volume. Further, Nicas recommends using s = 
15.1 m/min (50 ft/min) when strong air currents are present and 
s = 3.0 m/min (10 ft/min) when air currents are lacking near the NF 
zone (31). A median random air speed for indoor office and home 
spaces was observed by Baldwin and Mayard (60) to be between 
0.05 and 0.1 m/s. Nicas (31), referencing Baldwin and Mayard (60), 
recommends that the typical value of 0.06 m/s (3.6 m/min), may be 
used with the FSA approach in indoor settings. Accordingly, ACHNF 
can be calculated using the FSA approach as follows

   ACH  NF   =   
 1 _ 2  × s × FSA × 60 

  ─  V  NF      (17)

The FSA approach when applied using typical values for median 
random airspeed did not predict concentrations that align well with 
measured data. Accordingly, we have devised an alternative way of 

calculating the ACHNF using an effective value for the random air 
speed we call seff that varies with distance from the source and is 
derived from an estimate of the eddy diffusivity. To do this, we ex-
amined the Gaussian/eddy diffusivity equations and show that the 
NF/FF equations can equivalent in certain cases to the continuous 
Gaussian solution of the dispersion equation when there is no ad-
vection (i.e., mean wind speed is equal to zero). Through this anal-
ysis, we can formulate a NF/FF model that uses eddy diffusivity 
rather than relying on the random air speed reported by Baldwin 
and Mayard (60) to provide the mixing dynamics. To illustrate this, 
we start with side-by-side derivations for (i) a continuous point re-
lease using the Gaussian approach, (ii) the NF/FF model using a 
spherical NF volume, and (iii) the NF/FF model using a hexagonal 
prism NF volume, as shown in table S4. In all three cases, we arrive 
at equations for concentration that are nearly identical. Assuming 
that the same values were used for K and distance from the source, 
all three representations would provide nearly the same result—even 
the hexagonal prism representation because 6 is within 5% of 2

The challenge in using an eddy diffusivity model is determining 
the appropriate value for K (59). Note that in the derivation of the 
Gaussian solution, the value for K is assumed to be constant over 
the domain (32). The form of the equation for K that we arrive at 
is similar to the form suggested by Venkatram and Weil (29) K = 
 × u × l. Venkatram and Weil (29) describe  as a dimensionless 
value that would be determined experimentally, u is a representa-
tive velocity, and l was a representative length. For now, we will as-
sume that  = 1, such that, in our case, K = D × s

Cheng et al. (61) show a relationship between the air change rate 
for a room and the eddy diffusivity using experimental measure-
ments of carbon monoxide released in two indoor environments. 
The data from these experiments are presented in their paper and 
in the study by Acevedo-Bolton et al. (62). These approaches capture 
the additional turbulent kinetic energy that is added to the system 
through the higher air changes through ventilation or increased 
mixing of the air (e.g., through the HVAC system circulating the 
air) (29, 61). This approach provides for a constant eddy diffusivity 
within the room and does not suggest dependency of the eddy dif-
fusivity on the distance from the source. The recommend the eddy 
diffusivity (in square meters per second) is calculated using the me-
chanical ACHFF (air change rate in per hour) and V, the overall vol-
ume of the room (in cubic meters), as follows

  K = (0.52  ACH  FF   / 3600 + 8.61 ×  10   −5 )  V   2/3   (18)

Venkatram and Weil (29), using the same datasets, suggest a more 
simple but similar relationship

  K =  V   2/3   ACH  FF   / 3600  (19)

Foat et al. (30) recommend a similar relationship that was arrived 
at through CFD simulations over a wide of range of indoor parameters

  K = 0.824   V   2/3   N   −2/3   ACH  FF   / 3600  (20)

where N equals to the number of inlet vents for the room. Foat et al. 
(30) looked at a range of room volumes between 50 and 5000 m3, 
floor aspect ratios (length/width) between 1 and 3, height/(floor area)2 
ratio between 0.1 and 1.5, and air change rate between 0.6 and 
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19.9 hour−1. In most modern buildings, the number of vents would 
increase with increasing volume or area. Across the range of 235 
scenarios that were modeled, the number of vents per 100 m2 of 
area ranged from 3.8 to 8 vents per 100 m2 (excluding the four ex-
treme values of approximately 50 vents per 100 m2) and averaged 
4.6 vents per 100 m2. To limit the number of variables that the user 
needs to know or determine to use CEAT, we replace N with a rela-
tionship between the area of the room and a reasonable number of 
vents per unit area, examining values ranging from 3 to 8 vents 
per 100 m2.

By combining the two representations of the eddy diffusivity 
equations and assuming that the product of D and s is a constant, 
we can calculate an effective velocity seff (in meters per minute) that 
is consistent with a constant eddy diffusivity at all distances from 
the source

   D ×  s  eff   = K  (21)

    s  eff   =   K ─ D     (22)

Below are the solutions of Venkatram and Weil (29) and Foat et al. 
(30) for K expressed as seff (in meters per minute)

    s  eff   =     V   2/3   ACH  FF   / 60  ─ D     (23)

    s  eff   =   0.824   V   2/3   N   −2/3   ACH  FF   / 60   ────────────────  D     (24)

Because all three K and ACH relationships are constant with re-
spect to D, the product of D · seff is a constant; thus, any change in s 
is inversely proportional with the change in D. Therefore, as D in-
creases moving away from a source, the value of seff decreases.

Now, we come back to the relationship of K =  × u × l or ex-
pressed in our variables K =  × seff × D and define , adjustments 
for the eddy diffusivity, as a means of capturing any dependency of 
K on distance from the source and adjustment to the dependence 
on ACH in the form (should measurement data indicate that there 
are dependencies)

   =    x     ×    ACH  FF        (25)

Substituting the equation for K into our original equation and 
rearranging so that the FSA of the hexagon is still calculated, we 
arrive at

     
_

 C    eq   =    M  _____________  
   6 _ 2 (  D   2  + D  h  bz  )     s  eff   

   ̇    (26)

and ACHNF is

   ACH  NF   =   
 6 _ 2   (  D   2  + D  h  bz  )     s  eff   × 60 

  ───────────────   V  NF      (27)

To calculate an average inhalation dose over a period of time, 
assuming that the initial concentration is zero (C(0) = 0) from a 
single source, we estimate the average dose by calculating the con-
centration at the midpoint of the duration,   t _ 2   

     
_

 C    Ave   =     M ̇   ─ 
 V  NF     ACH  NF   _ 60  

    
(

  1 −  e   −  ACH  NF   _ 60   t _ 2    
)

   +    M ̇   ─ 
 V  FF     ACH  FF   _ 60  

    
(

  1 −  e   −  ACH  FF   _ 60   t _ 2    
)

     (28)

As the duration increases, the factors    (  1 −  e   −  ACH  NF   _ 60   t _ 2    )     and    (  1 −  e   −  ACH  FF   _ 60   t _ 2    )     
will converge on 1. Given that ACHNF is likely greater than ACHFF, the 

factor    (  1 −  e   −  ACH  NF   _ 60   t _ 2    )     will converge faster than the factor    (  1 −  e   −  ACH  FF   _ 60   t _ 2    )    . 
Meaning, the NF term will achieve equilibrium faster than the FF term.

Validation the of the single-source equation 
with measurement data
We compare predictions calculated using Eq. 27 to measurements 
of chemical and aerosol releases in indoor environments that char-
acterize concentrations at various distances from sources. We in-
cluded data from carbon monoxide (CO) releases in two homes 
(62, 63), toluene releases in a test chamber (64), and benzene releases 
in an industrial environment (65). The study of carbon monoxide 
(CO) releases (61–63) occurred in two residential homes where 17 
separate 8-hour tests with continuous emission rates were conducted. 
Measurement distances from the source ranged from 0.25 to 5 m. 
The chamber tests conducted by Zhang et al. (64) involved simulta-
neous measurements at four points that were 0.1 m from a release 
point. Across the dataset, the distance from the source varied between 0.1 
and 5 m, the room volumes varied between 3 and 50,000 m3, and 
the ACH varied between 0.17 and 218 hour−1. We also examined an 
example case that was presented by Nicas (28), where the conven-
tional NF/FF approach is applied.

Examination of the performance of the three eddy diffusivity 
models (assuming that no adjustment is necessary and that value of 
 = 1 for the expression in Eq. 25) shows that the best model above 
0.75 hour−1 is the equation of Foat et al. (30) with an R2 = 0.94 (fig. 
S2B) when the number of vents per 100 m2 is equal to 4. The best 
model below 0.75 hour−1 is the model of Venkatram and Weil (29), 
with an R2 = 0.92 (fig. S2A). Acevedo-Bolton et al. (62) show in their 
analysis that the carbon monoxide sensors (measuring at 15-s time 
intervals) at 0.25 m were likely seeing concentrations that were 
above the upper limits of the instrument’s data logger (between 128 
and 150 parts per million), resulting in an underestimate of average 
reported concentration. Our model systematically overpredicts the 
concentrations, as compared to the measured data, at 0.25 m and, to 
a lesser degree, at 0.5 m. Consequently, we remove the 0.25 data 
from the dataset.

The major difference between the two models is the inclusion of 
a factor that captures the number of vents. It is reasonable to as-
sume that spaces with very low air change rates do not have vents 
(or do not have functional vents), so the inclusion of the number of 
vents in the equation is not meaningful and, in low air change rates, 
the equation of Venkatram and Weil (29) is sufficient. In addition, 
the lower limit of the air change rate in the dataset of Foat et al. (30) 
was 0.6 hour−1, and only 3 of the 235 modeled scenarios analyzed 
had air change rates less than 0.75 hour−1. Given that (i) most com-
mercial and institutional facilities will have air change rates that are 
greater than 1 hour−1, (ii) those would have an additional air change 
rate term to account for HVAC recirculation and filtration, and 
(iii) these facilities’ HVAC systems will include inlet vents, it is im-
portant to use a method that addresses the effect of vents on disper-
sion and is accurate at high air change rates. In addition, given that 
the risks of COVID-19 exposure are highest when the air change 
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rates are low such as when natural ventilation is relied on, it is 
important to have a method that works well under those condi-
tions. The dataset of Acevedo-Bolton et al. (62) and the estimate of 
Venkatram and Weil (29) for eddy diffusivity cover those low–air 
change rate scenarios.

On the basis of these factors and our analysis, in the CEAT model, 
we use the unadjusted model of Venkatram and Weil (29) to esti-
mate eddy diffusivity at air change rates at or below 0.75 hour−1 and 
the model of Foat et al. (30) to estimate eddy diffusivity above 
0.75 hour−1 with an assumption of 4 vents per 100 m2. The results of 
this combined model compared to the measured data are shown in 
fig. S2C.

Multiple sources
Equation 28 provides an estimate of the average concentration from 
one person’s emission at a receptor but not the contribution of how 
multiple people’s emissions would affect the concentration. To ad-
dress multiple sources in combination, the additivity property of 
the “superposition principle of linear systems” can be applied (66), 
which enables that the effect of each person’s emissions at a recep-
tor can be calculated separately and summed. The superposition 
principle has been applied to outdoor air pollution dispersion mod-
eling (32) and provides the theoretical basis for modeling complex 
scenarios involving multiple emission sources in outdoor Gaussian 
plume models such as U.S. Environmental Protection Agency’s 
(EPA’s) AERMOD (21). The logic is, therefore, if an NF and FF ap-
proach can be used to estimate the higher concentration in the close 
proximity of one person to another person, then if n people were 
added to the system, and n additional NF volumes were added, then 
the terms would be added to the equation for each person (i.e., 
emission source, So), with each being independent and summing 
to total concentration, as shown below

     
_

 C    Ave   =   ∑ 
So=1

  
n
      [   (      M ̇   _ 

 V  NF     ACH  NF   _ 60  
  )   (  1 −  e   −  ACH  NF   _ 60   t _ 2    )  +  

 
 (      M ̇   _ 

 V  FF     ACH  FF   _ 60  
  )   (  1 −  e   −  ACH  FF   _ 60   t _ 2    )   ]    

n
    (29)

The superposition principle also includes a homogeneity prop-
erty, which allows us to apply a scalar factor across all emission 
sources resulting in the concentration at the receptor changing pro-
portionally to the value of the scalar. This property provides the 
conceptual basis that allows one to conclude that if the emission 
rate from each source is increased or decreased by a factor, then one 
could assume that the concentration would increase or decrease by 
the same factor. The scalar could also be the product of several sca-
lars, including a probability factor. CEAT will use this property de-
fining scalars,   M  ̇    and φ (phi), to adjust both the emission rate and 
the probability of the emission rate, assuming that the emission rate 
and the probability of emission rate are constant for all sources for 
a given scenario, resulting in the following equation

     
_

 C    Ave   = φ M ̇   ×   ∑ 
So=1

  
n
      [   (     1 _ 

 V  NF     ACH  NF   _ 60  
  )   (  1 −  e   −  ACH  NF   _ 60   t _ 2    )  +  

 
 (     1 _ 

 V  FF     ACH  FF   _ 60  
  )   (  1 −  e   −  ACH  FF   _ 60   t _ 2    )   ]    

n
    (30)

In a two-source system with one receptor, where the distance 
between the two receptors and the source equidistant shown in 
fig. S3A, the following equation can be written

    C  Ave   = φ M  ˙      ∑ 
So=1

  
2
    

[
    
(

  1 −  e   −  ACH  NF   _ 60   t _ 2    
)

   
(

      1 ─ 
  V  NF     ACH  NF   _ 60  

    
)

   + 

 
(

  1 −  e   −  ACH  FF   _ 60   t _ 2    
)

   
(

      1 ─ 
 V  FF     ACH  FF   _ 60  

    
)

   
]

     (31)

Using a hexagonal prism for the NF volume allows one to place 
the system of equations on a regular grid of equidistant triangles 
(fig. S3A). Using a regular grid of equidistant triangles, as compared 
to a regular rectangular grid, has advantages because all nodes are 
equidistant from their nearest neighbors. This equidistant neighbor 
feature is particularly useful given the objective to assess various 
distancing options. The use of a triangular grid allows one to conve-
niently draw a hexagonal prism that is made up of six triangular 
prisms that approximates a cylinder, with each centered on the six 
closest nodes to the receptor (fig. S3B). The orientation of the trian-
gular prism within the box makes no difference to the calculations. 
Accordingly, we can rotate each of the triangular prisms 180º for 
visual convenience (fig. S3C). We do this because we can define the 
system identically from two perspectives, the source view and the 
receptor view.

The system shown in fig. S3D can be used to evaluate both the 
NF and FF concentrations from up to six sources at the receptor in 
the center, using the equation below

      
_

 C    Ave   = φ M ˙   ×   ∑ 
So=1

  
6
    [   (  1 −  e   −  ACH  NF‐1st Ring   _ 60   t _ 2    )   (     1 _ 

 V  NF     ACH  NF‐1st Ring   _ 60  
  )  +  

 
 (     1 _ 

 V  FF     ACH  FF   _ 60  
  )   (  1 −  e   −  ACH  FF   _ 60   t _ 2    )   ]     (32)

We can calculate the ACHNF using the equation derived earlier 
for a hexagon

   ACH  NF-1st Ring   =    
  6 _ 2   (  D   2  + D  h  bz  )     s  eff   × 60 

   ────────────────   V  NF      (33)

By substituting for the VNF 

   ACH  NF-1st Ring   =   
 6 _ 2   (  D   2  + D  h  bz  )     s  eff   × 60 

  ───────────────  
  6 _ 2   D    2    h  bz  

    (34)

which simplifies to

    ACH  NF-1st Ring   =   s  eff     (     1 ─  h  bz  
   +   1 ─ D   )   × 60   (35)

In the same way that a 6-source system was devised, a 12-source 
system still keeps each person in the system D distance apart but, in 
this case, is located two D away from the receptor. In this case, in-
stead of a hexagon, a dodecagonal prism (12-sided prism) is drawn 
(Fig. 3F). In the 12-source system, we take 1/12 of the emissions and 
use 1/12 of the total dodecagonal prism volume. The ACHNF is cal-
culated using the dimension of the 1/12 triangular wedge that is de-
rived as follows
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          ACH  NF-2nd Ring    =   

 1 _ 2      s  eff    (2 × 0.933  D    2  +  h  bz    D ) × 60 
    ────────────────────   

 0.933  D    2   h  bz  
    (36)

which simplifies to

    ACH  NF-2nd Ring   =    s  eff    (     1 ─  h  bz  
   +   1 ─ 1.866D   )   × 60   (37)

Successive rings, out to nine rings, are included in CEAT to allow 
up to a maximum of 270 people. Each ring adds 6 additional people 
more than the previous ring (i.e, the first ring holds 6 people, the second 
ring holds 12 people, the third ring holds 18, etc.) (fig. S3E). Table 
S5 has the equations for the area of each of the triangular prisms, 
along with the equation used to calculate the ACHNF for each ring.

Applying the superposition principle, the contribution of each 
person on the receptor at the center can be calculated. Going out to 
60 sources (four rings), we get

   

    
_

 C    Ave   = φ M ˙   {    ∑ 
So=1

  
6
    [   (  1 −  e   −   ACH  NF-1st   _ 60   t _ 2    )   (     1 _ 
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The formula may be simplified by pulling out the factors com-
mon in the two terms and rearranging as follows
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Calculating the effective ACHFF and ACHNF to address sinks 
and turbulence
For the purposes of calculating the FF concentration term, the ACHFF 
should include any mechanisms that remove air from the space 

(e.g., natural ventilation and infiltration mechanical ventilation), 
mechanisms that remove the contaminant from the space (e.g., fil-
tration and deposition), and mechanisms that inactivate contami-
nants (e.g., reaction, temperature, humidity, and radiation)

  
 ACH  FF   =  ACH  Natl.Vent.   +  ACH  Infiltr.   +  ACH  Mech.Vent.  +                          ACH  HVAC Re.   +  ACH  Inact.   +  ACH  Dep.  

   (40)

The ACHHVAC Re. is based on the flow rate and the portion of the 
recirculated air from which any contaminants have been removed 
(ACHHVAC Re × EfFilter)

   
 ACH  FF   =  ACH  Natl.Vent.   +  ACH  Infiltr.   +  ACH  Mech.Vent.  +                          ACH  HVAC Re.   ×  Ef  Filter   +  ACH  Inact.   +  ACH  Dep.  

  (41)

For the purposes of calculating the eddy diffusivity, the ACHFF 
should only include mechanisms that result in actual air flow. So, 
the ACHInact.  and ACHDep have not been included and the unre-
duced ACHHVAC Recirc should be used, as shown

  ACH  F F  Eddy Diff     =  ACH  Natl.Vent.   +  ACH  Infiltr.   +  ACH  Mech.Vent.   + 
  ACH  HVAC Re.     (42)

For the final ACHNF, the ACHInact. and ACHDep should be added 
back in, as shown below for the first ring of sources

   ACH  NF-1st Ring   =   s  eff     (     1 ─  h  bz  
   +   1 ─ D   )   × 60 +  ACH  Inact.   +  ACH  Dep.    

(43)

Dose model
As stated earlier, we use a basic inhalation dose model

      D    Quanta   =    
_

 C    AVE    Q  Inhale    t  (44)

where   D  Quanta    is the quantity of inhaled infectious material,     
_

 C    AVE    is 
average air concentration over the duration (in mass per cubic meter), 
QInhale is the inhalation rate (in cubic meters per minute), and t is 
the duration of exposure (in minutes).

Because we are looking at this model from a worker safety per-
spective, we can also look at the total inhalation dose of all people in 
an activity space by multiplying the total number of people, assum-
ing that we are using, ideally, an average concentration and the same 
duration in the activity space

      G    Quanta   =    
_

 C    Ave    Q  Inhale    t   Pe  Total    (45)

The concentration contributions are calculated for a person as-
sumed to be at the center of a triangular grid where people are spaced 
equidistantly (based on the distancing specified). We assume that the 
concentration at the center is representative for all people in the 
group because (i) each person’s location is likely not static during 
the activity and (ii) exposure is driven mostly by the close-in sources 
(i.e., other people) and all people have close-in sources.

If we include mask effectiveness in the model, recognizing that 
there is an effect on both the inhalation side (1 − EfIn) and the exha-
lation side (1 – EfOut), then the equation takes the following form

     G    Quanta   = (1–  Ef  Out   ) (1 −  Ef  In   )   C  Ave    Q  Inhale     t   Pe  Total    (46)
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This equation calculates the total inhalation dose that a worst-case 
person (located at a receptor at the center of all rings) would receive 
if all people were emitting at a rate   M ̇    for the exposure duration. It 
assumes that all people are emitters (i.e., infected), when in fact only 
a few may be emitters. On the basis of the homogeneity property of 
the principle of superposition, φ, in the expanded dose equation, 
can be the likelihood that a person is infected, as shown below

  

 G  Quanta   = (1–  Ef  Out  ) (1—  Ef  In   )  Q  Inhale   Δt  Pe  Total   ×
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(47)

or written more succinctly

   G  Quanta   = (1–  Ef  Out  ) (1 −  Ef  In  )  Q  Inhale   Δt  Pe  Total   φ M ̇   
 

 ×   ∑ 
 1

  
 Pe  Total  −1 

  (  FF  Factor   +  NF  Factor  )  (48)

where SoTotal = PeTotal − 1, φ is the probability any one person in the 
group is emitting (i.e., infectious), and

    FF  Factor   =  
(

  1 −  e   −  ACH  FF   _ 60   Δt _ 2    
)

   
(

      1 ─ 
 V  FF     ACH  FF   _ 60  

    
)

     (49)
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Additional terms can be added to Eq. 50 for each ring as more 
people are added. CEAT allows up to 250 people.

Impact of prevalence of infection in community
Critical to the exposure assessment is the consideration of the like-
lihood that any individual member of the group is infectious at the 
start of the scenario or modeled event, with the likelihood of infec-
tion represented by the variable φ. In the CEAT model, the range of 

likelihood of infectiousness in the group can range from 1.0 (certain 
infectiousness) on the high end to a value on the low end that is 100 times 
less than what is estimated as the community average infectiousness. In 
all of the cases, we assume that at least one person is not infectious, so the 
population that could be infectious is the size of the group, Pe, minus 1.

We estimate the community average infectiousness by using the 
reported 7-day average per 100,000 of diagnosed cases (CasesPer 100,000), 
an estimate of the ratio of the undiagnosed cases over the diagnosed 
cases (RUndiag), and the average length of an infectiousness in days 
(DInf), multiplied by the subgroup factor, which is the adjustment of 
the subgroup's rate of infectiousness as compared to the rate of in-
fectiousness of the community

  φ =  [  1 −   (  1 −  R  Undiag   ×   
 Cases  Per 100, 000  

  ─ 100, 000   )     
 D  Inf  

  ]   × 100, 000 × Group Factor  
 (51)

We assume that within a community, the population can be sub-
divided into subpopulations as follows:

1) Group Factor = 0.01: The group is composed of people who, 
before the event, are estimated as having a likelihood COVID-19 
infection that is 100 times lower than the community’s average 
because of their adhering to public health guidance on distancing, 
masking, and exposure to crowds/people.

2) Group Factor = 0.1: The group is composed of people who, 
before the event, are estimated as having a likelihood COVID-19 
infection that is 10 times lower than the community’s average 
because of their adhering to public health guidance on distancing, 
masking, and exposure to crowds/people.

3) Group Factor = 1: The group is composed of people who, 
before the event, are estimated as having a likelihood COVID-19 
infection that is equal to the community’s average.

4) Group Factor = 10: The group is composed of people who, 
before the event, are estimated as having a likelihood COVID-19 
infection that is 10 times higher than the community’s average be-
cause of their not adhering to public health guidance on distancing, 
masking, and exposure to crowds/people.

5) φ= 1: The group is composed of people who are known to be 
infectious.

Impact of variants
We handle the current community prevalence of variants and the 
relative infectiousness of the prevalent variants by assuming that 
some variants may be significantly more or less transmissive than 
other variants. For the fraction of total cases of more infectious vari-
ants, we can adjust the fractional exposure upward or downward to 
account for its infectiousness.

Efficacy of immunity
Immunities, including vaccination and recovered cases, are addressed 
in two ways:

1) It reduces the rate of virus shedding of immunized persons 
who do become infected, thus reducing the emission rate,   M ̇   , for the 
fraction of people with immunity; this is based on a three-time re-
duction in shedding observed in (67).

2) The immunity is treated as a barrier to infection with an effec-
tiveness that is equal to its published efficacy based conceptually on 
the model used by the EPA for dose and exposure definition (21).

We are assuming that immunity gained by recovery from COVID 
is equal to the immunity gained from vaccination.
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Efficacy of testing
We address the efficacy and timing of testing regimes, relative to the 
days that an individual is expected to be infectious. We assume that 
if an individual is infectious, at the time of the event, then the tim-
ing of the infection before the event is a uniform distribution. For 
example, if DInf = 5 and they were tested 3 days before the event, 
then there is a three-fifth chance that they were infected when they 
were tested and a two-fifth chance that they got infected after they 
were tested (in the two subsequent days before the event). Assum-
ing a testing false-negative rate (RFalse Neg.) of 10%, the testing ad-
justment factor, which assumes that testing was performed 3 days 
before the event, is computed as follows:

1) If DInf < 3, then there is no adjustment to the likelihood that 
an individual is infectious because testing was performed before 
anyone becoming infectious.

2) If the DInf ≥ 3, then the testing adjustment is computed as the 
weighted likelihood of either (i) having been infected at the time of 
testing and obtaining a false-negative test or (ii) becoming infected 
after the test

   Test  Adjust   =   
 ( D  Inf   − 2)

 ─  D  Inf  
    R  False Neg.   +    2 ─  D  Inf  

    (52)

where RFalse Neg. is currently set to 0.10.

Relative dose ratio approach: How we establish the baseline
Rather than directly calculating a dose response, we use a compara-
tive dose approach. We compare all scenarios to a baseline scenario 
discussed in table S2. The model’s results are aligned with the 
U.S. OSHA classifications of exposure risks (26), by benchmarking the 
dose calculations to a baseline scenario that is considered high risk 
by U.S. OSHA. We define the baseline scenario to represent a per-
son (i.e., medical worker) who is exposed to a COVID-19–infectious 
person. We apply assumptions to this scenario, addressing each of 
the factors in table S2, to arrive at a baseline inhalation dose value. 
The inhalation dose for other scenarios is compared to the baseline 
dose by a simple ratio. Below is the full ratio equation with the “ith” 
scenario in the numerator and the baseline (BL) in the denominator. 
We can rearrange the terms in each of the i scenario (  G  Quanta i   ) and 
the baseline (     G    Quanta BL   )

 
  

  
  G  Quanta     i    ─   G  Quanta    BL     =    φ  i    ─  φ  BL      ×     M ̇    i   ─ 

  M ̇    BL  
   ×   

 ∑ 1  (  Pe  Total     i  −1)     (  FF  Factor   +  NF  Factor  )  i     ────────────────────   
 ∑ 1  (  Pe  Total    BL  −1)     (  FF  Factor   +  NF  Factor  )  BL  

  

      ×   
 (1–  Ef  Out  )  i   ─  (1–  Ef  Out  )  BL     ×   

 (1 −  Ef  In  )  i   ─  (1 −  Ef  In  )  BL     ×     Q  Inhale    i   ─   Q  Inhale    BL     ×     Pe  Total    i   ─   Pe  Total    BL         

×   Δ  t  i    ─ Δ  t  BL     ×   
  Variant  Adj    i   ─   Variant  Adj    BL

     ×   
  Immunity  Adj    i    ─    Immunity  Adj    BL

     ×   
  Test  Adj    i   ─   Test  Adj    BL

    

    (53)

Emission rate approach
Deterministic dose-response models provide estimations of the 
intake dose and estimations of the probability of infection for the 
intake dose. These models require a means of quantifying the dose 
and quantifying the pathogen-host interaction via a dose response 
(i.e., a tolerance dose, the dose above which someone is certain to be 
infected, or a threshold dose, a minimum dose needed to initiate a 
chance of infection in any person) (8). To calculate risks using a 
dose- response approach, similar to what was done by Parhizkar et al. 

(14), the following is needed: (i) an explicit mass rate or particle count 
rate emitted from an infected person, (ii) information on particle 
size emitted and particle size distribution, and (iii) the explicit re-
sponse threshold dose or tolerance dose. Determining these data 
requires environmental measurement and epidemiological studies 
of transmission. While CEAT is also based on a deterministic dose- 
response framework, it does not use explicit values for emission rate 
and dose response. Instead, it calculates a dose ratio (using Eq. 50), 
based on comparing a baseline scenario that has been defined as 
high risk to an evaluated scenario (i.e., ith scenario). This simplifi-
cation provides a means to rapidly deploy a comprehensive risk model 
during an infectious disease outbreak ahead of public health and 
medical authorities having detailed data on the explicit viral emission 
rates and dose responses. The CEAT model does, however, require 
that a public health authority (e.g., OSHA), CDC, other governmental 
health department, or other expert defines an exposure and dose 
scenario that is consistent with high-risk exposure. In CEAT, we have 
used the OSHA classifications of exposure risks (26) for this purpose.

While the ratio model does not directly use Wells-Riley ap-
proach, it does benefit from the data that have been empirically de-
rived from use of the Wells-Riley approach, allowing us to adjust 
the CEAT dose ratio results and exposure risk results for various 
activities and vocalization intensities. We use the back-calculated 
quanta per hour from Buonanno et al. (68, 69) to inform the ratio of 
emission rates,      M ̇    i   _ 

  M ̇    BL  
  . We make the assumption that these empirically 

derived ratios would be correlated with explicit mass or particle 
count ratios that would be appropriate for deterministic dose- 
response models.

It is instructive to note that the CEAT approach does not require 
a means of varying the emission rate ratios. If Wells-Riley–derived 
emissions for various activities and vocalization intensities were not 
available, then the assumption could be made that emission rate was 
constant (i.e.,      M ̇    i   _ 

  M ̇    BL  
  = 1). All of the other ratio factors in Eq. 52 could 

still be used to evaluate the ith dose scenario versus the baseline 
scenario. The majority cases that the CEAT was used assumed that 
the step 5 vocalization intensity was “standing and speaking” that uses 
in      M  ̇   i   _ 

  M  ̇   BL  
  = 1  in the model’s calculations. The fact that Wells-Riley– derived 

data are not essential to use CEAT is a benefit of the CEAT approach.

Gathering scenario
To determine the gathering scenario, we considered three different 
counties for the date of 31 January 2022 that were in different regions 
of the United States with very low COVID-19 cases (Montgomery 
County, MD) and very high COVID-19 cases (Knox County, TN) 
and a county with cases in between the two (Suffolk County, MA). 
In this analysis, we estimated that a typical gathering will last 5 hours 
and can be held both indoors or outdoors. The indoor scenario is 
considered to take place in a room (i.e., 30 ft by 30 ft by 9 ft. or 
9.14 m by 9.14 m by 2.74 m). We used the COVID ActNow tracker 
(https://covidactnow.org) to determine the latest number of cases 
and vaccination rates on 31 January 2022. In addition, we used CDC’s 
Nationwide Commercial Laboratory Seroprevalence Survey to determine 
the current population recovered from COVID-19 and CDC’s Variant 
Proportions Tracker to determine the estimated percentage of ex-
isting SARS-CoV-2 variants that exist in the infected population in 
each region. At the time of analysis for all counties, the Omicron variant 
accounts for >99% of COVID-19 cases. It is estimated that the 
Omicron variant is 440% more transmissible than the original 
SARS-CoV-2 reference strain (70). We analyzed for the following 

https://covidactnow.org
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different parameters to account for multiple different scenarios that 
gatherings can take place: distancing ranging from 1.5 to 10 ft (.46 to 
3.05 m), masks usage (i.e., no masks, average masks, and N95/KN95 
masks), and if the group of people are either “following all public 
health guidance” or “equal to the community average.” In addition, 
we also considered testing to be included with one of the scenarios. 
All data analyses were completed using R version 4.0.3, RStudio 
version 1.4.1717, and ggplot2 v3.3.5.

NASA ARC CEAT tool usage
In initial assessments, using CEAT V B.6 that was released on 
25 November 2020, step 1 (“The group is composed of people who…”) 
was generally selected as “You think are following all public health 
guidance”. Step 2 (“number of people sharing activity space”) was 
set to the requested number of personnel required to conduct the 
operation in-person. In general, this was two to four people per 
location per operation. Selected distance (step 3) was set to 6 ft (“−6 
distancing adjustment”) unless specified otherwise. For mask effi-
cacy (step 4), “cloth masks” worn by all personnel were selected as 
cloth was the most likely used (−5 and −3, respectively). Very few 
projects were using surgical masks and masks were required to be 
worn by everyone on campus at this time. Vocalization (step 5) and 
breathing (step 6) adjustment rates, as well as duration of activity 
(step 7), were based on the operations reported in the RTOW plan 
submission. Typical operations are conducted while “standing,” 
“speaking,” and “passive” (0 and 0) for 8 hours. Ventilation rates 
(step 8) and adjustment for room sizes (step 9) were based on location 
of the operation reported in the RTOW plan submission. Step 10 
(“calculate adjustment to local community’s current conditions”) 
was based on the state of California (36). The California case rate was 
chosen instead of the local county case rate as most of the NASA 
ARC workforce resides in the general Bay Area that encompasses nine 
counties, some of which have weekly case rates more similar to 
California than to the local county. After inputting these desired 
values for the variables in steps 1 to 10, the relative exposure ratio for 
a given condition was recorded and analyzed in Microsoft Excel 365.

CEAT V B.14 was released on 13 December 2020, and its inputs 
were similar to that of V B.6, the difference being that for step 9 
actual room dimensions could be entered. In CEAT V B.29 released 
on 6 May 2021, step 1 (“The group is composed of people who…”) 
was selected as “Are following all public health guidance”. However, 
since the percent vaccination rate was unknown, it was not checked. 
Step 2 (“number of people sharing activity space”) was set to the 
requested number of personnel required to conduct the operation 
in-person. In general, this was two to four people per location per 
operation. Selected distance (step 3) was set to 6 ft unless specified 
otherwise. For “mask type and prevalence” (step 4), cloth masks 
worn by all personnel were selected as cloth was the most likely 
used. Very few projects were using surgical masks and masks were 
required to be worn by everyone on campus for all but a 6-week 
window where masks were optional for vaccinated personnel. 
Vocalization (step 5) and breathing (step 6) adjustment rates, as 
well as duration of activity (step 7), were based on the operations 
reported in the RTOW plan submission. Typical operations are con-
ducted while standing, speaking, and passive for 8 hours. Ventilation 
rates (step 8) and adjustment for room sizes (step 9) were based on 
location of the operation reported in the RTOW plan submission. 
Step 10 (calculate adjustment to local community’s current conditions) 
was based on the state of California, and variant information was 

input from the CDC data tracker (35). When variant prevalence 
was introduced into the CEAT in later iterations, the three most 
prevalent variants in Health and Human Services (HHS) Region 9 
were used. Specifically, the variant prevalence data from Nowcast 
was used. Instead of using the predetermined variants provided in 
the CEAT, NASA ARC input data from the three most prevalent 
variants in the HHS Region 9. The “protection effectiveness of 
immunity (%)” in step 10 was set to 66% based on published re-
search regarding the Pfizer-BioNTech, Moderna, and Janssen vac-
cine against the Delta variant (71). After inputting these desired 
values for the variables in steps 1 to 10, the relative exposure ratio 
for a given condition was recorded and analyzed in Microsoft Excel 
365. Although CEAT V B.32 was released on 29 August 2021, it was 
not used in this analysis. To generate a graphical representation of 
the data (Fig. 4), we associated numerical values to the different 
parameters in the table and used R version 4.03, RStudio version 
1.4.1717 with the following R packages: ggplot2 v3.3.5.

For the longitudinal review of the NASA ARC centerwide ac-
cepted median exposure risk ratio in relation to the community case 
rates, CEAT V B.6, V B.14, and V B.29 were used; this was depen-
dent on the newest version available. Initial inputs at the time of the 
RTOW plan were used, and step 10 (calculate adjustment to local 
community’s current conditions) rates were updated on a biweekly 
basis based on the state of California. The median of all project ex-
posure risk ratios was used instead of the average to account for the 
high fluctuations in exposure risk ratios. Hypothetical exposure risk 
ratios were back-calculated to March 2020. Only projects that had 
been approved to RTOW, along with projects that were deemed 
mission essential and were exempt from the work-from-home policy 
(e.g., security guards and security operations center), were included 
in the calculated biweekly median risk ratio. The relative exposure 
ratio for a given condition was recorded, the median exposure ratio 
was calculated biweekly, and the correlation coefficient compared 
to the community case rates was calculated in Microsoft Excel 365. 
The median of all project exposure risk ratios was used instead of 
the average to account for the high fluctuations. Although the CEAT 
was not used at NASA ARC until December 2020, hypothetical ex-
posure risk ratios were back-calculated to March 2020, when NASA 
ARC enacted their mandatory work-from-home policy, for each proj-
ect using the known historic California case rates. Only projects that 
had been approved to RTOW, along with projects that were deemed 
mission essential and were exempt from the work-from-home policy 
(e.g., security guards and security operations center), were included 
in the calculated biweekly median exposure risk ratio. A plot was 
generated for these data (Fig. 5) using R version 4.0.3, RStudio ver-
sion 1.4.1717 with the following R packages: ggplot2 v3.3.5.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq0593

View/request a protocol for this paper from Bio-protocol.
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