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Abstract: It is not uncommon for today’s problems to fall within the scope of the well-known class of
NP-Hard problems. These problems generally do not have an analytical solution, and it is necessary
to use meta-heuristics to solve them. The Job Shop Scheduling Problem (JSSP) is one of these
problems, and for its solution, techniques based on Genetic Algorithm (GA) form the most common
approach used in the literature. However, GAs are easily compromised by premature convergence
and can be trapped in a local optima. To address these issues, researchers have been developing
new methodologies based on local search schemes and improvements to standard mutation and
crossover operators. In this work, we propose a new GA within this line of research. In detail,
we generalize the concept of a massive local search operator; we improved the use of a local search
strategy in the traditional mutation operator; and we developed a new multi-crossover operator.
In this way, all operators of the proposed algorithm have local search functionality beyond their
original inspirations and characteristics. Our method is evaluated in three different case studies,
comprising 58 instances of literature, which prove the effectiveness of our approach compared to
traditional JSSP solution methods.

Keywords: genetic algorithm; local search; multi-crossover; job shop scheduling problem;
combinatorial optimization

1. Introduction

Scheduling problems have been extensively researched in recent years because it is a high
complexity combinatorial optimization problem and it is classified as NP-Hard. Among the machine
scheduling problems, there are several variations, such as Job Shop Scheduling Problem (JSSP),
Flexible Job Shop Scheduling Problem (FJSSP), Flow Shop Scheduling Problems (FSP), and so forth.
In this paper, we will consider the JSSP variant. JSSP is a combinatorial optimization problem
composed of a set of Jobs to be processed in a set of Machines. So that to solve the problem it is
necessary to find a sequence of Jobs for each Machine to optimize a specific performance criterion,
for example, the makespan, which corresponds to the total processing time of all Jobs [1,2].

In recent years, several meta-heuristics approaches have been proposed to treat the JSSP,
such as Greedy Randomized Adaptive Search Procedure (GRASP) [3], Local Search Genetic

Sensors 2020, 20, 5440; doi:10.3390/s20185440 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2960-8293
https://orcid.org/0000-0001-5588-100X
https://orcid.org/0000-0003-4003-7791
http://dx.doi.org/10.3390/s20185440
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/18/5440?type=check_update&version=3


Sensors 2020, 20, 5440 2 of 32

Algorithm (LSGA) [4], Parallel Agent-based Genetic Algorithm (PaGA) [5], Agent-based Local
Search Genetic Algorithm (aLSGA) [6], Golden Ball Algorithm (GB) [7], Initial Population Based
Genetic Algorithm (IPB-GA) [8], Memetic Algorithm (MA) [9], Improved Biogeography-Based
Optimization (IBBO) [10], Grey Wolf Optimization (GWO) [11], Hybrid Grey Wolf Optimization
(HGWO) [12], Memetic Chicken Swarm Optimization (MeCSO) [13], Genetic Algorithm with
a critical-path-guided Giffler and Thompson crossover operator (GA-CPG-GT) [14] and the Discrete
Wolf Pack Algorithm (DWPA) [15].

Most state-of-the-art studies on JSSP have validated the methods proposed in traditional
benchmark sets in the literature, such as Fisher and Thompson [16], Lawrence [17], Applegate and
Cook [18] and Adams, Balas and Zawack [19], and considered the minimization of makespan as
a performance criterion for the evaluation of possible solutions of a JSSP.

We observe from the literature review that JSSP is a relevant academic topic and it has attracted the
attention of many researchers because it has a combinatorial behavior and it is classified as NP-Hard,
which makes it very difficult to solve by exact approaches, which encourages treatment by alternative
methods such as meta-heuristics.

Several approaches of the meta-heuristic GA have been successfully performed on many
combinatorial optimization problems, such as machine scheduling problems, for example,
JSSP. However, for problems with greater complexity, GA needs to engage with particular problem
methods to make the approach effective. Hybridization is a satisfactory and widely used way to
improve the performance of GA. Local search techniques are very common forms of hybridization
which have been used in several studies to improve GA performance, such as in References [4,6,20,21].

In this paper, a new GA approach with improved local search techniques (mXLSGA) is proposed
to minimize the makespan in JSSP. Three local search operators are proposed, one of which is
embedded in a multi-crossover operator; one as a mutation operator; and another of massive behavior.
Such procedures are enhancements based on References’ [4,6,22] methods.

This paper is an extended version of our preliminary work [1]. In this manuscript, we add
a section with a literature review, we also present more details in the description of the method and
we conduct a deeper analysis of the experiments with more works compared and more case studies.
Also, all steps of the method are outlined and detailed in the form of algorithms that simplify the
reproducibility of the technique.

The sections of this article are organized as follows—in Section 2, we discussed some works
that served as inspirations for the development of our technique. In Section 3, we describe the
formulation of JSSP. Section 4 presents the details of the proposed mXLSGA method. In Section 5,
some experimental results in the form of three different case studies are presented in order to validate
our technique. Section 6 presents the conclusion and future works.

2. Related Works

An extensive technical background based on meta-heuristics has been presented in the literature
in recent years, becoming from the most diverse inspirations, such as the well-known evolutionary
algorithms of genetic inspiration [23], the behavior of students in the classroom [24], the behavior of
different species of animals [25], and some theoretic-mathematical concepts like the golden ratio [26].
In particular, some of these techniques have been used successfully in the JSSP solution. In summary,
to show the relevance of the problem addressed and how the most varied approaches have been
proposed in recent years, we highlight some of the most recent works that use meta-heuristics to solve
the JSSP:

• Genetic Algorithm: [4–6,8,20,22,27–42];
• Ant Colony Optimization: [43–46];
• Particle Swarm Optimization: [47–51];
• Simulated Annealing: [52–55];
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• Tabu Search: [44,56–58];
• Grey Wolf Optimization: [11,12];
• Chicken Swarm Optimization: [13];
• Golden Ball Algorithm: [7];
• Artificial Bee Colony: [59,60];
• Single Seekers Society: [61];
• Among others.

We can see in the brief list above that some meta-heuristics have been more widespread in
the literature in relation to the application in JSSP than others and, therefore, these meta-heuristics
have greater amounts of publications in this field. For example, we can highlight GA, which was
widely used in a much larger number of published works with applications in JSSP than the
Single Seekers Society method, which, to the best of our knowledge, was applied to only one
work in this field. This is because, among the variety of meta-heuristics that address the JSSP
and present good results, GA achieved great prominence for offering a good performance due to
its global research capacity. In addition, algorithms that use hybrid meta-heuristics are standing
out among the various methods used in JSSP since they can combine the merits of different
meta-heuristic algorithms. Hybrid algorithms generally perform remarkably well, incorporating
local research to obtain an appropriate combination of diversification and intensification efforts.
Among the great diversity of studies, it is possible to verify the superiority of the meta-heuristics of
global search behavior with the inclusion of techniques specialized in performing a local search.
This type of procedure is addressed in some works, recent or not, such as the approaches in
References [4,6,9,11–13,22], among others.

In the following paragraphs, some of the literature that deals with the JSSP through the approach
of several meta-heuristics will be detailed. The following detailed works are References [4,6,22].
We chose these techniques because they represent significant advances in the solution of the JSSP using
local search strategies in GAs.

Ombuki and Ventresca [4] proposed the LSGA meta-heuristic to treat the JSSP to minimize the
makespan, that is, the maximum completion time. The proposed LSGA is a GA with a local search,
which has an operator similar to the mutation that is aimed at local research to further improve the
quality of the solution. In LSGA, local search is applied probabilistically, that is, it applies the simple
mutation or the local search mutation selected dynamically in each generation of GA. In a simple
mutation, exactly one exchange is allowed, that is, the positions of two consecutive jobs selected at
random are exchanged. In a local search mutation, a systematic approach is used to consecutively test
multiple swaps in terms of chromosome lengths, the best improvement obtained by the swap is saved,
but if no improvement was found, no swap will be saved in the original solution and the process will
be finished. LSGA found solutions whose makespan results were equal to the best-known values or
when worst, were within the maximum error range of 10%. LSGA obtained a better search behavior
and achieved better makespan results than a canonical GA, so it is possible to say that the local search
strategy included in GA improved its search technique and, with that, its solutions obtained.

In the article by Watanabe, Ida and Gen [22], the meta-heuristics GA with search area adaptation
(GSA) was proposed to solve the JSSP. The proposed GSA has an adaptation of the search area with
the ability to adapt to the structure of the solution space and to control the balance between global
and local searches. The crossover operation of the GSA consists of performing the crossover several
times on all pairs of parents, each time a new cutoff point is determined. The crossover is repeated
until a better child is found than the worst individual in the population or until a certain number of
iterations is reached. The mutation operation consists of executing disturbances several times on all
children, performing several swaps. The mutation is repeated until a better mutant child is found than
the worst individual in the population or until a certain number of iterations is reached. The GSA
was compared with a GA and showed better results. The GSA achieved greater frequency in finding
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solutions closer to optimal solutions. Although the GSA did not find the best-known solution in the
tested instances, it showed an improvement in canonical GA.

The meta-heuristic aLSGA, proposed by Asadzadeh [6], was created specifically to solve the JSSP.
The proposed aLSGA is a GA with a local search with the inclusion of intelligent agents. The method
consists of a multi-agent system, in which each agent has a specialized behavior to implement the
local search. The aLSGA combines local search heuristics with crossover and mutation operators.
The proposed method has two local search procedures, the first is called the Local Search Agent
(LSA) and the second is the Elite Local Search Agent (ELSA). The first is responsible for exploring the
neighborhood of each chromosome produced by the crossover operator and the second is responsible
for improving the quality of the best chromosome in the population. The computational results
showed that the proposed aLSGA is effective in finding optimal and almost optimal solutions for
several instances of JSSP. It is noted that by including a local search heuristic in GA, an improvement is
obtained in its performance and in its convergence speed.

Several approaches applied in JSSP have been proposed, some have included intelligent agents,
parallel populations, or hybridization of meta-heuristics with local search techniques. It is verified
through the reported works that hybridization is an effective way to improve the performance of
several meta-heuristics, and presents relevant results in the literature. Local search techniques are the
most common form of hybridization and are used to improve the performance of these algorithms.
It is precisely in this scope that we intend to act, with the proviso that our methodology is presented
as an extension and improvement of References [4,6,22] to define a GA portfolio with specialized local
search for JSSP.

3. Formulation of Job Shop Scheduling Problem

JSSP is a combinatorial optimization problem belonging to the NP-Hard class of computational
problems, which means it is a problem whose processing time is non-polynomial. Specifically, a JSSP
can be defined as being a set of N jobs to be processed into a set of M machines. In JSSP, each job must
be processed by all M machines and each job has a sequence of operations with M distinct elements
belonging to the set of all possible operations. The sequences of operations are usually different for
each job. The scheduling problem of JSSP-type production is finding a job sequence for each machine
to optimize a specific performance criterion, which is usually makespan. Some restrictions must be
followed in this problem [2]:

• Each job can be processed on a single machine at a time;
• Each machine can process only one job at a time;
• Operations are considered non-preemptive, that is, cannot be interrupted,
• Configuration times are included in processing times and are independent of sequencing decisions.

In this work, makespan is adopted as a measure of performance, which is considered to be
the total time required to complete the production of a series of jobs. The makespan performance
measurement formulation is generally used in JSSP approaches as an objective function that guides
algorithms using meta-heuristics to search for appropriate solutions.

Mathematically, suppose the following specifications of JSSP:

• J = {J1, J2, ..., JN} as the set of jobs;
• M = {m1, m2, ..., mM} as the set of machines;
• O = (O1, O2, ..., ON·M) is the sequence that defines the priority with which each job has its

processing started on each of the machines of its respective script,
• Ti(O) representing the time the job Ji takes to be processed by all machines in its script, and thus

it is considered finished according to the sequence of operations defined in O.
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Thus Reference [62], the makespan measure of an operation sequence O can be defined as the
value presented in Equation (1).

makespan = max
i

Ti(O), (1)

which is a measure given according to the order of operations defined in O, since the time that each
job takes to be considered finished is given according to the processing order defined in the schedule.

4. Multi-Crossover Local Search Genetic Algorithm for JSSP

In this section, we will discuss fundamental concepts to the execution of the proposed algorithm
and we will also specify the improved methods defined in this work for better efficiency. In short,
our contributions are comprised in the following topics:

• An improved crossover operator (Section 4.4) based on the version of Reference [22],
including a multi-crossover strategy with the goal of increasing the search capability of the
method by using a framework based on a set of crossover functions.

• An improved local search technique (Section 4.5) in union with a generalized version
of the mutation operator proposed in Reference [6] and in Reference [4], including
a variable parameterization.

• An improved version of the elite local search operator (Section 4.6) of Reference [6],
expanding the search space by utilizing a set of mutation functions.

In this way, our contribution starts in fact from Section 4.4, with the previous Sections 4.1–4.3 of
a descriptive and informative nature that present basic concepts of the operation of our method and
most of the GA-like methods specialized in solving the JSSP.

4.1. Genetic Representation

Except for the presence of specific operators of each work, the basic structure of a GA continues to
be formed by the repetition loop that involves two main operators: crossover operator and mutation
operator. This structure is preserved in the vast majority of state-of-the-art techniques. The codification
used to represent a possible solution (chromosome) of the problem can be done in many different
ways, as highlighted in Reference [63].

In this paper, a codification equivalent to one of the most common representations of the
literature is used, which is known as “coding by operation order”, first presented in Reference [64].
Since, in this representation, the solution space of a JSSP of N jobs and M machines is formed by
chromosomes c ∈ NN·M, such that exactly M coordinates of c are equal to i (representing the job index
i), for every i ∈ {1, 2, ..., N}.

Figure 1 shows some examples of chromosomes (c1, c2 and c3) that obey such formulation in
a JSSP with 2 jobs (N = 2) and 3 machines (M = 3). As the formulation requires, index job 1 and
index job 2 appear exactly 3 times, since 3 is the number of machines in the problem.

Figure 1. Examples of chromosomes in representation by operation order.

This codification determines that the priority of each operation on machine allocation.
As an example, let c = (1, 2, 1, 1, 2, 2) be a chromosome in a 2 × 3 dimension JSSP. In this case,
the order established by c defines that the following actions must be performed sequentially and
it should only be initiated if it can be performed in parallel with the previous action or if the previous
action has already been completed:

• (1st) Job 1 must be processed by the 1st machine of its script.
• (2nd) Job 2 must be processed by the 1st machine of its script.
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• (3rd) Job 1 must be processed by the 2nd machine of its script.
• (4th) Job 1 must be processed by the 3rd machine of its script.
• (5th) Job 2 must be processed by the 2nd machine of its script.
• (6th) Job 2 must be processed by the 3rd machine of its script.

Thus, one way to generate initial population in this type of configuration is to create a group of
chromosomes equal to (1, ..., 1, 2, ..., 2, ..., N, ..., N), in which each of the N jobs of a JSSP appears in
exactly M positions, and then randomly rearrange all coordinates of each chromosome. Thus, one way
to generate initial population in this type of configuration is to randomly rearrange to the coordinates
of each chromosome M representations of each of the N jobs of a JSSP. Mathematically, we consider
the function fshuffle that randomly reorders the coordinates of a given vector, defined in Equation (2):

fshuffle : {1, 2, ..., N}N·M −→ {1, 2, ..., N}N·M

(x1, x2, ..., xN·M) 7−→ (xi1 , xi2 , ..., xiN·M ),
(2)

where i1, i2, ..., iN·M are a random arrangement of indices 1, 2, ..., N ·M.

4.2. Fitness Function

The objective function, or fitness function, of the optimization problem discussed here can be
modeled according to the function F, defined in Equation (3) given below:

F : O −→ R
O 7−→ F(O) := max

i
Ti(O), (3)

where O is the set of all possible sequences for the defined JSSP. That is, if O ∈ O, then O is a possible
sequence of operations that defines the start processing priority for N jobs on M machines. In other
words, O is the feasible set of solutions in which our method must perform its search.

The lower the makespan value of a schedule, the less time must be taken to finish a given set of
jobs. Thus, the algorithm should look for configuration options for a schedule in order to minimize the
time spent to complete the jobs processing on the set of machines that configure the JSSP.

4.3. Selection Mechanism

Selection strategies are used so that we can choose individuals to reproduce and to create new
populations in evolutionary algorithms. In this paper, individuals should be selected to participate in
the crossover process with probability equivalent to their fitness value, which is known as roulette
wheel selection [65]. In this case, the individuals selected for crossover must define a set entitled
Pselected. The selection approach for generating a new population used in the proposed algorithm was
the roulette wheel selection with retaining model, in which the probability of an individual being
selected is proportional to its fitness value and, certainly, the best individual in the current population
is transferred to the new population. It is important mentioning that there are different mechanisms
for selecting individuals available in the specialized literature, however, we will focus our analysis
on the models mentioned, since these models are widely used in studies that address the JSSP and
present good results in this field, as is the case of the advances brought by Ombuki and Ventresca [4],
Asadzadeh and Zamanifar [5] and Asadzadeh [6], which only use roulette wheel selection strategies in
their work.

4.4. Proposed Multi-Crossover Operator

To detail the operation of our multi-crossover operator, we need to address the use of different
crossover functions. In Section 4.4.1, we model the possible functions for this operator and exemplify
the operation of two of the most used functions to solve the JSSP. In Section 4.4.2, we present



Sensors 2020, 20, 5440 7 of 32

our multi-crossover strategy that makes up our method and consists of one of the contributions
of this work.

4.4.1. Crossover Functions

The proposed crossover operator consists of using more than one crossover function in search
area adaptation [22] strategies. Thus, our proposal is in the form of a framework that considers a set
of n× crossover functions to combine chromosomes. Thus, we define this set to be F×, presented in
Equation (4).

F× = { f×,1, f×,2, ..., f×,n×}. (4)

Let us consider for our modeling, without loss of generality, that each function f× ∈ F× is
a function that combines two parent chromosomes from the feasible set resulting in two children
chromosomes. That is, each function of F× takes the form of f× : O×O→ O×O.

In this work, we will focus on two main crossover functions for conducting our assessments
and evaluations: Partially Mapped Crossover (PMX) [66] and Order-based Crossover (OX2) [67].
These functions are two of the most widely used crossover functions in the specialized literature
on JSSP solution by genetic algorithm. In this way, F× = {PMX, OX2} for our experiments,
however, the same conclusions of our method can be obtained with any set F×.

OX2 (Figure 2-left) does not require any correction or projection steps as its feasibility is guaranteed
by construction. This is because the technique only matches the order in which jobs appear in parents.
In detail, initially, a random number of genes are fixed. An offspring inherits in its coordinates the
exact position these genes assume in one parent and completes the remaining positions with the other
parent’s unfixed genes.

PMX (Figure 2-right) combines two chromosomes from two previously randomly defined cutoff
points. To generate the child chromosomes, the strategy is to mix the genes internal to the cutoffs
in one parent with the genes external to the cutoffs in another parent. This procedure can generate
infeasible solutions, which are usually corrected [6] in JSSP applications by projecting the individuals
generated into feasible space with respect to the Hamming distance [68].

Figure 2. Comparison between the steps of the Order-based Crossover (OX2), on the left, and Partially
Mapped Crossover (PMX), on the right, crossover techniques.

To exemplify the working of these crossover functions, let’s assume that we are going to apply
both functions OX2 and PMX to the same pair of individuals Parent1 = (1, 2, 3, 4, 4, 3, 2, 1) and
Parent2 = (4, 4, 3, 3, 2, 2, 1, 1). In details:

• In the case of the crossover function OX2:

1. Initially, it is necessary to decide what will be the values of the genes (jobs) that should
maintain their positions in the coordinates of the offsprings. Let’s assume that the jobs 2
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and 3 were randomly set. In this way, the genes that represent the 2 and 3 index jobs must
occupy the same position in the coordinates of the offsprings generated during the transfer
of the chosen genes.

2. Therefore, the two intermediate offsprings Child1 = (−−, 2, 3,−−,−−, 3, 2,−−),
which inherits the positions of the 2 and 3 genes from Parent1 in their
coordinates, and Child2 = (−−,−−, 3, 3, 2, 2,−−,−−), which inherits the positions of the
2 and 3 genes from Parent2 in their coordinates. The symbol “−−” means that the
coordinate of the offspring is empty.

3. Then, it is necessary to transfer the other jobs (1 and 4) in the coordinates of the offsprings
that did not receive any jobs. However, now Parent1 will pass its genetic information
to Child2 and Parent2 will pass its genetic information to Child1. Then, respecting the
order in which the coordinates that represent the jobs 1 and 4 in parents are arranged,
the positions of these genes in the parents are transferred to the offsprings. As a result,
we get Child1 = (4, 2, 3, 4, 1, 3, 2, 1) and Child2 = (1, 4, 3, 3, 2, 2, 4, 1).

4. This crossover is completed without the need to perform any correction procedure to
make the children generated feasible, since the offsprings will always be rearrangements,
or shuffling, of the information contained in the parents.

• In the case of the crossover function PMX:

1. This crossover takes into account just the parents’ geometric information. Thus, it is necessary
to define two cutoff points randomly. Let’s assume that these cutoff points define the jobs
represented by the coordinates 3, 4 and 5 as internal sequence. Consequently, the outside of
these parents will be defined by the coordinates 1, 2, 6, 7 and 8.

2. Immediately, the information contained in the parents’ internal part is passed to the children,
so that the internal part of Parent1 is passed to the internal part of Child1 and the internal part
of Parent2 is passed to the internal part of Child2. Thus, intermediate offsprings are defined
as Child1 = (−−,−−, 3, 4, 4,−−,−−,−−) and Child2 = (−−,−−, 3, 3, 2,−−,−−,−−).

3. To ensure that both parents pass genetic information to both children, in this step Parent2

transfers its external part to Child1 and Parent1 transfers its external part for Child1.
Thus, we have Child1 = (4, 4, 3, 4, 4, 2, 1, 1) and Child2 = (1, 2, 3, 3, 2, 3, 2, 1).

4. As this crossover function takes only the geometric information from the parents, it is
possible that some offspring is not a feasible solution for the JSSP. And, in fact, this is what
happens in this example, since Child1 represents four times the index job 4, which would
correct to represent only twice. The same occurs for Child2 which represents index jobs 2 and
3 three times. Therefore, it may be necessary to use some techniques for projecting solutions
on the feasible space of solutions. This projection is usually done according to the Hamming
distance and this is how we are going to proceed in this work. Therefore, the children
generated by this crossover are: Child1 = (2, 3, 3, 4, 4, 2, 1, 1) and Child2 = (1, 2, 3, 3, 2, 4, 4, 1).

A schematic of the example described is shown in Figure 2.

4.4.2. Multi-Crossover Operator

As a crossover operator, a more embracing and rigorous version of the crossover operator of
Reference [22] is proposed. We suppose that the use of distinct crossover techniques increases the
power of local exploitation since they define different strategies to combine the same individuals
and thus it allows the investigation of different search areas. Thus, the crossover operator works
from three randomly selected individuals in the population and occasionally different crossover
techniques defined by F× is applied in all possible pairs of these three chromosomes until three
offsprings are found that surpass their respective parents or until each pair has performed Rc crossovers.
Detailed operator schematics are presented in Algorithm 1.
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Algorithm 1 Proposed multi-crossover operator.

Input:

(p1, p2, p3) 3 randomly selected individuals taken from Pselected

F Fitness function

F× = { f×,1, ..., f×,n×} Set of crossover functions

Rc Max crossovers for each pair

1: for k := 1 to 3 do . Evaluate all possible pairs, or couples, among the three parents
2: if k == 1 then
3: (P1, P2) := (p1, p2) . In the first iteration, evaluate the pair formed by p1 and p2
4: else if k == 2 then
5: (P1, P2) := (p1, p3) . In the second iteration, evaluate the pair formed by p1 and p3
6: else if k == 3 then
7: (P1, P2) := (p2, p3) . In the third iteration, evaluate the pair formed by p2 and p3
8: end if
9: FP1 := F(P1) . Evaluate the fitness of the couple selected for the k-th iteration

10: FP2 := F(P2)
11: for i := 1 to Rc do . Try to get a child better than parents a maximum of Rc times
12: f× := pick_randomly ({ f×,1, ..., f×,n×}) . Pick randomly a crossover function, where

pick_randomly (Y) is a function that returns randomly some element from the set Y
13: (ĉi,1, ĉi,2) := f×(P1, P2) . Generate a pair of children using the selected f×
14: Fi,1 := F(ĉi,1) . Evaluate the first child
15: Fi,2 := F(ĉi,2) . Evaluate the second child
16: if Fi,1 < Fi,2 then . What is the best offspring?
17: Fi := Fi,1 . If the first child is the best, then it should be considered for comparison
18: ĉi := ĉi,1
19: else
20: Fi := Fi,2 . If the second child is the best, then it should be considered for comparison
21: ĉi := ĉi,2
22: end if
23: if Fi < FP1 or Fi < FP2 then . If the best generated child is better than one of the parents
24: break . Stop generating offsprings and get out of this loop
25: end if
26: end for
27: i∗ := arg min

i
{Fi} . Take the generated child with the best fitness value

28: ck := ĉi∗

29: end for

Output: (c1, c2, c3) Generated individuals

Thus, in all possible pairs of three individuals randomly taken from a set of pre-selected
individuals Pselected, a set of distinct crossover functions are eventually performed until a solution is
generated that has a fitness value better than a parent’s fitness value or until the algorithm performs
Rc crossover.

The search criteria of this operator is far stricter than the search criteria of the operators of
Reference [22], since the operators of these authors perform crossover until a solution is found whose
fitness value is better than the worst fitness value presented in the entire population, and the fitness
value of parents is not necessarily important for the procedure. Therefore, the proposed operator
should be able to find good solutions more easily than the crossover operator of Reference [22], since it
performs a more careful and strict search. Furthermore, the use of different crossover techniques
increases the search on feasible space, since the solutions must be generated by distinct crossover
methodologies and, therefore, the search area can be explored by distinct strategies.
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4.5. Proposed Mutation Operator

To detail our mutation operator, we need to discuss the use of different mutation functions.
In this way, in Section 4.5.1, we model the possible functions for this operator, and we exemplify the
application of three functions widely used in JSSP. In Section 4.5.2, we present the strategy of a local
search associated with the mutation operator that makes up our method and consists of one of the
contributions of our work.

4.5.1. Mutation Functions

Similar to the crossover operator, the proposed mutation operator works according to a set of
nmut mutation functions in a framework. That is, in the mutation process performed in the proposed
method, a chromosome may be mutated with a mutation specified by one of the functions of set Fmut,
defined in Equation (5).

Fmut = { fmut,1, fmut,2, ..., fmut,nmut}, (5)

where each function fmut ∈ Fmut is a mutation function that operates with respect to two coordinates i
and j of a chromosome, making these functions of the form presented in Equation (6).

f : O× {1, 2, ..., N ·M}2 −→ O
(c, (i, j)) 7−→ f (c, (i, j))

. (6)

In our work, we focus on the three most commonly used mutation functions in machine
scheduling problems: Swap, Inverse and Insert [69], respectively represented by the functions
fswap, finverse and finsert. Thus, all tests performed on our evaluations are made according to
Fmut = { fswap, finverse, finsert}, the same considerations are made generally.

We will represent the operation of these mutation functions with an example. Suppose we are
going to perform perturbations using these three functions on chromosome c = (4, 3, 2, 3, 2, 4, 1, 1) and
considering the same pair of coordinates (i, j) = (3, 8). Therefore, the mutation functions must perturb
c as follows:

• fswap ((4, 3, 2, 3, 2, 4, 1, 1), (3, 8)): The job represented by the coordinate i = 3, which in this case is
the index job 2, must change places with the job represented by the coordinate j = 8, which is the
index job 1. Thus, the mutant form of c by the fswap function is (4, 3, 1, 3, 2, 4, 1, 2).

• finverse ((4, 3, 2, 3, 2, 4, 1, 1), (3, 8)): All coordinates between i = 3 and j = 8 are inverted, acting as
an extension of the fswap function that also changes the internal values between the coordinates
3 and 8. Therefore, the mutant form of c by the finverse function is (4, 3, 1, 1, 4, 2, 3, 2).

• finsert ((4, 3, 2, 3, 2, 4, 1, 1), (3, 8)): The job represented by the coordinate j = 8 is inserted
in the coordinate subsequent to the coordinate i = 3, that is, in the fourth coordinate.
Then, jobs represented by the coordinates between i = 3 and j = 8 are transferred to a position
ahead. Thus, the mutant chromosome generated by finsert is (4, 3, 2, 1, 3, 2, 4, 1).

In Figure 3, the comparative operation of the considered mutation functions for the discussed
example is presented.
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Figure 3. Scheme of mutation functions.

4.5.2. Local Search Mutation Operator

As mutation operator it is proposed to generalize local search operator of Reference [6]
as a variation of Reference [22] mutation operator. Thus, for each individual generated in the
crossover operator, one mutation function of Fmut is chosen randomly and applied successively
Rm times in randomly chosen coordinates of the chromosome keeping the beneficial modifications
and proceeding with the mutation method from them, giving rise to a mutant population with
the same number of individuals as the child population. However, in order to maintain the
traditional characteristics of the mutation operator, which is to cause chromosome disturbance
regardless of the presence of process improvement or worsening, the option of apply just one
execution of a mutation function corresponding to a simple mutation was added in a percentage
of individuals. Therefore, only a percentage εLS of the population of children is mutated in a local
search form, and a percentage 1 − εLS is given a simple mutation. The scheme is presented in
Algorithm 2.

The main purpose of this procedure is to perform thorough searches in regions close to known
good solutions, as such solutions have been determined to be better than their respective parents and
likely to enhance the solutions of previous generations.

The local search and mutation operator of Reference [6] is a special case of our local
search mutation operator if we define Rm = N · M and Fmut = { fswap, finverse, finsert}.
Thus, our methodology consists of a proposal to generalize the tool of Reference [6] with respect
to the mutation. This modification, however simple, may be able to save processing on low complexity
JSSP instances by setting a small value for Rm and a set of mutation functions with few elements.
Moreover, this generalization makes the methodology more versatile, since for high complexity
instances, we can define Rm as a high value and Fmut as a set with more elements in order to improve
the search capability of the proposed technique.
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Algorithm 2 Proposed mutation operator.

Input:

Pchild Set of individuals generated using Algorithm 1

F Fitness function

Fmut = { fmut,1, fmut,2, ..., fmut,nmut} Set of mutation functions

εLS Usage of local search strategy (in %)

Rm Max mutations for each pair

N ×M JSSP instance dimension

1: fmut := pick_randomly ({ fmut,1, fmut,2, ..., fmut,nmut}) . Take a mutation function randomly
2: Pmut := {}
3: for c ∈ Pchild do . All the offsprings generated in the multi-crossover operator will be mutated
4: if rand([0, 1]) ≤ εLS then . Will there be a local search?
5: Fc := F(c)
6: for i := 1 to Rm do . Run exactly Rm perturbations on the considered child c
7: r1 := pick_randomly ({1, 2, ..., N ·M}) . Choose the coordinates to use in the mutation

function
8: r2 := pick_randomly ({1, 2, ..., r1 − 1, r1 + 1, ..., N ·M})
9: ĉ := fmut (c, (r1, r2)) . Apply the mutation function

10: Fĉ := F(ĉ) . Evaluate the mutant child
11: if Fĉ ≤ Fc then . If the mutation was beneficial, then
12: c := ĉ . Update the child c and continue from it on the next perturbation
13: Fc := Fĉ
14: end if
15: end for
16: else . Do not use local search strategy and just perturb the child one time
17: r1 := pick_randomly ({1, 2, ..., N ·M}) . Choose the coordinates to use the mutation

function
18: r2 := pick_randomly ({1, 2, ..., r1 − 1, r1 + 1, ..., N ·M})
19: c := fmut (c, (r1, r2)) . Apply the mutation function just one time
20: end if
21: Pmut := Pmut ∪ {c} . Update the set of mutant individuals
22: end for

Output: Pmut Population of mutant individuals

4.6. Proposed Massive Local Search Operator

In this work, we propose as massive local search operator an improvement of the elite local
search proposed in Reference [6]. This enhancement is through the use of more than one perturbation
function, causing the operator to eventually use distinct mutation functions instead of just one,
as in Reference [6]. A massive local search operator has as its primary objective to evaluate
which disturbances made with respect to some mutation function improve an individual’s fitness.
The main purpose of this procedure is to perform thorough searches in regions close to known good
solutions, as such solutions have been determined to be better than their respective parents and
likely to enhance the solutions of previous generations. This procedure is performed taking into
consideration all possible combinations within the coordinates of a good individual using different
perturbation strategies. In Reference [6], this procedure is performed only with the mutation function
fswap on the best individual in the current population. In our work, we propose that this procedure
occurs using different perturbation functions (We will call “perturbation functions” the functions used
in this section to facilitate the description so that there is no confusion with the mutation functions of
Section 4.5). However, the perturbation functions used in the massive local search operator are defined
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in the same way as the mutation functions according to Equation (6). in a given set of perturbation
functions Fpert. In detail, we propose to randomly take a function in Fpert, defined in Equation (7),
and then carry out all possible perturbations considering the coordinates of an individual using this
function so that beneficial perturbations to the individual are always maintained.

Fpert =
{

fpert,1, fpert,2, ..., fpert,npert

}
, (7)

where, fpert,i is a function on the form of the Equation (6) for all i.
We emphasize, therefore, that our method does not necessarily demand that Fpert = Fmut.

However, to facilitate the description and execution of the experiments, we will assume that
Fpert = { fswap, finverse, finsert}. In this case, the algorithm not only performs the successive substitution
of operations in a given solution, but occasionally, the technique performs successive insertions and
inversions, increasing the diversification of the massive local search performed. Suppose that, over the
generations, using a set of mutation functions instead of just one function can improve the operator’s
ability to explore the search space.

In this work, we propose that the massive search be applied to a group of individuals and not only
on the best individual, as is the case with the elite operator. We believe that this generalization can help
the method to avoid premature convergence and stagnation of the population around a local optimum.
Mathematically, the massive local search must be applied to all individuals of a given set Pmassive.

For carrying out the experiments, we assume that Pmassive is formed by the two best individuals
in the population with the restriction that they are different. We intend that two good and different
genetic inheritances are maintained in the population in order to help maintain genetic variability.

Thus, the massive local search operator proposed is coded in Algorithm 3.

Algorithm 3 Proposed massive local search operator.

Input:

Pmassive Set of individuals selected for massive local search

F Fitness function

Fpert =
{

fpert,1, fpert,2, ..., fpert,npert

}
Set of perturbation functions

N ×M JSSP instance dimension

1: fpert := pick_randomly
(
{ fpert,1, fpert,2, ..., fpert,npert}

)
. Choose randomly a perturbation function

2: Pimproved = {}
3: for c ∈ Pmassive do . The procedure will massively search around all the individuals in Pmassive
4: Fc := F(c) . Calculate the initial fitness of the individual c
5: for i := 1 to N ·M do . All the combination of the chromosome coordinates will be considered
6: for j := 1 to N ·M do
7: ĉ := fpert (c, (i, j)) . Apply the perturbation considering the coordinates i and j
8: Fĉ := F(ĉ) . Evaluate the fitness of the perturbed individual
9: if Fĉ ≤ Fc then . If the perturbation was beneficial, then

10: c := ĉ . Update the individual and execute the next perturbations from this version
11: Fc := Fĉ
12: end if
13: end for
14: end for
15: Pimproved = Pimproved ∪ {c} . Update the set with the new improved individual
16: end for

Output: Pimproved Improved individuals
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4.7. Scheme of Use for Proposed Operators: Algorithm Structure

The use of all operators together follows a methodology similar to that used by Reference [6],
which consists of the following central steps:

1. Initiate the configuration of our method, which include choosing the standard definition of
parameters and determining the crossover, mutation and perturbation functions;

2. Generate the initial population using the shuffle function defined in Equation (2);
3. Select the individuals and perform our multi-crossover operator;
4. Perform our local search operator on all the offsprings generated on the previous step;
5. Run the massive local search operator to look for better solutions around a group of

good individuals;
6. Generate a new population using the roulette wheel strategy retaining the best individual;
7. Return to the first step.

Notice that the method must be used to solve one JSSP instance at a time. Figure 4 shows the
flowchart containing all the details about the steps of our proposed mXLSGA, which is the proposed
meta-heuristic for application in JSSP instances.

Observing the flowchart of the proposed method, we can see some clear differences between
mXLSGA and the techniques that served as inspiration for its making. We can immediately see that the
use of multi-crossover strategies with various crossover functions is something unique to the proposed
methodology. Furthermore, only mXLSGA uses more than one perturbation function in the massive
local search operator and applies them to a set of individuals. In detail, all GA-like methods influenced
mXLSGA modeling, however, there are also significant differences, as highlighted in the sequence:

• Basic GA:

– Inspiration: The sequence of operations.
– Differences: The mXLSGA uses much more operators such as massive local search operator.

• GSA [22]:

– Inspiration: Applications of just one crossover function more than once or until the procedure
find an individual better than the worst individual in the population. Successive applications
of just one mutation function.

– Differences: The mXLSGA applies various crossover functions more than once or
until the method find an individual better than a parent. Successive applications of
various mutation functions.

• LSGA [4]:

– Inspiration: The mutation operator is composed of two possible procedures: the first
performing a local search with successive applications of a variant of the fswap mutation
function; and the second being a simple mutation in the form of a single perturbation.

– Differences: The mXLSGA also has these two possible procedures in its mutation operator.
However, it uses a group of mutation functions that the method uses during its iterations in
these procedures.

• aLSGA [6]:

– Inspiration: We rely mainly on mutation and elite local search operators. The mutation
operator performs successive applications of a group of mutation functions on a chromosome.
The elite local search operator performs successive perturbations with fswap considering all
possible combinations between the coordinates of the best chromosome in the population.
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– Differences: Our mutation operator is divided into two possible subroutines: the first
with local search behavior by applying successive perturbations with a group of mutation
functions, such as aLSGA; and the second being formed from a simple mutation so that only
one perturbation is applied to the chromosome. Unlike aLSGA’s elite local search operator,
mXLSGA’s massive local search operator uses a set of perturbation functions, and not just
the function fswap, on a set of individuals and not just on the best individual.

Define initial parameters

it = 0

Generate initial population
P0 using fshuffle (Equation (2))

Evaluate Pit

Select individuals from Pit using
roulette wheel for crossover

and store them in Pselected

Pchild = {}

There are at
least 3

individuals in
Pselected?

Take p1, p2, p3
randomly from Pselected

Apply Alg. 1 on
p1, p2, p3 and get c1, c2, c3

Pchild = Pchild ∪ {c1, c2, c3}

Pselected = Pselected − {p1, p2, p3}

Create Pmut using
Algorithm 2

Define Pmassive ⊂ Pit ∪ Pmut

Apply Algorithm 3 on
Pmassive and get Pimproved

Create Pit+1 from
Pit ∪ Pmut ∪ Pimproved
using roulette wheel

retaining the best individual

it = it + 1 it == Max
Iteration?

End of method

yes

no

yes

no

Figure 4. Flow chart of our proposed Multi-Crossover Local Search Genetic Algorithm.
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In summary, we present in Table 1 how each of the GA-like techniques uses the strategies
mentioned and we compare this use with our mXLSGA.

Table 1. Comparison between the use of different strategies by each method. “Yes” means that the
method uses the corresponding strategy and “No” means that it does not.

Strategy\Method GA GSA LSGA aLSGA mXLSGA

Set of crossover functions (multi-crossover) No No No No Yes
Search area adaptation on crossover No Yes No No Yes

Local search on mutation No Yes Yes Yes Yes
Set of mutation functions No No No Yes Yes

Eventually simple mutation (just one application) Yes No Yes No Yes
Massive local search No No No Yes Yes

Set of perturbation functions No No No No Yes

5. Implementation and Experimental Results

We demonstrate the effectiveness of the proposed method through three different case studies:
the first dedicated to analyzing the operators of the method in isolation to evaluate the influence of
each one of them during the solution of JSSP instances; the second specialized in evaluating the capacity
of the method to find optimal solutions to the problem addressed, being compared with different types
of meta-heuristics that make up the state of the art; and the third dedicated to comparing our method
with other GA-like techniques when solving the JSSP.

The proposed algorithm was coded using Matlab software and the tests were performed on
a computer with 2.4 GHz Intel(R) Core i7 CPU and 16 GB of RAM. We emphasize that we only used
the standard functions of the Matlab IDE to conduct the computational experiments and we do not
use ready-made optimization software packages.

5.1. Case Study I: Analysis of Isolated Operators

In this case study, we evaluated different configurations of the method to investigate how each
of the operators proposed in this work acts on our method. Specifically, we want to observe which
operators most strongly influence the proposed method. For this, we evaluated different configurations
of our technique in three LA [17] instances. These configurations were stipulated so that we were able to
analyze the influence of each of the operators separately. That is, we defined a configuration as a basic
GA, another as a basic GA with the multi-crossover operator, another as a basic GA with a version of
the proposed local search operator, and so on. For this, we will investigate the operation of the
following configurations:

• GA: Basic GA;
• GA+mX: Basic GA with proposed multi-crossover operator from Section 4.4;
• GA+LS*: Basic GA with proposed local search operator from Section 4.5 using εLS = 1,

i.e., performing local search on all offsprings that are generated at the crossover operator;
• GA+LS**: Basic GA with proposed local search operator from Section 4.5 using εLS = 0.8,

i.e., performing local search on 80% of all offsprings that are generated at the crossover operator;
• GA+ELSA: Basic GA with simple mutation (just one use of fswap) and using proposed massive

local search operator with Fpert =
{

fswap
}

(elite local search of Reference [6]);
• GA+MLS: Basic GA with simple mutation (just one use of fswap) and using proposed massive

local search operator with Fpert =
{

fswap, finverse, finsert
}

;
• GA+mX+LS**: Using our multi-crossover operator in GA+LS** previous configuration;
• mXLSGA: Proposed method with all proposed operators (Figure 4).

The details of the configuration of each of the evaluated algorithms are shown in Table 2.
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Table 2. Set up for case study I. Where cbest is the best individual in the population and cbest,1 and cbest,2 are the two best individuals in the population who
are different.

GA GA+mX GA+LS* GA+LS** GA+ELSA GA+MLS GA+mX+LS** mXLSGA

Population size 100 100 100 100 100 100 100 100
Generations 100 100 100 100 100 100 100 100

Crossover rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Mutation rate 0.05 0.05 1 1 0.05 0.05 1 1

Rc 1 10 1 1 1 1 10 10
Rm 1 1 N ·M N ·M 1 1 N ·M N ·M
F× {PMX} {OX2, PMX} {PMX} {PMX} {PMX} {PMX} {OX2, PMX} {OX2, PMX}
Fmut

{
fswap

} {
fswap

} {
fswap, finverse, finsert

} {
fswap, finverse, finsert

} {
fswap

} {
fswap

} {
fswap, finverse, finsert

} {
fswap, finverse, finsert

}
Fpert {} {} {} {}

{
fswap

} {
fswap, finverse, finsert

}
{}

{
fswap, finverse, finsert

}
εLS 0 0 1 0.8 0 0 0.8 0.8

Pmassive {} {} {} {} {cbest} {cbest} {}
{

cbest,1, cbest,2
}
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Each of the configurations presented in this case study was executed 35 times in three LA instances
of different sizes: LA 03, with a dimension of 20× 5, considered easy level; LA 17, of size 10× 10,
of medium level; and LA 30, with a size of 20× 10, of difficult level. These instances were defined so
that at least one instance of each of the three main groups of dimensions was considered to verify the
efficiency of the algorithm and its behavior in instances of varying dimensions, from the simpler to the
most complex. The fitness values for each configuration were used to make the box plots in Figure 5.

Looking at the box plots shown in Figure 5, we can see that the addition of any of the operators
proposed in GA was very beneficial. However, some operators have greater influence in certain
cases. For example, the multi-crossover operator has greater influence on less complex bases,
since in Figure 5a it works as well as or even better than the GA+LS* and GA+LS** configurations,
while on more complex bases (Figure 5b,c) the GA+mX configuration presents results statistically
inferior to the results of GA+LS* and GA+LS**.

Concerning mutation operators that use local search strategies, we noticed that as the complexity
of the analyzed instance increases, the performance of GA+LS* improves in relation to the GA+LS**
configuration. This is because, the greater the complexity of the instance, the use of local search
strategies becomes more advantageous than the genetic variability guaranteed by the operator with
the use of εLS 6= 1. However, we can see in Figure 5a that, in instances of less complexity, the GA+LS**
configuration presents much better and more stable results than those presented by GA+LS*. Thus,
it is a good strategy to use a value between 0.8 and 1 for εLS in the next case studies.

We can also observe that the massive local search operator is the operator that present better
quality and greater stability in the results. The addition of massive local search operators in basic GA
results in better fitness values compared to the addition of two distinct operators, as is the case with
the GA+mX+LS** configuration, which results in lower fitness values than GA+ELSA and GA+MLS
configurations in the box plots of Figure 5a,c. Also, the use of more than one disturbance function in
Fpert has resulted in GA+MLS presenting better and more stable results than the results of GA+ELSA,
which uses only the fswap function in Fpert, in all evaluated cases. Thus, we can conclude that the
operator with the greatest influence is the massive local search operator.

The use of two local search operators in GA + mX + LS** made this configuration more stable
than the simplest configurations that use only one operator, in this case the configurations GA + mX,
GA + LS* and GA + LS**. In addition, also compared to these configurations, GA + mX + LS** presents
better fitness values in the instances LA03 (Figure 5a) and LA30 (Figure 5c).

Finally, the configuration of the proposed methodology that corresponds to the joint use of all
the operators discussed is the mXLSGA method, which presents the best results in all evaluated
cases, with greater accent in the LA03 instances (Figure 5a) and LA17 (Figure 5b). This confirms that
the use of all operators concurrently is the best configuration for the methodology since it is in this
configuration that the best results are obtained.
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(a) LA03: 20× 5.

(b) LA17: 10× 10.

(c) LA30: 20× 10.
Figure 5. Box plots of the fitness values of 35 executions of the different configuration of our method.

Table 3 shows the average time required considering 35 independent executions for all the
proposed method configurations to solve the JSSP instances in this case study. As we can see, basic GA
is the fastest technique of all compared. However, we note that the addition of the multi-crossover
operator (GA + mX) does not radically compromise the computational time, but, as shown in the
box-plots of Figures 5a–c, this addition considerably improves the performance of the method in
obtaining good results. In the case of versions that use only massive local search operators (GA +
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ELSA and GA + MLS), it is clear that the performance is improved and that, in smaller instances such
as LA03 and LA17, the computational time is not drastically increased. However, that is not the case
of the LA30 instance. This is due to the quadratic behavior of these operators, since, as we can see in
their formulation in Algorithm 3, in each iteration of the method occurs (N ·M)2 perturbations in the
chromosomes from Pmassive. Something similar occurs with configurations that only use local search
strategies in the mutation operator (GA + LS* and GA + LS**). Specifically, we can see that these are the
most expensive isolated operators in time cost in the case of smaller instances (LA03 and LA17) and
this cost increases proportionally according to the complexity and size of the instance. These facts are
reflected in the GA + mX + LS** configuration, whose average time in all instances is approximately
the sum of the times of the GA + mX and GA + LS** configurations. In all instances, the configuration
that obtains the best performance (mXLSGA) is also the most costly in computational time, but this
is an expected result since this technique uses all the operators described in this work. Thus, in the
following case studies, we will direct our analysis and comparisons to our mXLSGA.

Table 3. Average time spent in seconds by each configuration of the proposed method to solve each
instance of the Job Shop Scheduling Problem (JSSP) during 35 independent executions.

LA03 LA17 LA30

GA 3.60 4.09 5.95
GA+mX 5.40 6.21 9.62
GA+LS* 20.01 37.70 115.78
GA+LS** 16.68 30.23 100.50

GA+ELSA 9.45 28.35 177.28
GA+MLS 9.62 29.23 184.76

GA+mX+LS** 20.34 34.87 106.14
mXLSGA 32.42 70.29 236.32

5.2. Case Study II: Mxlsga for JSSP and Comparison with Other Algorithms

In this case study, we will evaluate the capacity of the proposed methodology to find optimal
solutions in the search space. For this, we intend to demonstrate the effectiveness of the method when
applied in JSSP instances present in the specialized literature.

In details, to evaluate the proposed approach, experiments were performed in 58 JSSP instance
scenarios, 3 FT instances [16], 40 LA instances [17], 10 ORB instances [18] and 5 ABZ instances [19].
The results obtained in the execution of the tests were compared with papers from the specific
literature. The articles determined for each comparison were selected because they are relevant
works in the literature, which deal with the JSSP with the same specific instances and, when existing,
papers published in the last three years were adopted. The papers selected for comparison of results
were as follows: SSS [61], GA-CPG-GT [14], DWPA [15], GWO [11], HGWO [12], MA [9], IPB-GA [8]
and aLSGA [6].

The configuration of parameters for the mXLSGA was established through tests and also
taking into consideration, when possible, a closer parameterization of the works that were used
for comparison. In this way, the parameters were defined as shown in Table 4.
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Table 4. Configuration of parameters for our Multi-Crossover Local Search Genetic
Algorithm (mXLSGA).

Population size 100
Maximum number of generations 100

Crossover probability 0.95
Mutation probability 0.95

εLS 0.95
Rc 10
Rm 2 · N ·M
F× {OX2, PMX}
Fmut

{
fswap, finverse, finsert

}
Fpert

{
fswap, finverse, finsert

}
Pmassive Two best and different individuals in the population

The proposed mXLSGA method was executed 10 times for each JSSP instance and the best value
obtained was used for comparison with other papers. In most of the comparative works, the authors
do not mention the processing time of their techniques and only present the best result. We proceed in
the same way for this case study, reserving a more detailed analysis using time and other statistical
measures for the next case study, in which we programmed a version of other compared techniques
and, therefore, we were able to observe such measures.

Table 5 shows the results derived from the LA [17], FT [16], ORB [18] and ABZ [19]
instance tests. The columns indicate, respectively, the instance that was tested, the instance size
(number of Jobs × number of Machines), the optimal solution of each instance, the results achieved
by each method (best solution found and error percentage (Equation (8)), and the mean of the error for
each benchmark (MErr).

E% = 100× Best− BKS
BKS

, (8)

where “E%” is the relative error, “BKS” is the best known Solution and “Best” is the best value obtained
by executing the algorithm for each instance.

As shown in Table 5, mXLSGA found the best known solution in 100% of FT instances, 70% of LA
instances, 30% of ORB instances, and 40% of ABZ instances.

The mXLSGA proposal reached in 28 LA instances the best known solution and obtained a mean
relative error (MErr) of 0.61. The SSS and HGWO methods obtained a lower average error than our
mXLSGA, assuming 0.59 and 0.38, respectively, but they did not test all the LA instances. If we only
consider the instances that have been tested by SSS, our mXLSGA proposal would obtain a MErr of 0.46.
If we only consider the instances tested by HGWO, our method would get 0.00 from MErr. Specifically,
in FT instances, the mXLSGA reached in 3 instances the best known solution and obtained a MErr of
0.00. In ORB instances, the mXLSGA reached in 3 instances the best known solution and obtained
a MErr 0.54, it is the method with the lowest MErr of all compared algorithms. In ABZ instances,
the mXLSGA reached in 2 instances the best known solution and obtained a MErr of 4.46. The method
that achieved a minor error was GA-CPG-GT, but this work did not test in all ABZ instances, and if
we compare only the instances that GA-CPG-GT was tested, mXLSGA would have gotten 0.00 relative
mean error, that is, the mXLSGA achieved the best known solution in the first 2 ORB instances.
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Table 5. Comparison of computational results between mXLSGA and other algorithms. The symbol “-”
means “no evaluated in that instance”.

Instance Size BKS mXLSGA SSS GA-CPG-GT DWPA GWO HGWO MA IPB-GA aLSGA
Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

LA01 10× 5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00
LA02 10× 5 655 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00
LA03 10× 5 597 597 0.00 597 0.00 597 0.00 614 2.84 597 0.00 597 0.00 597 0.00 599 0.33 606 1.50
LA04 10× 5 590 590 0.00 590 0.00 590 0.00 598 1.35 590 0.00 590 0.00 590 0.00 590 0.00 593 0.50
LA05 10× 5 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00
LA06 15× 5 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00
LA07 15× 5 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00
LA08 15× 5 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00
LA09 15× 5 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00
LA10 15× 5 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00
LA11 20× 5 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00
LA12 20× 5 1039 1039 0.00 - - 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00
LA13 20× 5 1150 1150 0.00 - - 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00
LA14 20× 5 1292 1292 0.00 - - 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00
LA15 20× 5 1207 1207 0.00 - - 1207 0.00 1273 5.46 1207 0.00 1207 0.00 1207 0.00 1207 0.00 1207 0.00
LA16 10× 10 945 945 0.00 947 0.21 946 0.10 993 5.07 956 1.16 959 1.48 946 0.10 946 0.10 946 0.10
LA17 10× 10 784 784 0.00 - - 784 0.00 793 1.14 790 0.76 784 0.00 784 0.00 784 0.00 784 0.00
LA18 10× 10 848 848 0.00 - - 848 0.00 861 1.53 859 1.29 857 1.06 858 1.17 853 0.58 848 0.00
LA19 10× 10 842 842 0.00 - - 842 0.00 888 5.46 845 0.35 845 0.35 - - 866 2.85 852 1.18
LA20 10× 10 902 902 0.00 - - 907 0.55 934 3.54 937 3.88 946 4.87 - - 913 1.21 907 0.55
LA21 15× 10 1046 1059 1.24 1076 2.86 1090 4.20 1105 5.64 1090 4.20 - - 1081 3.34 1081 3.34 1068 2.10
LA22 15× 10 927 935 0.86 - - 954 2.91 989 6.68 970 4.63 - - 954 2.91 970 4.63 956 3.12
LA23 15× 10 1032 1032 0.00 - - 1032 0.00 1051 1.84 1032 0.00 - - 1032 0.00 1032 0.00 1032 0.00
LA24 15× 10 935 946 1.17 - - 974 4.17 988 5.66 982 5.02 - - 976 4.38 1002 7.16 966 3.31
LA25 15× 10 977 986 0.92 - - 999 2.25 1039 6.34 1008 3.17 - - 999 2.25 1023 4.70 1002 2.55
LA26 20× 10 1218 1218 0.00 - - 1237 1.55 1303 6.97 1239 1.72 - - - - 1273 4.51 1223 0.41
LA27 20× 10 1235 1269 2.75 1256 1.70 1313 6.31 1346 8.98 1290 4.45 - - - - 1317 6.63 1281 3.72
LA28 20× 10 1216 1239 1.89 - - 1280 5.26 1291 6.16 1263 3.86 - - - - 1288 5.92 1245 2.38
LA29 20× 10 1152 1201 4.25 - - 1247 8.24 1275 10.67 1244 7.98 - - - - 1233 7.03 1230 6.77
LA30 20× 10 1355 1355 0.00 - - 1367 0.88 1389 2.50 1355 0.00 - - - - 1377 1.62 1355 0.00
LA31 30× 10 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 - - 1784 0.00 1784 0.00 1784 0.00
LA32 30× 10 1850 1850 0.00 - - 1850 0.00 1850 0.00 1850 0.00 - - 1868 0.97 1851 0.05 1850 0.00
LA33 30× 10 1719 1719 0.00 - - 1719 0.00 1719 0.00 1719 0.00 - - - - 1719 0.00 1719 0.00
LA34 30× 10 1721 1721 0.00 - - 1725 0.23 1788 3.89 1721 0.00 - - - - 1749 1.62 1721 0.00
LA35 30× 10 1888 1888 0.00 - - 1888 0.00 1947 3.125 1888 0.00 - - 1901 0.68 1888 0.00 1888 0.00
LA36 15× 15 1268 1295 2.12 1304 2.83 1308 3.15 1388 9.46 1311 3.39 - - - - 1334 5.20 - -
LA37 15× 15 1397 1415 1.28 - - 1489 6.58 1486 6.37 - - - - - - 1467 5.01 - -
LA38 15× 15 1196 1246 4.18 - - 1275 6.60 1339 11.95 - - - - 1258 5.18 1278 6.85 - -
LA39 15× 15 1233 1258 2.02 - - 1290 4.62 1334 8.19 - - - - - - 1296 5.10 - -
LA40 15× 15 1222 1243 1.71 1252 2.45 1252 2.45 1347 10.22 - - - - - - 1284 5.07 - -

MErr 0.61 0.59 1.50 3.52 1.27 0.38 0.77 1.99 0.80

FT06 6× 6 55 55 0.00 55 0.00 55 0.00 - - 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00
FT10 10× 10 930 930 0.00 936 0.64 935 0.53 - - 940 1.07 951 2.25 937 0.75 960 3.22 930 0.00
FT20 20× 5 1165 1165 0.00 1165 0.00 1180 1.28 - - 1178 1.11 1178 1.11 1182 1.45 1192 2.31 1165 0.00

MErr 0.00 0.21 0.60 - 0.73 1.12 0.73 1.84 0.00

ORB01 10× 10 1059 1068 0.84 - - 1084 2.36 - - - - - - - - 1099 3.77 1092 3.11
ORB02 10× 10 888 889 0.11 - - 890 0.22 - - - - - - - - 906 2.02 894 0.67
ORB03 10× 10 1005 1023 1.79 - - 1037 3.18 - - - - - - - - 1056 5.07 1029 2.38
ORB04 10× 10 1005 1005 0.00 - - 1028 2.28 - - - - - - - - 1032 2.68 1016 1.09
ORB05 10× 10 887 889 0.22 - - 894 0.78 - - - - - - - - 909 2.48 901 1.57
ORB06 10× 10 1010 1019 0.89 - - 1035 2.47 - - - - - - - - 1038 2.77 1028 1.78
ORB07 10× 10 397 397 0.00 - - 404 1.76 - - - - - - - - 411 3.52 405 2.01
ORB08 10× 10 899 907 0.88 - - 937 4.22 - - - - - - - - 917 2.00 914 1.66
ORB09 10× 10 934 940 0.64 - - 943 0.96 - - - - - - - - - - 943 0.96
ORB10 10× 10 944 944 0.00 - - 967 2.43 - - - - - - - - - - - -

MErr 0.54 - 2.07 - - - - 3.04 1.69

ABZ05 10× 10 1234 1234 0.00 - - 1238 0.32 - - - - - - - - 1241 0.56 - -
ABZ06 10× 10 943 943 0.00 - - 947 0.42 - - - - - - - - 964 2.22 - -
ABZ07 20× 15 656 695 5.94 - - - - - - - - - - - - 719 9.60 - -
ABZ08 20× 15 665 713 10.03 - - - - - - - - - - - - 738 13.88 - -
ABZ09 20× 15 679 721 6.34 - - - - - - - - - - - - 742 9.43 - -

MErr 4.46 - 0.37 - - - - 7.14 -

In particular, our method surpassed the technique on which it was based, which in this case
is aLSGA. In LA instances, our method got 6 BKS more than aLSGA.The aLSGA obtained in the
LA instances a MErr of 0.80 and mXLSGA obtained a MErr of 0.61, but aLSGA was tested only in
the first 35 LA instances, if we consider the MErr only for the 35 LA instances, mXLSGA would
get a MErr of 0.37, which is less than half the value obtained by aLSGA. For ORB instances, mXLSGA
obtained a MErr less than one third of the one obtained by aLSGA. The improvement achieved by
mXLSGA is certainly due to the insertion of the multi-crossover operator and the enhancements
employed in local search techniques.

Analyzing the data presented in Table 5, we can see that in the tested JSSP instances, the proposed
mXLSGA results better or equal to the compared state-of-the-art algorithms.
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5.3. Case Study III: Statistical Analysis of Ga-Like Methods

This case study was designed and executed to verify the effectiveness of the mXLSGA method
when compared to the main GA-like methods that build the specialized literature: the basic GA,
GSA [22], LSGA [4], aLSGA [6]. We compared mXLSGA with such techniques because they were the
basis of inspiration for its modeling and because they still represent the state of the art in GA-based
metaheuristics to solve the JSSP. The effectiveness must be guaranteed through the analysis of different
statistical measures and the time of each method. Indeed, we implemented all the compared techniques
to perform the analyzes. So that all the methods were coded as faithfully as possible to the descriptions
present in their respective articles, however, we emphasize that the coding may differ from the original
coding for several reasons, such as: different programming techniques; parameterization of the method,
for example, the number of executions for the method; some detail of the method that is not present in
the text of the original work or that we have interpreted differently; and so forth.

We try to follow the parameterization as faithful as possible to the original parameterization of
each technique, however, we use 100 individuals and 100 iterations in all the considered methods.
In details, the configuration used is presented in Table 6.

Table 6. Set up for case study III. Where cbest is the best individual in the population and cbest,1 and
cbest,2 are the two best individuals in the population who are different.

GA GSA LSGA aLSGA mXLSGA

Population size 100 100 100 100 100
Generations 100 100 100 100 100

Crossover rate 0.95 0.95 0.95 0.95 0.95
Mutation rate 0.05 0.05 1 1 1

Rc 1 10 1 1 10
Rm 1 140 N ·M N ·M N ·M
F× {PMX} {PMX} {PMX} {PMX} {OX2, PMX}
Fmut

{
fswap

} {
fswap

} {
fswap

} {
fswap, finverse, finsert

} {
fswap, finverse, finsert

}
Fpert {} {} {}

{
fswap

} {
fswap, finverse, finsert

}
εLS 0 0 0.5 1 0.95

Pmassive {} {} {} {cbest}
{

cbest,1, cbest,2
}

The compared techniques were executed 35 times on instances of different dimensions in which
our method can find the optimal value of makespan considering case study II (Section 5.2). In Table 7,
we can see some statistical information about these executions, namely: the best fitness value achieved
by the technique (Best); the worst fitness value achieved (Worst); the average of the fitness values of
the executions of each technique (Average); the standard deviation of these values (SD); the number of
times the method has reached the optimal value (Number opt); the number of iterations (Number it)
needed to reach the optimum value; and the average time (AT) in seconds that the technique takes to
perform 100 iterations.

As shown in Table 7, it is noteworthy that mXLSGA found the optimal fitness value in all instances
analyzed, and in instances FT 06, LA 01, LA 06 and LA 11, the proposed method found the optimal
value in all executions. The mXLSGA presented the lowest worst value and the lowest average in
all instances. In the instance LA 16, LA 23, and LA 26, mXLSGA did not obtain the lowest standard
deviation value, however, it was the only method that found the optimal value in all these instances.
Our method was the method that required the longest average execution time, but as it will be better
explained in the following paragraphs, this is not in any way a deficiency in our method, as it does not
need all 100 generations to converge.
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Table 7. Genetic Algorithm (GA)-like methods statistics. The symbol “-” means that the method was
not able to reach the optimum solution.

Instance Method Best Worst Average SD Number Opt Number It AT (s)

GA 55 57 55.45 0.85 27 52 2.4
GSA 55 55 55 0 35 8 39.78

LSGA 55 59 57.68 1.43 6 27 7.95
aLSGA 55 55 55 0 35 11 11.51

FT 06

mXLSGA 55 55 55 0 35 5 22.11

GA 666 712 679.02 9.98 6 76 2.65
GSA 666 715 677.8 13.61 13 10 51.79

LSGA 666 726 697 16.65 1 61 12.15
aLSGA 666 666 666 0 35 11 20.07

LA 01

mXLSGA 666 666 666 0 35 5 38.06

GA 926 938 927.4 2.87 24 79 3.34
GSA 926 935 926.31 1.54 33 7 67.31

LSGA 926 970 935.8 13.15 17 55 19.87
aLSGA 926 926 926 0 35 3 38.07

LA 06

mXLSGA 926 926 926 0 35 2 71.98

GA 1222 1256 1235.97 10.81 5 58 3.97
GSA 1222 1276 1232.14 14.94 20 19 81.59

LSGA 1222 1299 1251.6 19.62 2 32 31.33
aLSGA 1222 1222 1222 0 35 5 60.82

LA 11

mXLSGA 1222 1222 1222 0 35 3 116.57

GA 982 1100 1045.6 26.40 0 - 2.89
GSA 994 1110 1046.77 26.37 0 - 55.31

LSGA 1016 1148 1084.25 32.27 0 - 20.62
aLSGA 959 985 980.51 4.48 0 - 38.75

LA 16

mXLSGA 945 982 972.25 13.30 2 96 66.25

GA 1189 1336 1271.71 34.44 0 - 3.78
GSA 1148 1347 1214.08 43.85 0 - 73.19

LSGA 1214 1419 1295.34 43.70 0 - 38.39
aLSGA 1035 1115 1078 16.34 0 - 75.62

LA 23

mXLSGA 1032 1093 1060.45 17.96 1 51 123.64

GA 1525 1699 1619.51 39.50 0 - 4.44
GSA 1433 1586 1512.22 36.47 0 - 91.67

LSGA 1517 1665 1597.94 36.67 0 - 60.84
aLSGA 1302 1384 1343.28 19.69 0 - 124.93

LA 26

mXLSGA 1218 1371 1300.85 41.88 6 85 203.95

GA 2120 2326 2223.14 48.45 0 - 6.23
GSA 1943 2142 2050.17 63.09 0 - 130.75

LSGA 2005 2336 2177 66.29 0 - 123.23
aLSGA 1808 1897 1843.51 21.17 0 - 258.53

LA 31

mXLSGA 1784 1845 1807.71 19.20 5 80 424.56

To visualize the statistical performance of each method, we made the box plots of the fitness
values achieved in this case study, which are shown in Figure 6. As highlighted in the case study I
(Section 5.2), box plots make it clear how the presence of a massive local search operator makes the
method much more robust compared to the others, since in all the instances the aLSGA and mXLSGA
methods are the most stable and have the best fitness values. This difference is even accentuated
as the complexity of the instance increases. Also, the graphs reflect the values presented in Table 7,
since mXLSGA is the box below the other boxes in all evaluations. We also noticed some details,
such as why the mXLSGA standard deviation is the largest when executed in the LA 26 instance since
this is because the technique finds the optimum value 6 times as a discrepancy. It is also clear from the
graph that, statistically, our method is the method that most finds the best makespan settings.
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(a) FT06: 6× 6. (b) LA01: 10× 5.

(c) LA06: 15× 5. (d) LA11: 20× 5.

(e) LA16: 10× 10. (f) LA23: 15× 10.

(g) LA26: 20× 10. (h) LA31: 30× 10.

Figure 6. Box plots of the fitness values of 35 executions of the GA-Like methods.

In Figure 7, we highlight the convergence curves of the fitness value of the best individual of the 35
executions of each method in each instance during the 100 generations. It is clear that, as the complexity
of the assessed instance increases, the number of iterations that each method needs to achieve the
best value also increases. However, in none of the situations did our method requires all the 100
generations to find the best value. Indeed, mXLSGA finds the optimal value of makespan, or very close
to optimum, with approximately 50 generations in more difficult instances. Whereas, in the case of
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simpler instances, such as FT 06 (Figure 7a), LA 01 (Figure 7b), LA 06 (Figure 7c) and LA 11 (Figure 7d),
we realize that our method achieves optimal fitness before the 5th iteration. This fact does not
occur with the other evaluated techniques, which need more iterations to reach the optimal value
or, with the configuration used, they were not able to reach any of the optimum points, as was the
case with all techniques with exception of mXLSGA in instances LA 16 (Figure 7e), LA 23 (Figure 7f),
LA 26 (Figure 7g) and LA 31 (Figure 7h). In this way, time is no longer a major concern for our
method, since it requires only 50% of the iterations used to achieve good results in larger instances,
which reduces the time spent in half, or it only needs 5% of iterations to achieve the optimum in
simpler instances.

(a) FT06: 6× 6. (b) LA01: 10× 5.

(c) LA06: 15× 5. (d) LA11: 20× 5.

(e) LA16: 10× 10. (f) LA23: 15× 10.

(g) LA26: 20× 10. (h) LA31: 30× 10.

Figure 7. Convergence curves of GA-like methods over 100 generations.
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In the sequence, still concerning the computational time analysis, we will evaluate the following
situation: in each instance considered in this case study we will execute all the techniques taking
as a stopping criterion the computational time instead of the maximum number of iterations. That is,
all techniques will be performed for the same amount of time. In this way, for each instance, we will
take as a time limit for all techniques the time it took the most time-consuming method to complete
100 iterations with respect to that instance according to the Table 7. For example, for this experiment,
all methods have 39.78 seconds to search for the optimal value of the instance FT-06, since this amount
of time is the same amount that the GSA technique, which is the most time-consuming method in
this instance, takes to perform 100 iterations on this JSSP instance. All techniques were performed
independently 35 times following the strategy described. The results are summarized in Table 8.

Table 8. Result of 35 independent executions of each method considering as stopping criterion the
execution time. In this case, in each execution, all techniques are performed for, at least, the same
amount of time as the technique that takes the longest time in the considered instance.

Instance Method Best Worst Average SD Number opt AT (s)

GA 55 55 55 0 35 39.78
GSA 55 55 55 0 35 39.78

LSGA 55 55 55 0 35 39.78
aLSGA 55 55 55 0 35 39.78

FT 06

mXLSGA 55 55 55 0 35 39.78

GA 666 688 668.80 6.13 24 51.79
GSA 666 715 677.8 13.61 13 51.79

LSGA 666 731 692.11 13.66 2 51.79
aLSGA 666 666 666 0 35 51.79

LA 01

mXLSGA 666 666 666 0 35 51.79

GA 926 926 926 0 35 71.98
GSA 926 937 926.37 1.88 33 71.98

LSGA 926 926 926 0 35 71.98
aLSGA 926 926 926 0 35 71.98

LA 06

mXLSGA 926 926 926 0 35 71.98

GA 1222 1222 1222 0 35 116.57
GSA 1222 1267 1226.54 9.49 25 116.57

LSGA 1222 1222 1222 0 35 116.57
aLSGA 1222 1222 1222 0 35 116.57

LA 11

mXLSGA 1222 1222 1222 0 35 116.57

GA 982 1035 997.74 18.36 0 66.25
GSA 993 1103 1044.51 28.94 0 66.25

LSGA 1003 1138 1081.48 31.66 0 66.25
aLSGA 959 985 979.2 3.57 0 66.25

LA 16

mXLSGA 945 982 972.25 13.30 2 66.25

GA 1042 1180 1104.68 27.51 0 123.64
GSA 1133 1262 1201.65 31.33 0 123.64

LSGA 1224 1353 1276.02 35.10 0 123.64
aLSGA 1037 1106 1069.97 19.53 0 123.64

LA 23

mXLSGA 1032 1093 1060.45 17.96 1 123.64

GA 1309 1449 1382.97 33.59 0 203.95
GSA 1421 1599 1515.91 49.36 0 203.95

LSGA 1496 1690 1591.20 48.03 0 203.95
aLSGA 1285 1374 1332.11 22.97 0 203.95

LA 26

mXLSGA 1218 1371 1300.85 41.88 6 203.95

GA 1810 2022 1886.34 48.18 0 424.56
GSA 1974 2176 2056.80 51.09 0 424.56

LSGA 2005 2261 2155.54 51.48 0 424.56
aLSGA 1808 1866 1821.80 20.90 0 424.56

LA 31

mXLSGA 1784 1845 1807.71 19.20 5 424.56

In Table 8, we can see that there was some improvement in all the techniques that had more
time to be performed. A clear example is basic GA, which showed a performance improvement in
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practically all measures considering all instances. However, the complexity of the evaluated instance
remains a predominant factor with respect to the performance of the technique in this experiment,
since in the case of a less complex instance such as FT06, all the evaluated methods were able to
find the optimal value 55 in all the 35 executions. In the case of more complex instances such as
instances LA16, LA23, LA26, and LA31 only the proposed method was able to find the optimal
value, even with all techniques being able to be executed with the same amount of time. In addition,
also in these instances, our method presented without a tie the best statistical measures of best fitness
value, worst fitness value, and average fitness. In other words, our methodology presented the
best performance in more complex instances and tied these measures in simpler instances in this
experiment. This serves as an indication that the methodology proposed in this work provides better
searchability for the technique, making it more efficient and surpassing other GA-like algorithms
present in the literature.

6. Conclusions

The objective of this work was to develop an approach to optimize the makespan in the
job shop scheduling instances. The proposed technique for achieving the goal was a GA with
improved local search techniques and a multi-crossover operator. To evaluate the proposed approach,
experiments were conducted in three different case studies.

In the first case study, all operators of mXLSGA were individually evaluated. It was found that
all operators jointly corroborate the method for improving the results obtained. That is, no single
operator obtained better results than the complete method by all operators. However, we can observe
that the most influential operator is the massive search operator, which has greater search power than
the modified mutation and multi-crossover operators that we propose.

By analyzing the results obtained in the second case study, we can observe that the proposed
method achieves competitive results in JSSP instances and it is able to find good makespan results.
The mXLSGA obtained competitive MErr with respect to the results achieved by the compared
algorithms in the LA, ORB and ABZ instances. In the FT instance mXLSGA got 0.00% error and
tied with the aLSGA algorithm. Through the analysis of the results we can see that mXLSGA is
a competitive and versatile method that achieves good results in instances of varying complexity.

In the last case study, we compared our method with the techniques on which its modeling
was based. In this case, the GA-like techniques that make up the state of the art in JSSP solution
with GA-based meta-heuristics. In this case study, our method obtained the best statistical measures
compared to the other techniques. However, the computational time used to obtain these results
considering 100 iterations for each method was the largest for mXLSGA. In addition, in this case study
we show that, according to the convergence curves, our method needs only 5% of all iterations to
achieve the optimal solution in small instances, and only half of the iterations to obtain the optimal
solution or very close to the optimal solution in larger instances. The fact that does not occur with the
other compared techniques. Thus, time is not a concern for mXLSGA, as it works well even with the use
of less demanding configurations. We finished this case study with an experiment in which all GA-like
methods could be executed during the same amount of time according to each JSSP instance considered
and, observing the results, we concluded that the proposed approach presents better performance than
the others GA-based approaches, especially when considering more complex instances.

Analyzing the three case studies presented in this paper, we conclude that mXLSGA is a robust
method, with the ability to obtain good results in instances of different complexities and that it has
a faster convergence rate when compared to other GA-like methods. The mXLSGA presents better or
at least competitive results when compared to other meta-heuristics found in the specialized literature.

In future works, we will study the feasibility of the method in similar combinatorial optimization
problems, such as flexible job shop scheduling problem, flow shop scheduling problem, and so
forth. Also, we will consider the inclusion of adaptive rules in the discussed operators to control
the auto-configuration of parameters. For example, in a future version of our mXLSGA, the method
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should automatically adjust the crossover and the mutation rates during the iterations according to
its performance.
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