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Abstract

Motivation: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete
coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data
requires models to build an understanding of underlying biological processes.

Results: We adapt the transformer neural network architecture to operate on methylation matrices through combin-
ing axial attention with sliding window self-attention. The obtained CpG Transformer displays state-of-the-art per-
formances on a wide range of scBS-seq and scRRBS-seq datasets. Furthermore, we demonstrate the interpretability
of CpG Transformer and illustrate its rapid transfer learning properties, allowing practitioners to train models on
new datasets with a limited computational and time budget.

Availability and implementation: CpG Transformer is freely available at https://github.com/gdewael/cpg-transformer.

Contact: willem.waegeman@ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is the addition of a methyl group to the DNA.
The best-known type is CpG methylation, where the methyl group is
added to the C-5 position of CG dinucleotides. Its association with a
broad range of biological processes, such as gene expression regula-
tion, is well-established (Cedar, 1988). CpG methylation is also
known as a driving factor in developmental biology and carcinogen-
esis, motivating the need to study this phenomenon on the cellular
level (Bird, 2002).

The last decade, several protocols that measure DNA methyla-
tion at single-cell resolution have been developed. These methods
make use of bisulfite conversion of DNA followed by sequencing
(Krueger et al., 2012), both on genome-wide scale (scBS-seq)
(Smallwood et al., 2014) and using reduced-representation protocols
(scRRBS-seq) (Guo et al., 2013). These methods have uncovered the
heterogeneity and dynamics of epigenetic patterns between cells and
have made it possible to describe epigenomic networks on an unpre-
cedented scale and resolution (Angermueller et al., 2016).

Due to the smaller amount of genetic material available per cell,
profiling single cells comes with certain challenges not encountered
in bulk sequencing experiments. In practice, the genome-wide cover-
age of CpG sites per cell is low, ranging from 1% for high-
throughput studies (Farlik et al., 2016) to 20% for low-throughput
ones (Smallwood et al., 2014). Furthermore, profiled sites are cov-
ered by a smaller number of reads, resulting in noisy measurements
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of DNA methylation. Effective imputation and denoising techniques
are therefore crucial in unlocking the full potential of single-cell
methylome analyses.

Prediction of methylation states in tissue samples is a well-
established problem in bioinformatics, often tackled by leveraging
dependencies between CpG sites. For example, variational autoen-
coders have been successfully applied for dimensionality reduction
of methylation data (Levy et al., 2020). Other methods focus on im-
putation of single CpG sites in tissue samples using, among others,
linear regression (Di Lena e al., 2019), random forests (Zhang
et al., 2015), autoencoders (Qiu et al., 2018), gradient boosting
(Zou et al., 2018) or mixture models (Yu et al., 2020). In addition
to using intrasample dependencies between neighboring CpG sites,
some of these methods adopt the idea of leveraging information
from multiple (tissue) samples for prediction (Yu et al., 2020; Zou
etal.,2018).

Most recent work on single-cell DNA methylation imputation
has built upon this idea of leveraging both intra- and intercellular
correlations between methylation states. Melissa (Kapourani and
Sanguinetti, 2019) first defines specific regions of interest in the gen-
ome (such as a specific promoter region), then performs generalized
linear model regression on CpG sites in that region. The model lev-
erages information from other cells through a shared prior distribu-
tion determined by a Bayesian mixture model, effectively clustering
cells. DeepCpG (Angermueller ez al., 2017) proposes a recurrent
neural network (RNN) to process differences in local CpG profiles
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across cells. For every cell, the local CpG profile consists of a vector
containing the methylation states and distances of the 25 nearest
observed CpG sites up- and downstream from the target site. Along
with this RNN, a convolutional neural network (CNN) processes
relevant information in the DNA sequence surrounding the target
site. The two streams of information are combined near the end of
the network. Finally, the output head returns predictions for every
cell at a single CpG site. Using similar design principles, LightCpG
uses gradient boosting to obtain faster training times at the cost of a
lower performance (Jiang et al., 2019). CaMelia (Tang et al., 2021),
also relying on gradient boosting models, restricts its imputation to
CpG sites that are also recorded in at least one other cell. It addition-
ally discards CpG sites whose local methylation profiles are too dis-
similar of the profiles in all other cells. Uniquely, CaMelia
introduces the notion of using bulk tissue samples to improve per-
formance compared to DeepCpG and trains a separate model for
every cell. It remains unclear, however, whether these performance
gains can be attributed to the employed methods or to the aforemen-
tioned sample selection.

In this work, inspiration is drawn from recent developments in
self-supervised learning of natural language. In particular, the lan-
guage model BERT is trained by randomly replacing words in a sen-
tence by a unique [MASK] token and attempting to predict the
masked word given the newly formed sentence [called masked lan-
guage modeling (MLM)] (Devlin ez al., 2018). In essence, this ob-
jective trains a model to fill in the gaps in a sentence. The similarity
with imputation, where gaps in a matrix need to be filled in, is com-
pelling but unexplored. In language modeling, transformer neural
networks are used because of their capability of learning interactions
between all input words, akin to the flow of information in a com-
plete digraph (Radford ez al., 2018).

Biological systems can be elegantly represented by graphs
(Barabasi and Oltvai, 2004). For example, the interactions of genes
form distinct pathways in a regulatory network. Consequently,
models should ideally reason over graphs or mimic graph structure.
Most of the current deep learning practices in bioinformatics do not
reflect this reality. For example, fully connected layers learn a set of
fixed weights for all inputs and are hence unable to reason over how
correlations between inputs differ when their contents change.
Transformers mimic graph structure using a self-attention mechan-
ism to explicitly reason over how every input is influenced by the
others (Vaswani et al., 2017). Because of this, transformers scale
quadratically in computational- and memory cost with the number
of inputs. They have previously been shown to outperform other
neural architectures in DNA sequence annotation tasks (Clauwaert
and Waegeman, 2020) and protein representation learning
(Elnaggar et al., 2020; Rives et al., 2021). Recently, the use of trans-
formers in biology has gone beyond 1D sequences. For example,
MSA Transformer (Rao ef al., 2021) adapts axial attention (Ho
et al., 2019) to MSAs for unsupervised protein structure learning.
AlphaFold2 (Jumper et al., 2021) also adapts axial attention to pro-
cess both MSAs and residue pair matrices. By processing 2D inputs,
full self-attention learns O(n?m?) pairwise interactions for a R
matrix, making vanilla transformers impossible to apply on high-
dimensional methylation data.

We introduce CpG Transformer, an adaptation of the transform-
er neural network architecture to operate on partially observed
methylation matrices by combining axial attention (Ho et al., 2019)
with sliding window self-attention (Beltagy et al., 2020), thereby
obtaining state-of-the-art imputation performances on a wide range
of datasets. The inputs to CpG Transformer consist of the CpG ma-
trix along with their respective positions on the genome and the
DNA sequences surrounding them. Cell identity is communicated to
the model through learned cell embeddings. The model learns a rep-
resentation for every CpG site and recombines their information in a
graph-like manner. Because of this, the architecture captures
general-purpose representations, allowing for quick transfer learn-
ing of imputation models on new datasets, a prospect of great inter-
est to practitioners with limited computational resources. In
addition, ablation studies and model interpretation demonstrate the
contributing factors to single-cell DNA methylation.

2 Materials and methods

Here, CpG Transformer is described for the imputation of DNA methy-
lation data. Our architectural contributions are twofold. First, CpG
Transformer draws inspiration from collaborative filtering approaches
to formulate its inputs to the transformer layers (He et al., 2017). The
transformer layers model the interactions between matrix entries. In this
sense, CpG Transformer can be regarded as contextualized collabora-
tive filtering. Second, we extend axial attention (Ho et al., 2019) to in-
corporate sliding window self-attention (Beltagy et al., 2020), where full
self-attention is applied per individual column and sliding window self-
attention is applied over all rows separately.

2.1 Model inputs
The input to CpG Transformer is a three-dimensional tensor
H e R™"mowi where H;; € R represents the input representa-
tion at cell 7 (rows) and methylation site j (column) of the methyla-
tion matrix. Every representation H;; is the result of linear
combination of a concatenation of three embeddings: H;; =
[thG hLeH hDNA] (Fig. 1). All three embeddings consist of 32
hldden dlmenswns and are combined to dpo4. = 64 dimensions by
W. The CpG embeddmg thG is obtained by embedding the methy-
lation state (unknown ? unmethylated 0 or methylated 1) of CpG
site j in cell 7. Similarly, row-wise cell embeddings h“ encode a hid-
den representation for cell indices. Finally, DNA sequence informa-
tion is included in the model by taking 1001 nucleotide windows
centered around the methylation sites and processing them with a
CNN to obtain column-wise DNA embeddings /°™. In all experi-
ments, the CNN architecture is adapted from DeepCpG, consisting
of two convolutional layers, each followed by a max-pooling layer
(Angermueller et al., 2017). The exact parameters of the CNN back-
bone are elaborated in Supplementary Section S1.

2.2 CpG Transformer

Transformer layers employ self-attention to explicitly reason over
how every input is influenced by the others (Vaswani et al., 2017).
All 72 entries of an input X are once encoded as a query and once as a
key via learned linear layers. For this model setup, the input to the
transformer layers is H. Taking the inner product of the queries Q
with the keys K results in an 7 x n matrix, whose values can be
loosely interpreted as the importance of input j for input i, at row ¢
and column j. These values are normalized and multiplied by a value
matrix V (obtained via linear combination of the input X with learn-
ed weights) to produce outputs for every input entry in a matrix Z.
This process can be performed multiple times in parallel using separ-
ate weight matrices, constituting different attention heads.
Corresponding outputs Z for every head can then be concatenated
and linearly combined to an appropriate hidden dimension size. The
scaled dot-product self-attention mechanism first described by
Vaswani et al. (2017) is given by the following equations, where dj,
denotes the hidden dimensionality of the queries and keys

Q.K,V=XW_  XW, XW,

T
Z = softmax <?/I;_k> \'% ' (1)

Intuitively, this mechanism simply learns how inputs should be
recombined in order to propagate to an output at every position. As
such, no structure in the input is assumed and fixed-length inputs
are not required, as identical model weights are used for every pos-
ition. For an input methylation matrix with 7 cells (rows) and m
methylation sites (columns), an 7 - m X 7 - m attention matrix would
be obtained. Because m can easily exceed millions, it is impossible to
apply vanilla transformers to methylation data. To reduce the com-
putational complexity of this operation, axial attention (Ho et al.,
2019) can be employed. In axial attention, dependencies between
elements of the same row and elements of the same column are mod-
eled separately by two distinct self-attention operations in every
layer (Fig. 1). In doing so, the memory and computational complex-
ity is reduced from O(n*m?) to O(mn(n+m)). Further, known
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Fig. 1. (Left) Inputs to CpG Transformer. Cell, DNA and CpG embeddings are applied row-, column- and element-wise, respectively. (Middle) Illustration of sliding window
row attention and (full) column attention. For sliding window row attention, every query attends to keys in the same row within a fixed window. For column attention, every
query attends to the keys from all elements in the same column. (Right) A single CpG Transformer layer

autocorrelation between neighboring methylation sites can be lever-
aged. It is known that CpG sites in close proximity of each other on
the genome are often correlated (Cokus ef al., 2008). Hence, we can
limit row-wise attention to interactions between neighboring CpG
sites in a sliding window attention mechanism (Beltagy et al., 2020;
Zaheer et al, 2020), further reducing the complexity from
O(mn(n + m)) to O(mn(n + w)), with a window size w (analogous
to kernel size in convolutions). In order to communicate relative dis-
tances of CpG sites to the model, row-wise sliding window self-
attention operation is supplied with relative sinusoidal positional
encodings (Dai et al., 2019). Pseudocode describing both row- and
column-wise self-attention operations in more detail can be found in
Supplementary Section S2.

CpG Transformer employs a stack of four identical layers
(Fig. 1). The layer structure is similar to the one defined by Vaswani
et al. (2017) and Rao et al. (2021). Each layer has three sublayers.
The first and second sublayers consist of the previously described
column-wise self-attention and row-wise sliding window self-
attention with 8 heads of 8 hidden dimensions each. A window size
of w=41 is used for the sliding window self-attention (analogous to
a convolutional kernel size of 41). The window size is selected con-
sidering a trade-off between computational complexity and inclu-
sion of biological information. A larger window size means that
CpG Transformer recombines information from more neighboring
sites at the cost of computational- and memory complexity. The in-
put and output dimensionality of the attention layer is djde1 = 64-
The last sublayer employs a position-wise fully connected feed-
forward network consisting of two linear combinations with a
ReLU activation in between: max(0,XW; + b1)W, + b,. The
dimensionality of input and output is dpo4e] = 64 and the inner-
layer has 256 hidden dimensions. A residual connection (He et al.,
2016) followed by layer normalization (Ba et al., 2016) is employed
around all sublayers. The outputs of the last transformer layer are
reduced to one hidden dimension by an output head and subjected
to a sigmoid operation to obtain final predictions Y € R”*” for all
inputs.

2.3 Training objective

We adapt the MLM objective for DNA methylation imputation
(Devlin et al., 2018). MLM is a type of denoising autoencoding in
which the loss function acts only on the subset of inputs that are per-
turbed. For CpG Transformer, the inputs are corrupted by randomly
masking observed sites to the ? token. In addition, 20% of the
tokens that would be masked are instead randomized to a random
state (0 or 1), sampled proportionally to the distribution of methyla-
tion states in the input. In doing so, CpG Transformer learns not
only to impute but also to denoise. Finally, the cross-entropy loss
optimizes the model to return the original methylation states given
the corrupted input. Devlin et al. (2018) additionally proposes to
leave a percentage of the masked tokens to be unchanged instead.
Considering our limited vocabulary size (unknown ?, unmethylated

Fig. 2. Masked language modeling. Positive and negative sites are indicated in green
and blue, respectively. Sites to train on (orange) are either masked (80%) or
randomized (20%). The model is optimized to infer the original methylation state
given the corrupted input using the cross-entropy loss

0 or methylated 1), a sufficient percentage of randomized tokens is
actually unchanged, eliminating the need for this operation. An
overview of the training procedure is given in Figure 2.

2.4 Datasets

Five publicly available datasets originating from both scBS-seq
(Smallwood et al., 2014) and scRRBS-seq (Guo et al., 2013) experi-
ments are obtained from the Gene Expression Omnibus.

The first dataset (GSE56879) consists of 20 mouse embryonic
stem cells cultured in Serum. The second dataset is obtained from
the same study and is made up of 12 cells of the same type cultured
in 2i medium (Smallwood et al., 2014). Both datasets were profiled
using scBS-seq. A third dataset (GSE65364) comprises 25 human
hepatocellular carcinoma cells profiled using scRRBS-seq (Hou
et al., 2016). scRRBS-seq profiles of 30 human monoclonal B-cell
lymphocytes form a fourth dataset (GSE125499; sc05) (Kretzmer
et al., 2021). The final dataset (GSE87197) consists of 122 hemato-
poietic stem cells and progenitor cells profiled using scBS-seq (Farlik
et al., 2016). This dataset includes 18 hematopoietic stem cells, 18
multipotent progenitors, 19 common myeloid progenitors, 24 multi-
lymphoid progenitors, 22 granulocyte macrophage progenitors and
21 common lymphoid progenitors. In the remainder of this paper,
these datasets are referred to as Ser, 2i, HCC, MBL and Hemato, re-
spectively. Corresponding reference genomes are as follows: Ser and
2i use genome build NCBIM37. GRCh38 is used by Hemato, and
GRCh37 serves as reference genome for HCC and MBL. A brief
summary of dataset sizes is available in Supplementary Table S1.

For all datasets, binary methylation states are obtained by

assigning a positive (methylated) label when W >0.5. We
Stotal

use holdout validation to test the performance of the models. For all
datasets and experiments, chromosome 5 and 10 constitute the val-
idation and test set, respectively. All other chromosomes are used in
training. More instructions on how to obtain and preprocess the
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Table 1. Performance comparison of CpG Transformer with other methods

Dataset # Cells Sparsity (%) ROC AUC PR AUC

DeepCpG CaMelia CpG Transformer DeepCpG CaMelia CpG Transformer
Ser 20 77.8 90.21 90.22 91.55 92.77 92.86 93.87
2i 12 77.9 84.80 83.02 85.77 71.69 68.87 73.56
HCC 25 88.5 96.89 97.42 97.96 92.58 94.10 95.19
MBL 30 90.8 88.22 89.17 92.49 87.61 87.6 91.80
Hemato 122 98.4 88.85 89.16 90.65 95.60 95.84 96.43

Note: Sparsity is defined as the percentage of entries in the methylation matrix that are unobserved. Best performers are indicated in bold. The reported metrics

are computed for all cells together.

datasets, as well as their corresponding reference genomes, are avail-
able on the GitHub page of CpG Transformer.

2.5 Models and training

CpG Transformer is compared to two competing methods:
DeepCpG (Angermueller et al., 2017) and CaMelia (Tang et al.,
2021). A comparison with Melissa is not considered since the
method is described as complementary to whole-genome imputation
methods (Kapourani and Sanguinetti, 2019). For all datasets, the de-
fault hyperparameters of CaMelia and DeepCpG are used. We note
that performances may vary by choosing or tuning alternative
hyperparameters for every dataset. Our choice is motivated by the
idea that practitioners will also typically not tune hyperparameters.
To ensure a fair comparison, all models are trained using the same
data preprocessing and splits. Due to this, performances are
expected to deviate slightly from those reported in their respective
manuscripts. Considering reproducibility concerns, a full list of dif-
ferences in our implementations of DeepCpG and CaMelia is given
in Supplementary Section S1.

A separate CpG Transformer with identical hyperparameters
(obtained by manual tuning on the Ser dataset) is trained for every
dataset on 2 V100 GPUs using Adam as optimizer (Kingma and Ba,
2014). A learning rate of 5-10™* with linear warmup over the first
1000 steps is used. The learning rate is multiplicatively decayed by a
factor 0.9 after every epoch. Models are trained for a maximum of
100 epochs, with early stopping after no validation loss decrease has
been observed for 10 epochs. The model arising from the epoch with
the best validation loss is kept as final model. A dropout rate of 0.20
on elements of the attention matrix is employed during training.
Batches are constructed by slicing the 7 x 7 methylation matrices
vertically into 7 x b bins with b=1024 CpG sites each. One such a
bin makes up a batch. For every batch, the number of sites that are
masked or randomized equals 25% the number of columns in the
bin for all datasets. This masking percentage is chosen considering
that a large proportion of the input already consists of masked ?
tokens. For the Hemato dataset, we additionally randomly sub-
sample 32 rows (cells) every training batch to reduce complexity
and increase training speed. Finally, because random masking nega-
tively biases evaluation, test performance is measured by masking
every methylation site in the dataset separately in smaller batches.
(Note that this is only necessary to fairly compare imputation per-
formance on all available labels. In practice, inference would be per-
formed without masking.)

3 Results

3.1 Imputation performance

To benchmark CpG Transformer, we evaluate against one compet-
ing deep learning method, DeepCpG (Angermueller et al., 2017),
and one traditional machine learning method, CaMelia (Tang et al.,
2021). The resulting imputation performances in terms of area
under the receiver operating characteristic curve (ROC AUC) and
area under the precision—recall curve (PR AUC) for all datasets are
shown in Table 1. CpG Transformer consistently outperforms exist-
ing models on all datasets. As a trade-off, CpG Transformer roughly

Table 2. Ablation study on Ser dataset.

Model ROC AUC
Original 91.55
Without cell emb. 84.82
Without CpG emb. 71.18
Without DNA emb. 91.01
Without positional enc. 90.49

Note: The original model is compared to four models for which one type of
input is removed.

takes 2 times longer to train than DeepCpG and CaMelia with de-
fault hyperparameters (Supplementary Table S2). We detail a way
to reduce this training time in Section 3.3. Cell-specific performance
evaluation (Supplementary Fig. S1) shows that CpG Transformer is,
out of all cells, only outperformed by competing methods for a sin-
gle Hemato cell. Furthermore, CpG Transformer consistently out-
performs DeepCpG and CaMelia in a variety of genomic contexts
(Supplementary Fig. S2). The performance gain is most pronounced
in contexts typically associated with higher cell-to-cell variability,
such as CpG islands, regulatory elements and histone modification
marks (Suzuki and Bird, 2008), demonstrating CpG Transformer’s
ability to encode relevant cell heterogeneity.

A small ablation study (Table 2) on the Ser dataset shows the
importance of the different inputs to the model. The original model
is compared to four models, each trained and evaluated in a scenario
where one specific input is left out: hP¢, B BPNA o the position-
al encodings. Without the CpG embedding, the model can only rely
on cell identity and the DNA contexts of their own and neighboring
CpG sites. The model without this embedding displays the lowest
performance, illustrating the key importance of dependencies be-
tween methylation states for their prediction. Without cell embed-
dings, cell identity is lost and the prediction for every site is the same
for all cells. As the second-most important input for the Ser dataset,
this embedding highlights CpG Transformer’s capability to exploit
cell heterogeneity. Without positional encodings, the model has no way
of knowing how far away two CpG sites are from each other. Since
column-wise correlation between CpG sites decreases with distance
(Cokus et al., 2008), their role is to inform the effect of genomic dis-
tance on the degree of correlation in a flexible way. In practice, a min-
imal but noticeable effect of this encoding on the Ser dataset is
observed. Consistent with the findings of DeepCpG (Angermueller
et al., 2017), the DNA embeddings, informing the model of DNA con-
text surrounding CpGs, is indicated as the least important input for im-
putation of the Ser dataset. Further ablation studies of CpG
Transformer hyperparameters (Supplementary Tables S3 and S4) show
that scaling the architecture of CpG Transformer up or down does not
significantly increase performance.

The performance of all models is heavily dataset-dependent,
indicating their varying quality. Since single-cell sequencing experi-
ments suffer from low sequencing depth, we hypothesize that per-
formance is negatively influenced by limited coverage both at the
CpG site in question (noisy labels) and in its neighborhood (in terms
of number of unobserved entries, termed local sparsity). To test this,
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the performance of the Ser dataset in function of these factors is
plotted (Fig. 3). Similar plots for the other datasets are shown in
Supplementary Figure S3. It is observed that CpG sites covered by a
smaller number of reads have a less-confident label, resulting in
negatively biased performance at evaluation. In addition, CpG sites
with a higher local sparsity are harder to predict, presumably due to
providing a noisier estimate of local methylation profiles. By making
a heatmap of performance in function of both these factors, it is
observed that local sparsity is most causal of lower predictive per-
formance. In the context of these experiments, we note that a perfect
imputation performance is realistically unattainable given the inher-
ent noise in single-cell methylation datasets.

3.2 Model interpretation

Because CpG Transformer recombines information from CpG sites
in a general way, it lends itself well to model interpretation methods.
Here, we aim to attribute model predictions to its input features, a
problem best approach with gradient-based saliency methods
(Bastings and Filippova, 2020). Integrated Gradients (Sundararajan
et al., 2017) computes the gradients of the prediction with respect to
the input features to measure how every input contributes to predic-
tion. Contributions are obtained by decomposing the difference in
prediction of the input sample with an all-zero baseline. For CpG
Transformer, contribution scores are obtained for all inputs to the
first transformer layer. Since four transformer layers with a window
size of 41 are employed, the total receptive field for any prediction
constitutes the 161 surrounding CpG sites for all 7 cells (z x 161).

Because Integrated Gradients returns contribution scores for all hid-
den dimensions, they are summed to obtain a single score for every
input matrix entry. An example contribution for the Ser dataset is
shown in Figure 4A.

The contributions of the individual matrix entries can be decom-
posed into those of their constituent embeddings [hicjpc,hfe",hpNA]
by backpropagating Integrated Gradients one layer further. In c{oing
so, contribution matrices similar to the one shown in Figure 4A are
obtained for all three embeddings (Supplementary Fig. S4).
Performing this for 1% of the samples in the test set, it is possible to
investigate how embeddings contribute to prediction in different set-
tings. This way, the total contribution of the embeddings in function
of the prediction error, local sparsity and cells are obtained for the
Ser dataset 4B-D. The same plots for the other datasets are shown
in Supplementary Figure S5. We find that CpG embeddings relative-
ly contribute more to predictions when the model is confident (with
a small prediction error). In cases where the local sparsity is low (i.e.
a low number of unobserved sites), CpG Transformer can rely more
on local methylation profiles to make a prediction, increasing the
relative importance of CpG embeddings. Between different cells,
relative contribution differences are negligible. Figure 4E shows the
contributions of neighboring observed CpG sites in function of their
distance from the prediction site. A decreasing trend is observed
with distance, with one bell-shaped bump appearing at *160
nucleotides from the prediction site. This relation has been reported
on the same cell types in literature by Song et al. (2017), who sug-
gested a relation between nucleosome modifications and DNA
methylation.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab746#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab746#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab746#supplementary-data
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Fig. 5. Transfer learning dynamics on the HCC dataset. Two types of models are
trained to impute the HCC dataset: once from a random initialization of weights
and once with weights initialized from the model trained on the MBL dataset. Error
bands indicate the standard deviation of performances over three runs

3.3 Transfer learning

Because of the generality of CpG Transformer’s self-attention mech-
anism, it is expected that it learns general-purpose representations of
DNA methylation dynamics. In this respect, CpG Transformer is
envisioned to transfer well to other datasets. In this paper, transfer
learning is examined in the context of improved convergence speed
when fine-tuning a trained imputation model to impute a new data-
set. In other words: using weights from a model previously trained
to impute one dataset to initialize a model to impute another data-
set. This improved convergence speed is of great interest to practi-
tioners with a limited time and computational budget.

As an experiment, the dynamics of models learning to impute the
HCC dataset are investigated (Fig. 5). Two CpG Transformer mod-
els are trained in the same way as in previous experiments: once
with weights initialized randomly as before and once with weights
initialized from the model trained on the MBL dataset. All model
weights apart from the cell embeddings are transferred. Both train-
ing modes are run in triplicate.

The highest achieved performance of both models is similar
(97.96 and 97.98 ROC AUC for random and transferred, respective-
ly), but the models with transferred weights converge substantially
faster, reaching an ROC AUC within 0.5% of the best performance
after only 50 training steps, whereas the randomly initialized model
needs 1000 training steps to reach the same performance, indicating
an approximate convergence speed up of 20x. Furthermore, with-
out any fine-tuning steps, transferred models still achieve an ROC
AUC of 95.62, indicating the ability of the transformer weights to
figure out cell identity from random cell embeddings. Together,
these results show CpG Transformer is accessible to researchers
wanting to train an imputation model on their own dataset with a
limited computational budget.

4 Discussion

CpG Transformer adapts the transformer architecture to operate
directly on methylation matrices by combining axial attention (Ho
et al., 2019) with sliding window attention (Beltagy ez al., 2020),
providing a general-purpose way of learning interactions between
neighboring CpG sites both within- and between cells. This ap-
proach gives rise to many advantages over competing methods.
Most simple of all, state-of-the-art imputation performances are
obtained over DeepCpG (Angermueller et al., 2017) and CaMelia
(Tang et al., 2021). Second, our method lends itself well to interpret-
ation and transfer learning. Finally, because CpG Transformer’s
model architecture uses learned cell embeddings to encode cell iden-
tity in a flexible way, we envision CpG Transformer to scale better
to future larger datasets containing diverse cell types.

CpG Transformer allows the prediction of methylation states of
thousands of CpG sites in parallel. It does, however, scale quadrati-
cally with the number of cells in the dataset. Given the size of the
datasets used in this study, this did not pose a problem. For datasets
consisting of thousands of cells, however, the application of CpG
Transformer as outlined here becomes impossible. In this case, practi-
tioners would need to split their dataset in multiple smaller subsets in

which cells are as similar as possible. Alternatively, further extensions
of the proposed axial attention could be made in order to allow inputs
with a large number of cells. Self-attention sparsity for the column-
wise attention operation could, e.g. be enforced through clustered at-
tention (Roy ez al., 2021). In doing so, interactions would only be
modeled between clustered, closely related cells, instead of between
all cells. We consider such extensions to be future work.

The proposed axial attention attends to neighboring sites within
a fixed window, irregardless of whether these neighbors have an
observed label or not. A possible disadvantage of this strategy may
be that, in cases with extreme sparsity, the model may not be able to
properly estimate local methylation profiles. In this case, one ap-
proach would be not to model interactions within a fixed local win-
dow, but instead to attend to the n nearest neighboring observed
entries in every cell. This mechanism would attend to a fixed num-
ber of observed CpG sites independent of local sparsity. Since such a
mechanism would attend to sites far away on the genome in high
sparsity settings, its added value is not straightforwardly estimated.
Another approach would be to attend only to CpG sites within a
fixed genomic width (e.g. 1kbp). Unlike the previous proposed
mechanism, this method would be at an advantage or disadvantage
in regions with high or low CpG density, respectively. We consider
comparisons with these approaches to be future work.

Model analysis and interpretation show that local sparsity is an
obstacle for the performance of imputation models. Figure 3 sur-
prisingly shows that lowly covered sites (whose labels are expected
to be more noisy) can be more accurately predicted in a densely cov-
ered neighborhood. Some nuances should be made regarding gen-
omic regions that are densely covered but only by a small number of
reads for every site. CpG Transformer’s masking and randomizing
objective (falsely) assumes no structure in noise and missingness. In
reality, e.g. one read covering two neighboring unmethylated sites
could falsely report methylated signal for both sites if bisulfite treat-
ment failed to convert the corresponding sequence. Hence, lowly
covered sites in densely covered neighborhoods may be collectively
noisy in the same, nonrandom way. Most contemporary imputation
methods, including CpG Transformer, have no way of coping with
systematic noise and missingness. In these cases, models will most
likely propagate and amplify the noise, potentially compromising
biologically relevant results.

Notwithstanding the above-mentioned considerations, given
careful evaluation, CpG Transformer can greatly enhance single-cell
methylation studies. A cautious practitioner may, e.g. wish to only
retain imputations in regions where local sparsity is low and cover-
age of labels is high. To aid researchers in understanding their im-
putation results, interpretation methods are introduced. In addition,
transfer learning experiments show that CpG Transformer can be
used to obtain state-of-the-art imputation performances on a limited
time and computational budget.
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