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Abstract
Glucagon-like peptide-1 (GLP-1) is a peripheral incretin and centrally active peptide produced in the intestine and nucleus 
tractus solitarii (NTS), respectively. GLP-1 not only regulates metabolism but also improves cognition and is neuroprotec-
tive. While intestinal GLP-1-producing cells have been well characterized, less is known about GLP-1-producing neurons in 
NTS. We hypothesized that obesity-induced type 2 diabetes (T2D) impairs the function of NTS GLP-1-producing neurons 
and glycemia normalization counteracts this effect. We used immunohistochemistry/quantitative microscopy to investigate 
the number, potential atrophy, and activation (cFos-expression based) of NTS GLP-1-producing neurons, in non-diabetic 
versus obese/T2D mice (after 12 months of high-fat diet). NTS neuroinflammation was also assessed. The same parameters 
were quantified in obese/T2D mice treated from month 9 to 12 with two unrelated anti-hyperglycemic drugs: the dipeptidyl 
peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride. We show no effect of T2D on the number and volume but 
increased activation of NTS GLP-1-producing neurons. This effect was partially normalized by both anti-diabetic treatments, 
concurrent with decreased neuroinflammation. Increased activation of NTS GLP-1-producing neurons could represent an 
aberrant metabolic demand in T2D/obesity, attenuated by glycemia normalization. Whether this effect represents a patho-
physiological process preceding GLP-1 signaling impairment in the CNS, remains to be investigated.
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Introduction

Glucagon-like peptide-1 (GLP-1) is a peptide produced in 
the intestine and in nucleus tractus solitarii (NTS) in the 
brainstem (Muller et al. 2019). GLP-1 binds to its receptor 
(GLP-1R) and its effects on target tissues [i.e., pancreas and 
central nervous system (CNS)], include improvement of glu-
cose tolerance induction of satiety/inhibition of food intake, 
gastric emptying (Drucker 2018), neuroprotective actions 
(Darsalia et al. 2017; Gault and Holscher 2018), and modu-
latory effects on learning and memory (During et al. 2003).

Peripheral GLP-1 and GLP-1R agonists (GLP-1RA) 
used in the treatment of type 2 diabetes (T2D) to regulate 
hyperglycemia, readily diffuses across the blood–brain bar-
rier (BBB) in animal models (Hunter and Holscher 2012), 
exerting positive effects on insulin secretion and glucose 
tolerance, at least in part, through CNS GLP-1R activation 
(Larsen et al. 1997). However, extensive transfer of GLP-
1RA across the BBB in rodents is debated and indicated to 
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be minimal in humans with T2D (Christensen et al. 2015). 
Furthermore, rapid degradation of GLP-1 at the N-terminal 
end by dipeptidyl peptidase-4 (DPP-4) (Kieffer and Francis 
Habener 1999) renders it unlikely that significant amounts 
of active, gut-derived GLP-1 reach the CNS.

Located in NTS, GLP-1-producing neurons that project 
to various regions of the brain (Llewellyn-Smith et al. 2011; 
Larsen et al. 1997) expressing the GLP-1R (Graham et al. 
2020; Merchenthaler et al. 1999; Cork et al. 2015) are sur-
facing as important regulators of both peripheral and central 
GLP-1-mediated effects. Interestingly, in relation to central 
GLP-1-mediated effect of GLP-1, Holt and colleagues have 
recently reported that NTS-produced GLP-1 can specifically 
modulate a satiation/satiety circuit under stress conditions 
and after large meals (Holt et al. 2019). Consequently, there 
is an increased need to better understand the role of these 
cells under physiological and pathophysiological conditions 
such as T2D.

The aim of this study was to compare the effects of a 
standard “healthy” diet versus an “unhealthy” obesogenic 
diet inducing T2D, on the function of GLP-1-producing 
neurons in NTS. The used obesogenic diet included high-
fat content but also differed from the standard diet in terms 
of composition and amount of energy coming from other 
energy sources. Specifically, we investigated whether this 
obesogenic diet inducing T2D could affect the number, 
induce atrophy, and/or induce changes in neuronal activa-
tion of GLP-1-producing neurons. We also investigated 
whether sustained glycemia normalization could counteract 
such effects.

Materials and Methods

Animal Model and Experimental Design

In accordance with the guidelines aiming to improve the 
ethical use of animals in experimental research (3R princi-
ple) (Balls 2009), the material (brain and plasma) came from 
the same mice cohort as recently used for another study. 
Therefore, part of the metabolic data has already been pub-
lished (Lietzau et al. 2020).

Twenty-five, male C57Bl/6J mice (Charles River, Ger-
many) were housed under controlled conditions, with ad libi-
tum access to food and water. All applicable international, 
national, and institutional guidelines for the care/use of 
animals were followed. All experimental procedures were 
in accordance with the ethical standards of the Karolinska 
Institutet (Ethical Approval No. S7-13).

Two-month-old mice were randomly assigned to 4 experi-
mental groups. The potential effect of obesity-induced T2D 
on GLP-1-producing neurons and neuroinflammation in the 
NTS was determined by comparing outcome parameters in 

mice fed an obesogenic diet enriched in fat (high-fat diet 
(HFD): 54% calories from fat, ssniff® E15126-34, Ger-
many) (n=6) for 12 months with age-matched mice fed a 
standard diet (ENVIGO 2018, Italy; SD) (n=7). The poten-
tial effect of sustained glycemia normalization was deter-
mined by adding two groups: HFD-fed mice administered 
(in food) with either linagliptin (average dose of 5–7 mg/kg 
b.w. per day; HFD-Lina) (n=6) or glimepiride (average dose 
of 2–4 mg/kg b.w. per day; HFD-Gli) (n=6) for 3 months 
before sacrifice (between month 9 and 12). Both drugs are 
clinically prescribed for the treatment of T2D, but they have 
different mechanisms of action. Linagliptin is a dipeptidyl 
peptidase-4 inhibitor (DPP-4i) that prevents degradation 
of endogenous GLP-1, which results in increased insulin 
secretion/sensitivity (Deacon and Holst 2013). Addition-
ally, DPP-4i also have neuroprotective action (reviewed in 
Darsalia et al. 2019; Chalichem et al. 2017). Sulfonylureas, 
such as glimepiride, induce direct pancreatic insulin secre-
tion (Khunti et al. 2018). We hypothesized that an effect 
induced in NTS by both drugs would suggest that it is related 
with glycemia regulation, but induced only by linagliptin 
would suggest another, glycemia-independent mechanism.

Body Weight, Glycemia, DPP‑4i Activity, and GLP‑1 
Levels

Body weight and fasting blood glucose were measured in all 
mice. Plasma DPP-4 enzyme activity and total active GLP-1 
levels were determined (fed state) by EIA and ELISA, 
respectively (MesoScale Discovery, USA).

Immunohistochemistry and Quantitative 
Microscopy

An immunofluorescence staining protocol to quantify GLP-
1-producing neurons was applied (Supplementary file) using 
a NewCast system (Visiopharm, Denmark), connected to 
Olympus BXS51 microscope (Olympus, Japan). Activation 
of GLP-1-producing neurons was assessed by quantifying 
GLP-1/cFos+ cells (Rinaman 1999). To evaluate potential 
atrophy, mean volume of GLP-1/cFos+ cells was meas-
ured using the nucleator technique (Gundersen et al. 1988). 
Potential activation of neuroinflammation in the NTS was 
quantified as density/mean volume of Iba-1+ microglia cells 
and total number of CD68+ microglia cells. Morphological 
analyses were performed by a blinded experimenter.

Statistical Analysis

Data were checked by the Shapiro–Wilk normality test. All 
studied parameters were analyzed as follows:
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(1)	 SD versus HFD group comparisons were performed 
using unpaired, two-tailed t test with Welch’s correc-
tion.

(2)	 HFD versus HFD-Lina versus HFD-Gli comparisons 
were performed using ordinary one-way ANOVA fol-
lowed by uncorrected Fisher’s LSD test.

Data are expressed as mean ± SD. p < 0.05 were con-
sidered statistically significant. All data were analyzed by 
GraphPad Prism 8 (USA).

Results

Twelve months of HFD intake increased body weight com-
pared to SD-fed mice (p=0.0055) (Fig. 1a). Neither 3-month 
treatment with linagliptin nor glimepiride had any effect on 
the body weight (Fig. 1a). HFD feeding also resulted in fast-
ing hyperglycemia (p < 0.0001 compared to the SD), nor-
malized by both anti-diabetic drugs (p < 0.0001 compared 
to HFD-Lina and HFD-Gli) (Fig. 1b). In linagliptin-treated 
mice, the plasma activity of DPP-4 enzyme was, as expected, 

decreased compared to both the HFD and HFD-glimepiride 
groups (p < 0.0001 for both comparisons) (Fig. 1c). Further-
more, linagliptin-treated mice showed a higher concentration 
of active GLP-1 compared to HFD (p < 0.0157) and a similar 
trend, although not statistically significant (p=0.1234), was 
observed in comparison to the HFD-Gli group (Fig. 1d). 
Neither difference in DPP-4 enzymatic activity nor GLP-1 
plasma concentration was detected between the HFD and 
HFD-Gli mice (p=0.2431 and p=0.5973, respectively) 
(Fig. 1c, d).

No difference was detected in the total number of NTS 
GLP-1-producing neurons between HFD- and SD-fed mice, 
suggesting no change in GLP-1 expression or cell death. 
Additionally, no effect of linagliptin or glimepiride was 
recorded (Fig. 2a, b). However, we observed an increased 
number of NTS cFos+ cells in the HFD compared to SD 
group (p=0.0008), suggesting an increased cellular activa-
tion in NTS, with no additional effects of the anti-diabetic 
drugs (Fig. 2c, d). The number of double-stained GLP-1/
cFos+ cells was increased in the HFD group (p < 0.0001 
compared to the SD group) (Fig. 2e, f) indicating increased 
activation of GLP-1+ cells. Both linagliptin (p=0.0426) and 

Fig 1   HFD induces obesity and 
hyperglycemia. Both linaglip-
tin and glimepiride reduce 
hyperglycemia with no effect on 
body weight. Body weight (a), 
plasma glucose after 10 hours 
of fasting (b), DPP-4 activity 
(c), and GLP-1 concentration 
(d) in SD and HFD-fed mice, 
and HFD-fed mice treated 
either with linagliptin (5–7 mg/
kg/b.w. per day) or glimepiride 
(2–4 mg/kg/b.w. per day) for 3 
months. All data are presented 
as mean ± SD. Unpaired 
two-tailed t test with Welch’s 
correction was used to compare 
SD vs. HFD group. Ordinary 
one-way ANOVA followed by 
uncorrected Fisher’s LSD test 
was used to compare HFD vs. 
HFD-Lina vs. HFD-Gli groups. 
¤ denotes p < 0.05, ** denotes 
p  <  0.01, ****,¤¤¤¤,&&&& 
denote p < 0.0001, n= 4–7. 
DPP-4 dipeptidyl peptidase-4 
inhibitor, Gli glimepiride, GLP-
1 glucagon-like peptide-1, HFD 
high-fat diet, Lina linagliptin, 
SD standard diet
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Fig 2   HFD induces activation of GLP-1-producing cells in the NTS. 
This effect is partially normalized by linagliptin and glimepiride. 
Representative microphotographs (a), and number of GLP-1-pro-
ducing neurons (b) in NTS of SD and HFD-fed mice, and HFD-fed 
mice treated with linagliptin or glimepiride for 3 months. Representa-
tive microphotographs (c), and number of cFos+ cells (d) in NTS, 
in the four experimental groups. Rectangles indicate zoomed areas. 
Representative confocal images with orthogonal reconstruction of 
GLP-1/cFos+ neurons (arrowheads indicate double-positive cells) 
(e), and number of GLP-1/cFos+ cells in NTS (f). Total number of 
cFos+ cells in NTS excluding GLP-1/cFos+ cells (g). Mean cell vol-

ume of GLP-1-producing neurons in the studied groups (h). All data 
are presented as mean ± SD. Unpaired two-tailed t test with Welch’s 
correction was used to compare SD vs. HFD group. Ordinary one-
way ANOVA followed by uncorrected Fisher’s LSD test was used 
to compare HFD vs. HFD-Lina vs. HFD-Gli groups. ¤, & denote 
p < 0.05, @@ denotes p < 0.01, *** denotes p < 0.001, **** denotes 
p < 0.0001, n = 6–7. White dotted lines outline NTS borders. Orange 
rectangles indicate areas with positively stained cells. Gli glimepir-
ide, GLP-1 glucagon-like peptide-1, HFD high-fat diet, Lina linaglip-
tin, SD standard diet
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glimepiride (p=0.0158), partially, but significantly, coun-
teracted this effect (Fig. 2f). To examine if these effects 
occurred specifically in GLP-1-producing neurons, we sub-
tracted the fraction of cFos/GLP-1+ neurons from the total 
number of NTS cFos+/activated cells. The effects of HFD, 
linagliptin, and glimepiride were lost after this subtraction 
(Fig. 2g), indicating that the recorded increase/decrease in 
the number of NTS cFos+ cells (and, thus, indirectly in their 
activation) induced by HFD and anti-hyperglycemic treat-
ments, respectively, occurs specifically in GLP-1-producing 
neurons.

Twelve months of HFD feeding had no effect on the mean 
volume of activated GLP-1/cFos+ cells (Fig. 2h). However, 
we recorded a significant decrease in this parameter in the 
HFD-Gli group (p=0.0215 compared to HFD, and p=0.0037 
compared to HFD-Lina), suggesting increased cell atrophy.

No significant difference in Iba+ cells density in NTS 
between SD- and HFD-fed mice (Fig. 3a, c), or in response 
to anti-hyperglycemic drugs was detected (Fig.  3b, c). 
Interestingly, both linagliptin and glimepiride significantly 
reduced the volume of NTS Iba+ cells in HFD-fed mice 

(p=0.0252 and p=0.0449, respectively) (Fig. 3a-d), suggest-
ing decreased neuroinflammation. We observed no CD68+ 
cells in any of the studied groups (data not shown).

Discussion

We hypothesized that obesity-induced T2D obtained after 
12 months of HFD feeding impairs the function of NTS 
GLP-1-producing neurons by altering their basal activation 
(i.e., not pharmacologically stimulated), GLP-1 expression, 
and/or by inducing cellular atrophy and inflammation. Our 
results do not indicate significant changes in the number of 
GLP-1-expressing cells or atrophy/cellular death in response 
to HFD. However, we detected decreased volume of NTS 
GLP-1-producing neurons induced by glimepiride, possibly 
revealing partial atrophy of these cells and perhaps impaired 
GLP-1 production after sulfonylurea treatment. These 
effects may result from sulfonylurea-induced inhibition of 
neuronal ATP-sensitive potassium (KATP) channels (Rosati 
et al. 1998) leading eventually to apoptosis (Zhang et al. 

Fig 3   Linagliptin and glimepiride reduce neuroinflammation in NTS 
of middle-aged mice. Representative microphotographs (arrows indi-
cate positive cells) (a, b), density (c), and mean volume (d) of Iba-
1+ cells in the NTS. All data are presented as Mean ± SD. Unpaired 
two-tailed t test with Welch’s correction was used to compare SD vs. 

HFD group. Ordinary one-way ANOVA followed by uncorrected 
Fisher’s LSD test was used to compare HFD vs. HFD-Lina vs. HFD-
Gli groups. ¤, & denote p < 0.05, n = 5–7. Gli glimepiride, HFD high-
fat diet, Iba-1 ionized calcium-binding adaptor molecule 1, Lina lina-
gliptin, SD standard diet
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2018), whose cell shrinkage is one of the most characteristic 
features (Saraste and Pulkki 2000). However, decrease in 
cell volume can also occur independently from apoptosis 
(Bortner and Cidlowski 2003). Future studies are needed to 
investigate the mechanisms.

Interestingly, in obese/T2D mice we recorded increased 
cFos expression in GLP-1-producing neurons indicating an 
increased activation/depolarization. Although unlikely, it 
cannot be excluded that the increased activation of GLP-
1-producing neurons is not the result of elevated food con-
sumption in HFD-fed mice (Merchenthaler et al. 1999). 
Whether this finding represents a pathophysiological pro-
cess, similar to β-cell hypersecretion prior to β-cell failure 
in T2D (Aston-Mourney et al. 2008), remains to be inves-
tigated by performing studies assessing cFos under direct 
pharmacological challenge. The fact that both linagliptin 
and glimepiride decreased obesity/T2D-induced c-Fos 
expression in GLP-1-producing neurons may indicate that 
this effect occurs via glycemia regulation, since these drugs 
normalize glycemia through unrelated mechanisms.

No difference in neuroinflammation between SD and 
HFD-fed mice was detected after 12 months in NTS, which 
may indicate lack of an association between changes in 
the basal activity of GLP-1-producing neurons induced by 
HFD and increased neuroinflammation Though specula-
tive, HFD may increase neuroinflammation at earlier time 
points, as previously reported (Speretta et al. 2019; But-
ler et al. 2020). This effect could be masked at 12 months 
by increased neuroinflammation during the normal aging 
process (Cribbs et al. 2012). A decreased volume of Iba+ 
cells was recorded in response to linagliptin and glimepiride 
suggesting decreased T2D-induced NTS neuroinflammation 
after 12 weeks of glycemia normalization. Future studies 
will have to demonstrate whether decreased NTS neuroin-
flammation of obese/T2D mice after glycemia normaliza-
tion could represent a causal factor or a consequence of the 
normalization of the T2D-induced activation of NTS GLP-
1-producing neurons.

The preliminary findings of this short communication 
need to be confirmed using direct methods to assess NTS 
neuronal activation. Additionally, electrophysiological stud-
ies should be performed to investigate whether the changes 
in the activation of NTS GLP-1-producing neurons are 
reflected in altered GLP-1R activation/GLP-1 content in 
areas targeted by these cells.

In conclusion, our study provides new insights into the 
effects of obesity-induced T2D on NTS GLP-1-producing 
neurons that could lead to development of new strategies to 
improve GLP-1-mediated metabolic control and neuronal 
function in the CNS.
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tary material available at https://​doi.​org/​10.​1007/​s10571-​021-​01079-2.
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