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ABSTRACT

Positive correlation can be diversely instantiated
as shifting, scaling or geometric pattern, and it
has been extensively explored for time-course
gene expression data and pathway analysis.
Recently, biological studies emerge a trend
focusing on the notion of negative correlations
such as opposite expression patterns, complemen-
tary patterns and self-negative regulation of tran-
scription factors (TFs). These biological ideas and
primitive observations motivate us to formulate
and investigate the problem of maximizing
negative correlations. The objective is to discover
all maximal negative correlations of statistical and
biological significance from time-course gene
expression data for enhancing our understanding
of molecular pathways. Given a gene expression
matrix, a maximal negative correlation is defined
as an activation–inhibition two-way expression
pattern (AIE pattern). We propose a parameter-free
algorithm to enumerate the complete set of AIE
patterns from a data set. This algorithm can
identify significant negative correlations that
cannot be identified by the traditional clustering/
biclustering methods. To demonstrate the biological
usefulness of AIE patterns in the analysis of molec-
ular pathways, we conducted deep case studies for
AIE patterns identified from Yeast cell cycle data
sets. In particular, in the analysis of the Lysine bio-
synthesis pathway, new regulation modules and
pathway components were inferred according to a
significant negative correlation which is likely
caused by a co-regulation of the TFs at the higher

layer of the biological network. We conjecture that
maximal negative correlations between genes are
actually a common characteristic in molecular
pathways, which can provide insights into the
cell stress response study, drug response evalua-
tion, etc.

INTRODUCTION

A molecular pathway is referred to as a series of actions
among molecules in a cell leading to a certain end point of
cell function. Pathway identification is usually aimed to
uncover all biological molecules participating in the
same functional pipeline, which may include DNA/gene,
miRNA, protein or metal ion, etc. As DNA and protein
play the major roles in a pathway, gene and protein’s
indirect relations are of paramount importance for
detecting and analyzing molecular pathways.
Gene expression data, especially time-course gene expres-

sion data, have been widely used to explore various
relationships of the genes in the pathways, with the par-
ticular focus on the positive correlations. For example,
Segal et al. (1) proposed to identify new pathways by
assuming that most genes in the same pathway can
exhibit a similar gene expression profile, and their
proteins often interact. Multiplicative patterns and
scaling patterns have been also used to describe the
expression profiles of the genes in the same pathway
(2–4). Co-regulation patterns, additive expression
patterns or shifting patterns, have been conceptualized
to detect regulatory modules from gene expression data
(5,6). Further, geometric patterns based on trigonometric
functions are believed to be related to circular regulation
processes (7). Here, concepts such as profile similarity,
shifting pattern, scaling pattern or geometric pattern are
all concentrated on positive correlations among genes,
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implying that genes with expression homogeneity are
possible to have the same biological function.
In this work, we are interested in negative correlation.

It is also an important relationship among genes, and it
has been previously observed in many biological pro-
cesses. Schmid et al. had a study on development expres-
sion patterns for large gene families of Arabidopsis
thaliana (8); they highlighted two groups of genes
showing an opposing expression trends from an early
seed development stage to a late stage (Figure 1a). In a
study of expression patterns in the chondrogenic differen-
tiation, James et al. (9) had a careful analysis on a 15-day
temporal gene expression data of a Mouse micromass
culture system and they reported an interesting example
on two groups of genes displaying an opposite expression
pattern. In that example, transcription factors (TFs) Sox9
showed high expression levels before day 6, then their
expression decreased by about half; while, Ibsp transcripts
showed low expression levels until day 12 and then
had 1200-fold up-regulation (Figure 1b). Chuang et al.
(10) introduced the notion of complementary gene
expression patterns for inferring time-lagged genetic
interactions, which is intended to capture contrasting
expression patterns like the one that: when one gene’s
expression increases, the other gene’s decreases, or vice
versa. As another example, Stekel et al. (11) proposed a
method for modeling the so-called self-negative regulation
of TFs, in which the product of one gene is assumed to
regulate this gene’s TF in a feedback way.
Based on above biological ideas and primitive

observations, we propose to formulate and systematically
investigate the problem of maximizing negative correla-
tions. The objective is to discover all maximal negative
correlations from time-course gene expression data.
A maximal negative correlation is defined as a pair of
correlated gene sets where genes between the two sets
must be negatively correlated in their expression over a
time segment, and the number of genes and the number
of time points in the segment are required to be
maximized. Therefore, maximization of negative correla-
tions, like detecting positive correlations, can expand and
deepen down the analysis on molecular pathways. This is
in a good agreement with a biological fact that: when two
genes have a negatively correlated interaction, then the
two group genes locating at the downstream of their
participating pathways will also form a negative relation-
ship (12). To capture such a pipeline of negative
correlations spanning multiple time points from time-
course gene expression data, maximization of negative
correlations is a novel and effective attempt.
Maximization of negative correlations is extendable

and potentially applicable to a wide range of pathway
studies where biological molecular relationships can be
mapped to gene expression correlations. Segal et al. (13)
were interested in motif extraction from sequences of
promoters, and observed that the expression patterns
of regulatory motifs with nucleotide variation were
bi-polarly different. See one example of such expression
patterns in Figure 1c. Shieh et al. (14) proposed to study
transcriptional compensation interactions or synthetic
lethal pairs with the idea that: following some gene’s

mutation, its compensatory gene will be upregulated (or
downregulated). Millar et al. (15) were interested in the
whole-genome pattern of histone lysine acetylation and
methylation in Yeast to confirm a hypothesis that different
combinations of histone modification sites are likely
associated with specific and contrasting transcription
behaviors (Figure 1d). They also pointed out that these
patterns can exist in other organisms such as Schizosac-
charomyces pombe genome, portions of the Drosophila
melanogaster even Human genomes. Recently, research
results all show that such histone modification patterns
are correlated with Human diseases (16–18). Therefore,
through maximizing negative correlations, these biological
applications can be certainly deepened down.

Given a gene expression data matrix, a maximal
negative correlation can be viewed as an activation–inhibi-
tion two-way expression pattern (AIE pattern), where the
two groups of genes exhibit such a behavior that when one
group of genes is upregulated, the other group is low-
expressed, or vice versa, consistently at a continuous
range of time points. Identifying a complete set of signif-
icant AIE patterns from gene expression data is com-
putationally expensive. We design a new graph-based
method for an exact and complete enumeration of AIE
patterns with high efficiency. Our algorithm combines
two mining strategies: a suffix-tree structure and a
bi-clique approach for efficient search of the AIE
patterns. To our best knowledge, there is no algorithm
that can be specialized to identify AIE patterns.
Clustering methods may be easy to find out activation–
inhibition relation (7,19), but there will be a lot of false
positives, and local negative correlations under different
specific time points cannot be identified. Biclustering can
find gene expression patterns related to specific conditions,
but it is difficult to mine large number of genes within
negative relations (20,21). The so-called anti-correlated
patterns (22,23) are closely related to our AIE patterns,
however, their mining algorithm cannot produce exactly
AIE patterns (see a detailed comparison later). In our
in-silicon evaluation, our method has been successfully
applied to Yeast time-course gene expression data to
reveal negative correlations in the molecular pathways of
Saccharomyces cerevisiae for increasing the understanding
of its biological mechanisms.

METHODS

Let M be a time-course gene expression data set denoted
as a triplet M=(G,C,d ), where G={g1, g2, . . ., gn} is a set
of genes (rows), C={c1, c2, . . ., cm} is an ordered set of
continuous time points (columns) and d : G�C)R is
the level function by which d(gi, cj) represents the expres-
sion level of gene gi at time point cj.

A continuous subset of C={c1, c2, . . . , cm} is an ordered
subset of C with continuous time points. In other words, if
T={t1, t2, . . . , tk} is a continuous subset of C, then k � m
and ti= ci+ j, i=1, . . . , k, for some j2{0,1, . . . ,m–k}.

DEFINITION 1 (AIE pattern). Let X=(I,J,d) be a sub-
matrix of a time-course gene expression data matrix
M=(G,C,d), where I is a subset ofG and J is a continuous
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subset of C, X is defined as an AIE pattern if I can be
divided into I1 and I2 such that at every time point j2 J,
the expression levels of genes in I1 and those in I2 satisfy
either

di1, j < di2, j,8i1 2 I1, i2 2 I2

or

di1, j > di2, j, 8i1 2 I1, i2 2 I2:

Suppose X=(I, J, d ) is an AIE pattern in a time-course
gene expression data matrix. Usually, we require |I| and |J|
that are both maximal. This means that there are no genes
or no time points that can be added into X=(I, J, d ) to
maintain the conditions of the above definition.

Our method to enumerate a complete set of AIE
patterns from a gene expression data set consists of
three computational steps. The first step is to construct a
dichotomy matrix based on the original data set, which
captures and discretizes the expression difference between
every pair of genes at every time point. The second step is
to transform the dichotomy matrix into another repre-
sentation as suffix tree, and to extract the time-series
biclusters from this tree in order to locate the time period
when the genes possibly show a negative correlation.

The third step is to construct a bi-partite graph according
to the row ids (i.e. the gene pairs) from those biclusters, and
to distinguish two groups of genes forming a bi-clique in
such bi-partite graph.

DEFINITION 2 (Dichotomy Matrix). Given a matrix
M= (G,C, d), its dichotomy matrix DM|G|�(|G|–1)/2,|C|

(M) is defined as:

DMi1�jIj�i1�ði1þ1Þ=2þði2�i1Þ�1, j ¼ 0, if di1, j < di2, j

DMi1�jIj�i1�ði1þ1Þ=2þði2�i1Þ�1, j ¼ 1, if di1, j > di2, j

�

where i1< i2. For each row k in DM(M), if

k ¼ i1 � jIj � i1 � ði1 þ 1Þ=2þ ði2 � i1Þ � 1,i1 2 G,i2 2 G

then, the row ID of this row is assigned as <i1,i2>.
See an example of dichotomy matrix at the left panel of

Figure 2b which is derived from the gene expression
matrix shown in the left panel of Figure 2a. In fact, each
row of the dichotomy matrix can be considered as a 0–1
sequence, so a suffix tree of all 0–1 sequences/rows (the
right panel of Figure 2b) can be constructed in linear time
(22). The depth of the nodes corresponds to the number of
time points; the leaf nodes and the splitting nodes are
marked with the row/gene pair IDs of the dichotomy

Figure 1. Notion of negative correlations in biological studies. (a) Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics,
37(5):501–506, �2005. (b) Reprinted by permission from American Society For Cell Biology: Molecular Biology of the Cell, 16(11):5316–5333,
�2005. (c) Reprinted by permission from Oxford University Press: Bioinformatics, 23(13):i440–i449, �2007. (d) Reprinted by permission from
Elsevier B.V.: Cell, 117(6):721–733, �2004.
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matrix. Thus, every splitting node or leaf node is a
maximal submatrix with every row identical in the dichot-
omy matrix. A proof about the relation between the nodes
in a generalized suffix tree and the maximal biclusters with
continuous columns can be found in (22).
For every splitting or leaf node, we construct a

bi-partite graph using the gene pair IDs stored at the
node. Suppose a node contains k number of gene pair
IDs: < i11,i

1
2 > , . . . , < ik1,i

k
2 >, then we denote fi11, . . . ,ik1g

as the nodes at one side of the bi-partite graph, and
denote fi12, . . . ,ik2g as the nodes at the other side of the
bi-partite graph. Meanwhile, assign an edge between i j1
and i j2 for j=1, 2, . . . , k. See an example of bi-partite
graph at the left panel of Figure 2c. Then, we enumer-
ate all maximal bi-cliques from this bi-partite graph.
Assume I1 and I2 are the two vertex sets of such a

maximal bi-clique, then I1 and I2 are exactly the two
nonoverlapping gene groups for an AIE pattern whose
time points are decided by the edge labels of the path
leading to the splitting node or the leaf node from the
root node in the suffix tree.

The pseudo-code of our algorithm is shown in
Algorithm 1. The core subroutine of this algorithm for
the bi-clique mining is taken from (24). The whole algo-
rithm can be divided into two parts and their compu-
tational complexities are analyzed as follows. The first
part is a determinant routine to solve P-problem that
discovers maximal row-identical submatrices. The initia-
tion of this algorithm (line 4) needs O(G2C) time and
space; the suffix-tree construction (line 6) needs O(G2C)
time and space (20); and the identification of maximal
row-identical submatrices from the suffix-tree (line 8)

Figure 2. A suffix-tree and a bi-clique search method are combined for AIE pattern mining.
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needs O(G2C2) time. So the time and space cost of this
determinant subroutine are O(G2C2) and O(G2C). While,
the second part is an exhaustive pattern mining subroutine
to solve an nondeterministic polynomial time (NP)-
problem that discovers all bi-cliques. The size of bi-
partite graph input into bi-clique mining (line 9–17) is
no more than

Algorithm 1 Suffix-tree and bi-clique two-stage method for detecting
AIE patterns in time-course data

Require: a matrix M of size G�C
Ensure: AIE patterns
1: Int GPN=G(G–1)/2
2: Int GP[GPN][C]
3: /*Produce dichotomy matrix of M at first stage*/
4: GP=Dichotomy(M)
5: /*Construct Suffix-tree at second stage*/
6: SuffixTree ST=SuffixTree(GP)
7: /*Extract row-identical submatrix Bic(I*, J ) in suffix-tree*/
8: Bic <ROW,COL>=ExtractBic(ST)
9: for each <rows,cols> in <ROW, COL> do

10: /*Construct bi-partite graph B(I)*/
11: Gragh GG=GenesGraph(rows)
12: /*Bi-clique mining at third stage*/
13: Biclique <ROWG,COLG>=Biclique(GG)
14: for each <rowsG,colsG> in <ROWG,COLG>do
15: Output <rowsG,colsG,cols> is an AIE pattern
16: end for

17: end for

G�C, so under the worst condition, its time complexity is
O(G2N) and space complexity is O(G2) (24). Here, N is the
number of all maximal bi-cliques, or the number of all AIE
patterns. It should be noted that, in the worst situation, the
distribution of all potential AIE patterns will be dense in
the original data. That means theN is so large that the time
cost of AIE pattern mining will increase tremendously.
Therefore, in actual applications, we will use the size, up-
down index, and differential gap (see their definitions later)
to limit the number of potential AIE patterns. The
proposed algorithm will perform an exhaustive search for
all AIE patterns under such specific constraints.

By definition, the negative correlation in an AIE pattern
may go like the way that: at all time points in J, the
expression of the genes in I1 is always higher, or always
lower, than those of genes in I2. This is an extreme case of
negative correlation. For the other cases, I1’s expression
may be higher at the first time point, while turn to be
lower at the second time point, and then come higher
again than I2’s expression. This up-down trend at
multiple time points can be measured by an ‘up-down
index’ value. This index can be used to categorize the

expression trends exhibited by different AIE patterns.
We also believe that this index value of an AIE pattern
is related to the strength of a negative correlation.

DEFINITION 3 (Up-down index). Let X=(I, J, d ) is an
AIE pattern, its up-down vector U is a |J|�1 vector
determined by:

8 j,Uj ¼
0, if di1, j < di2, j,8i1 2 I1,i2 2 I2
1, if di1, j > di2, j,8i1 2 I1,i2 2 I2:

�

An up-down index value UI of X is defined as:

UI ¼
jfj jUj 6¼ Ujþ1; j ¼ 1; 2; . . . jJj � 1gj

jJj � 1

Figure 3 shows three examples of AIE pattern where the
two genes marked with solid line are in one group, while
the other two labeled as dotted line are in the second
group. The AIE pattern in Figure 3a has an up-down
index value of 3/5. While, the AIE pattern in Figure 3b
has an UI value as 1/5. In fact, the up-down index value
of an AIE pattern is the up-down change frequency of
one group’s expression against the other group’s over a
continuous time points. For the case of negative correla-
tion shown in Figure 3c, its up-down index value is 0.
However, it still looks interesting. Therefore, we introduce
a generalized Pearson’s correlation coefficient to measure
the negative correlation between two sets of variables.
This is a finer correlation measurement compared with
the up-down index.
Let I1 and I2 be two sets of gene variables with no

overlapping. The generalized Pearson’s correlation coeffi-
cient (noted as R-value) between I1 and I2 is denoted by
R(I1,I2), and it is calculated by

RðI1,I2Þ ¼

P
gi2I1,gj2I2

rðgi,gjÞ

jI1j � jI2j

where r(gi,gj) is the Pearson’s correlation coefficient
between the two variables gi and gj. Note that the value
of R(I1,I2) is between �1 and 1, exactly with the same
range as the conventional Pearson’s correlation. The cor-
relation is the most negative when the value �1 is reached,
while on the other hand, it is the most positive when the
value of 1 is approached. The generalized Pearson’s cor-
relation coefficient can also apply to a set I of gene
variables to measure its inherent negative correlation if
I can be properly divided into two sub-groups I1 and I2.
In this work, such I1 and I2 are obtained by a hierarchical
clustering approach.

Figure 3. Examples of AIE patterns and their up-down trends.
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Given an AIE pattern, the number of genes in one
subgroup (I1 or I2) can be sometimes much smaller than
the other group. So, we also introduce a ‘group ratio’
index GR(I1,I2) to measure the size balance between I1
and I2 for an AIE pattern, as calculated by

GRðI1,I2Þ ¼
minðjI1j,jI2jÞ

jI1j þ jI2j

To gain more insight into the negative correlation of an
AIE pattern, we also examine how wide the expression
between the two groups is. When the difference becomes
wider, the expression behavior of the two groups are more
distinct, thus the negative correlation may be more signif-
icant. To highlight this expression divergence between the
two groups of genes I1 and I2, we define a ‘differential gap’
to average the minimum difference of expressions between
the two groups of genes, namely mini12I1,i22I2 jdi1, j � di2, jj
over multiple time points. This differential gap is
calculated by

GðI1,I2Þ ¼

P
j2J

min
i12I1,i22I2

jdi1, j � di2, jj

jJj

RESULTS

The data used in our evaluation is a time-course gene
expression data repository related to Yeast. The raw
data were published by the Yeast cell cycle analysis
project (25). This project had acquired the expression
measurements of 6179 genes involved in the Yeast cell
cycle under three different conditions: Alpha factor-based
synchronization, Cdc15-based synchronization and
Cdc28-based synchronization. These measurements are
actually the relative expressions against the control/back-
ground data; the zero expression represents the control
level. We denote these three data sets simply as Alpha
factor, Cdc15 and Cdc28 data set in this article. The
number of time points was set by the project as 18,
24 or 17, respectively, for the Alpha factor, Cdc15,
or Cdc28 condition. The time point number 18 for the
Alpha factor condition (similarly, 24 and 17 for the other
two conditions) means that the RNA samples for the 6179
genes were collected at 18 time points starting at 0 to 7, 14,
21, . . ., till the 119th min, which covers two cell cycles. In
our data preprocessing, genes that do not occur in any
known pathways were removed according to the
Saccharomyces Genome Database (SGD) (26), which
contains 142 known Yeast pathways covering 515 genes.
There were 502 genes finally left in the three expression
data sets, which were subsequently used as input in our
experiments. We note that each of these 502 genes
participates into at least one pathway, and some of them
participate into up to seven different pathways. The
number of genes involved in these 142 pathways varies
from 1 to 23 with 5 on average.
We compare the P-values (biological significance) and

R-values (negative significance) of AIE patterns with those
of the gene clusters found by the widely used clustering/
biclustering methods. The purpose of this comparison

is to confirm that many important negative correlations
were unable to be identified by those conventional
algorithms. We also present representative AIE patterns,
and other statistics information of AIE patterns, including
the up-down index values and the differential gap infor-
mation. More importantly, we take case studies to illus-
trate how the AIE patterns are biologically interpreted for
enhancing the analysis of molecular pathways.

Comparison by using P-values and R-values

Conventional clustering methods under our comparison
include a hierarchical clustering method (HCL) (19,27),
a K-means clustering method (K-means) (27), the Cheng
& Church biclustering method (CC) (3,27), the order
preserving sub-matrix algorithm (OPSM) (3,27) and
e-CCC-Biclustering (e-CCC) (23). All of their implemen-
tation are available at BicAT (27) or at BiGGEsTS (28).

It’s specially noted that the notion of CCC-Biclusters
(22) and its extension e-CCC-Biclusters are closely related
to our concept of AIE patterns, in particular when
the sign-change rule (U$D) is combined to form
CCC-Biclusters or e-CCC-Biclusters. By definition, a
CCC-Bicluster has to satisfy the condition that every
possible gene pair in this bicluster shares a positive
(coherent) expression change behavior over the time.
e-CCC-Bicluster extends CCC-Bicluster by allowing a
certain degree of noise (measured by the parameter e)
in a CCC-Bicluster, such that the coherent expression
change behavior in an e-CCC-Bicluster may not be
always the same on some time points. The sign-change
rule introduced in the e-CCC-Bicluster mining algorithm
(23) enriches the diversity of these biclusters, and it can be
used to detect the so-called anti-correlated patterns.

As introduced, the definition of AIE patterns is simple
and different. Two non-overlapping gene groups I1 and I2
can form an AIE pattern if and only if I1 and I2 have a
negative expression change behavior over a time segment
(Definition 1). That is, the genes in the same group (I1 or
I2) are not necessarily required to have exact coherent
expression change over the time segment. Even if the
sign-change rule is applied to AIE patterns, the gene
pairs within I1[I2 may still not have much coherence.
Though an anti-correlated pattern may sometimes
become an AIE pattern, on the other hand, an AIE
pattern usually does not satisfy the conditions required
by an anti-correlated pattern. Therefore, they two are
not equivalent. Another difference lies in the algorithms
of mining e-CCC-Bicluster and AIE patterns. Although
both of them take an exhaustive enumeration approach,
e-CCC-Biclustering needs the parameter e to control the
noise level of e-CCC-Biclusters and also needs sign-change
to allow negative correlation, while AIE pattern mining is
a parameter-free algorithm (many proposed indexes such
as up-down index and differential gap are just used in the
post-analysis, although these indexes can also be used as
predefined parameters to reduce the running time of AIE
pattern mining). We would also like to point out that both
CCC-Biclusters and AIE patterns use the maximality rule
to get rid of some redundancy in the patterns.
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In our comparison, the input parameters of these
conventional methods are all set as the default values as
suggested in (23,27). In order to avoid possible compari-
son bias, some of the gene clusters obtained by the
biclustering methods are filtered if the overlap degree
between any two clusters is >25% as previously done by
(22,23,27).

We first compare P-values (29) which can indicate a
biological significance of a gene cluster indirectly. In this
article, P-values are calculated through gene set enrich-
ment analysis with Fisher’s exact test (29). A P-value
<10�3 is widely accepted as a gold standard in most bio-
logical significance analysis. Figure 4 shows the bar charts
representing proportions of gene clusters whose P-values

Figure 4. Biological significance comparison between our AIE patterns and gene clusters by the conventional methods. Here, HCL-x or Kmeans-x
stands for x number of clusters being pre-set.
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are less than some thresholds. For example, from the
Cdc28 data set, there are 57 592 AIE patterns identified.
Of them, 151 are left after the filtering, in which 99% have
a P-value less than <10�3, and 22% with a P-value <10�6.
In many cases, AIE patterns have better proportions of
biologically significant gene clusters than those of the gene
clusters found by the conventional methods. It is worth
noting that the OPSM method seems to perform better
than the other biclustering methods. A possible reason is
that it only outputs no more than 30 top clusters and no
more than 5 clusters after filtering (shown in the second
column of Table 1). CC and e-CCC-Biclustering are
slightly better than our AIE method in terms of these
P-values. We also note that when the number of clusters
is set to be big by HCL or Kmeans, the genes contained in
each cluster tend to be small. As the size of a cluster affects
the calculation of P-values, the performance of HCL or
Kmeans is influenced greatly by the pre-given number of
clusters. See Table 1 for detailed information of the
clusters under different settings.
We have seen that AIE patterns have close competitive

P-values with those of the gene clusters generated by
the conventional clustering methods. Next, we report the
R-values and group ratio information of AIE patterns.
Figure 5a, Figure 5c and Figure 5e shows a box-plot
view of the R-values of the gene clusters from the Alpha
factor, Cdc15 and Cdc28 data set, respectively, by different
methods. We can see that the R-values of the AIE patterns
are almost all less than 0. This result is in full agreement
with our original notion of negative correlation. In partic-
ular, nearly half of the AIE patterns have a R-value lower
than �0.5. However, among the gene clusters found by the
traditional clustering methods and OPSM, usually only a
small proportion of them have negative R-values. So
combining the R-values and P-values, we can note that
only CC, e-CCC-Biclustering and our AIE approach
are good to detect biologically significant and negative
correlations. We also consider the group ratio information
GR(I1,I2) of the clusters in the comparison. The CC and
e-CCC-Biclustering method both tend to find clusters with
small group ratio values around 0.2, while our AIE
patterns usually have a group ratio value higher than
0.4. This indicates that CC and e-CCC-Biclustering
prefer negative correlations between unbalanced gene

group pairs. However, our AIE approach can indeed
find negative correlation spanning two size-balanced
gene groups which can have strong biological significance.
See Figure 5b, d and f for a detailed comparison of the
group ratio information.

Representative AIE patterns from the three expression
data sets

Table 2 presents statistics information of all AIE patterns
discovered from the three data sets when the gene number
threshold for |I1| and |I2| is set as 5, and the minimal
number of time points in |J| is set as 10. In this table,
the column ‘No. of AIE Patterns’ refers to the total
number of AIE patterns from one data set, together
with their average number of genes and their average
time points in one pattern; the column ‘Differential gap’
indicates the smallest, biggest and average expression
differences between the two subgroups for the AIE
patterns in each data set; the column ‘Up-down index’
indicates the smallest, biggest and average up-down
index values for the AIE patterns in each data set; and,
the column P-value shows the minimal, maximal and
average P-values of the AIE patterns in each data set.
From this table, we can see that the shape and property
of AIE patterns can vary very much. There are many
other choices to set the size threshold for |I1|, |I2|
and |J|; readers are referred to use our web site http://
sunim1.birc.ntu.edu.sg/�aie/ to get the statistics informa-
tion when a different threshold is set.

Figure 6 displays three typical examples of negative cor-
relation under the three experimental conditions. These
negative correlations can be categorized into two kinds
of behavior according to their up-down index values.
Under the experiment condition Alpha factor or Cdc28,
the expressions of the two gene groups do not up-down
change frequently. Figure 6a shows such an expression
trend where the expression up-down change happened
only once which was at the time point 9.

However, most AIE patterns under the condition Cdc15
can have up-down index values close to 1.0. See the fourth
column of Table 2. This means that the gene groups
change their expression up-down very frequently under
this cell environment. Figure 6b shows a perfect example

Table 1. Different methods on negative correlation mining

Methods No. of gene clusters from
a data set

Average no. of genes
over all clusters in a data set

Average no. of time points
over all clusters in a data set

(Alpha, Cdc15, Cdc28) (Alpha, Cdc15, Cdc28) (Alpha, Cdc15, Cdc28)

HCL-30 (26, 14, 30) (21, 35, 17) (18, 24, 17)
HCL-50 (47, 34, 50) (11, 10, 10) (18, 24, 17)
HCL-100 (99, 82, 100) (5, 5, 5) (18, 24, 17)
Kmeans-30 (30, 30, 30) (17, 17, 17) (18, 24, 17)
Kmeans-50 (50, 48, 50) (10, 10, 10) (18, 24, 17)
Kmeans-100 (99, 89, 94) (5, 6, 5) (18, 24, 17)
CC (100, 96, 96) (19, 10, 15) (8, 6, 7)
OPSM (3, 2, 4) (27, 58, 23) (10, 15, 9)
e-CCC-Biclustering (43, 70, 28) (14, 16, 12) (10, 12, 10)
AIE (105, 165, 151) (11, 11, 11) (10, 10, 10)

Here, average no. of time points indicates the average number of time points in the clusters or biclusters. Note that these
values for HCL or Kmeans clusters are always the same.
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for this expression trend that continuously crosses 14 time
points. Therefore, we can conjecture that negative corre-
lation can behave in tremendously different ways in
the Yeast cell cycle when different conditions are
applied, meanwhile their P-values are all very significant
(as shown in the fifth column of Table 2 as well as in
Figure 4).

Biological interpretation of AIE patterns: three
case studies

We take special case studies to illustrate how AIE
patterns and negative correlations can be used to infer
new modules of gene regulation, TFs and regulatory
networks (RNs). Our first example is the representative
AIE pattern identified from the Alpha factor data set,
whose gene expression profile is shown in Figure 6a.
Total 11 genes are involved in the two gene subgroups
of this pattern that have a negative correlation spanning
14 continuous time points. One subgroup consists of six
genes: we specially name it ‘red’ group and denote by
Ir={YIR038C (GeneID:854856), YNR001C (GeneID:
855732), YKL127W (GeneID:853732), YOL126C
(GeneID:853994), YJL068C (GeneID:853377),
YLR328W (GeneID:851039)}. The other group consists
of five genes: We specially name it ‘blue’ group and
denote by Ib={YDR234W (GeneID:851820), YDL182W
(GeneID:851346), YDL131W (GeneID:851425),
YBR265W (GeneID:852568), YNR050C (GeneID:
855786)}. We also denote this pattern simply as AIE-
Alpha-87. It is one of the most negative AIE patterns in
Alpha factor according to their R-values; and its P-value is
2.9� 10–10. The main covering pathway of AIE-Alpha-87
is lysine biosynthesis, which has seven genes known
currently and four of them are contained in the blue
group Ib.

A new regulatory module and its putative TF. Let us start
the analysis on the five genes in the blue group Ib of
AIE-Alpha-87. As mentioned, four genes in Ib are

directly involved in the lysine biosynthesis pathway. In
fact, the four genes are co-regulated by a known TF
YEL009C. As all of the five genes in Ib are inherently
co-expressed, we can infer that they altogether form a reg-
ulatory module with YEL009C as a co-TF. To confirm
this hypothesis, we examined the whole upstream of
each gene to identify their binding motifs by using
YEASTRACT (30). Three possible YEL009C binding
sites were identified (Table 3). We can infer that the first
four genes in this table share a binding motif ‘TGACT
GA’, while the last two genes YNR050C and YBR265W
share a binding motif ‘TGACTMT’. Thus, these five genes
are all likely to be co-regulated by YEL009C through its
binding upon regulation segments in the upstream of the
five genes. This is a new insight into the gene regulatory
behavior of this module and its TF. This new understand-
ing is mainly attributed to the positive relationship of the
genes within the blue group.

Building a tree-structure RN. On top of the idea of
Boolean RNs (31), we incorporate our negative
correlations and introduce a tree-structure RN for genes
involved in an AIE pattern. We take two steps to complete
the induction of these trees. The first step is to use
YEASTRACT (30) to construct an initial RN by taking
as input all the genes in an AIE pattern as well as all of
their known TFs in Yeast; the second step is to trim the
RN to eventually become a tree structure. The trimming

Figure 6. Representative examples of AIE pattern from the three data sets. Here, two groups of genes colored in red and blue, show negative
correlation during the time points in orange area.

Table 2. Some statistics information on the complete sets of AIE patterns

Data sets No. of AIE patterns
& (avg. I, avg. J)

Differential gap
(min, max, avg.)

Up-down index
(min, max, avg.)

P-value
(min, max, avg.)

Alpha factor 8508 (12, 10) (0.013, 0.311, 0.075) (0.0, 1.0, 0.20) (1.36E-13, 0.002, 3.34E-5)
Cdc15 279 473 (19, 11) (0.007, 0.312, 0.073) (0.0, 1.0, 0.80) (0.0, 0.003, 1.53E-5)
Cdc28 57592 (15, 11) (0.010, 0.328, 0.086) (0.0, 0.67, 0.157) (0.0, 0.002, 2.11E-5)

Table 3. Possible YEL009C binding sites at the upstream of the five

genes in the blue group of AIE-Alpha-87

Object genes Possible binding sites

YDL131W TGACTGA, TTGCGCAA
YDL182W TGACTGA
YDR234W TGACTGA
YNR050C TGACTGA, TGACTMT
YBR265W TGACTMT
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constraints are set as follows: (i) all the leaf nodes of the
tree are required to represent the genes in the AIE pattern,
(ii) the inner nodes all represent the known TFs, and (iii)
the tree can be decomposed into two sub-trees by
removing one edge in such a way that each sub-tree
exactly covers all genes in one group of the AIE pattern.
This edge under the removal is critically important. The
regulation represented by this edge should be either
‘enabled’ or ‘disabled’, and there should be at least one
negative regulator to produce this negative correlation
between the expressions of the two gene groups. Figure
7 shows a tree-structure RN built from AIE-Alpha-87.

This regulatory subtree possesses strong biological
meanings. First of all, the regulatory relations indicated
as edges in this tree all have direct/indirect evidence sup-
ported by known literatures (30). In particular, YLR451W
is a negative regulator as reported and studied in (32),
while other TFs are positive regulators. Next, we explain
why genes in the blue group can show the negative corre-
lation with the genes in the red group. This is likely due to
the participation of the negative regulator YLR451W (32),
which is the next TF after YEL009C on the regulatory
paths from the root YHR084W to the genes in the blue
group. As the TFs on the paths from the root to the red
genes are completely different from the TFs on the paths
from the root to the blue genes, it is most likely that the
negative co-regulation between the genes in the two
groups is caused by YHR084W with an auxiliary help
from YLR451W. In fact, a recent study found that
YHR084W is a specific Yeast cell cycle TF (33). Thus,
we can see that an AIE pattern can not only identify
two groups of genes with a negative correlation on gene
expression profiles, but also can imply that one group
genes possibly come from a same pathway, having
similar expression behavior as reference to the genes in
the other group. Therefore, such negative correlations
can uncover the connections among TFs which are at a
higher layer in the RN.

New pathway components. Through the above analysis,
we have already understood that there exists a possible
regulation pathway of YEL009C on the five genes in the
blue group, and that the six genes in the red group have a

negative correlation with lysine biosynthesis which is likely
caused by the co-regulation of YHR084W and the negative
regulation of YLR451W. We next study whether the 11
genes of AIE-Alpha-87 have any biological function
relations with lysine biosynthesis.
A known lysine biosynthesis pathway diagram can be

obtained from SGD (26). As mentioned, four
(YDL131W, YDL182W, YDR234W and YNR050C) of
the eleven genes of the AIE-Alpha-87 pattern participate
directly in this pathway. To see whether the other seven
genes have any function related to a biological molecular
or a biochemistry reaction in the current lysine biosynthe-
sis, we attempted a function annotation. A more complete
diagram for the lysine biosynthesis pathway is shown in
Figure 8, where the dashed line means a new component
assessed by the annotation. In detail, genes YBR265W and
YOL126C can affect on molecules NAD and NADPH
through oxidation. Genes YNR001C, YKL127W,
YIR038C and YJL068C are also indirectly related to
this pathway through their biochemical functions on the
direct partners of lysine biosynthesis. The most amazing
gene is YLR328W. This gene is a key component in the
pathway of NAD biosynthesis which produces NAD, an
important molecule for the lysine biosynthesis. Therefore,
all the 11 genes have a direct or indirect relationship
with the lysine biosynthesis pathway. If taking only
positive correlation for the study, many genes indirectly
related to the pathway like those in the red group of
AIE-Alpha-87 would be ignored. Therefore, through
function analysis on AIE patterns, we can expand
existing pathways by adding indirect biochemistry
reactions or by linking to other biosynthesis pathways.
This is the main reason why we say AIE pattern can
enhance our understanding on molecular pathways.
The second example of our case study is to show how a

negative correlation of the genes in the same pathway can
be used to identify gene targets in biological experiments
for testing the negative mechanism.

Gene target identification for testing negative
mechanism. We found that many of our AIE patterns
consist of two groups of genes that are from the same
pathways. One example is the representative AIE pattern

Figure 7. A subregulatory tree for AIE-Alpha-87.
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in Cdc15 condition named AIE-Cdc15-273421, whose
gene expression profile is shown in Figure 6b. Its
P-value is 4.54E–12, R-value is about �0.55, up-down
index is 1.0 and differential gap is about 0.068. A reason
to choose this pattern for illustration is because of
its extremely high up-down change frequency (i.e. 1.0).
Of the total 14 genes in this pattern, there are six
genes contained in the pathway ergosterol biosynthesis.
Three of them [YML008C (GeneID:855003), YGL001C
(GeneID:852883) and YLR100W (GeneID:850790)] are
located at upstream, while the rest three [YMR202W
(GeneID:855242), YGL012W (GeneID:852872) and
YMR015C (GeneID:855029)] are at the downstream.
According to a known structure of the pathway ergosterol
biosynthesis partially shown in Figure 9, these six
genes function sequentially one by one to achieve the
final function of this pathway. Associating these genes’
expressions with their roles in this pathway, it can be
observed that when upstream genes are up- or down-
regulated, the genes located at the downstream have
simultaneous opposite expressions. Intuitively, we can
infer that there exists some negative control mechanism
in the path from fecosterol to episterol, which is the
functional boundary between the upstream and down-
stream gene groups (Figure 9). Interestingly, it has been
previously reported that ergosterol exerts a negative
feedback on its own biosynthesis in S. cerevisiae, par-
ticularly at the C-24 methylation step involving the gene
YML008C (34,35). Therefore, we can see that the negative

Figure 8. An expanded diagram for the pathway lysine biosynthesis after our functional annotation is used to derive new components (shown as
dashed lines) based on the negative correlation of AIE-Alpha-87.

Figure 9. A partial diagram of the pathway ergosterol biosynthesis.

e1 Nucleic Acids Research, 2010, Vol. 38, No. 1 PAGE 12 OF 16



correlation of the genes in the same pathway is potentially
useful to identify gene targets in the biological experiments
for testing negative mechanisms.

Invariable negative correlations under different
conditions. We present our third case study and examine
hierarchical clusterings of the expression profiles of the
genes in one AIE pattern under the three different
cell cycle environments. Taking again AIE-Alpha-87 as
an example, hierarchical clusterings of the expression
profiles of the 11 genes in Alpha factor, Cdc15 and
Cdc28 are shown in Figure 10. [The drawing was done
by the software PermutMatrix (36).] In the case of
Alpha factor, the 11 genes are nicely divided into two
groups: one matches with the blue group, the other

maps with the red group. However, the negative correla-
tion under Alpha factor, disappeared in the other two
environments of cell cycle. We can also see that the four
known genes in the pathway lysine biosynthesis always
have co-behaviors under different conditions of cell
cycle, but the other genes’ negative correlation cannot be
always maintained.
Thus, another perspective to understand AIE patterns

is to see whether one pattern as a whole can be conser-
ved during different biological environments. Of course,
the above example is not the case. In fact, there is very
little overlapping between any two AIE pattern pairs from
different environments of cell cycle. This is because
most environmental perturbations can cause big change
in expression, resulting in alteration in the complex

Figure 10. The expression profiles of the genes in AIE-Alpha-87 under three different conditions (Alpha factor, Cdc15 and Cdc28). The signs
following each gene name have specific meanings. -B stands for this gene in the blue group; -BP stands for this gene in the blue group and also
belonging to the pathway; and -R stands for this gene in the red group.
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regulatory system. Ronen et al. (37) had designed a
glucose plus experiment to detect affection of the
small constraint perturbation, which is, on the other
hand, helpful to understand stable negative correlations.
We briefly explain two AIE patterns identified from their
data set. One AIE pattern before glucose plus (denoted as
AIE-StressBefore-4411) contains 31 genes whose expres-
sion profiles are shown at Figure 11a. An AIE pattern
after glucose plus (denoted as AIE-StressAfter-3827)
contains 30 genes whose expression profiles are shown
at Figure 11c. Interestingly, these two patterns share
six genes that maintain the same negative correlation.
The six genes are: YDR050C (GeneID:851620),
YJL200C (GeneID:853230), YCL018W (GeneID:850342)
and YIL083C (GeneID:854726), YOR321W (GeneID:
854499) and YOR136W (GeneID:854303). The expression
profiles of this stable negative correlation are displayed
in the Figure 11b and d. It looks that these six
genes and their negative correlation are a stable genetic
indicator during glucose plus. From the viewpoint of
gene function, the other 25 genes in AIE-StressBefore-
4411 have a significant function hit on transferase
activity (10 out of 25 genes), while the other 24 genes
in AIE-StressAfter-3827 have a significant function
hit on oxidoreductase activity (10 out of 24 genes).
It is also known that oxidoreductase is closely related
to high-glucose ambience (38). Therefore, it is sugges-
tive that this stable AIE pattern shared by these six

genes is likely involved in both normal and stress
activity of Yeast.

CONCLUSION

The main contribution of this work is the formalization
of the widely observed negative correlations in genes’
functions within molecular pathways. Through our
mining algorithm which uses a suffix-tree data structure
and a bi-clique search idea, all possible AIE patterns in a
time-course gene expression data set can be enumerated.
As some of them are perhaps of less interest, we have
suggested to use the size threshold, up-down index and
R-value index to control the quantity and quality of
AIE patterns in the post-analysis. Although pairs of
gene clusters computed by the traditional clustering
methods can find some negative correlations, they are
unable to detect negative correlations shown in time
segments as our AIE patterns can do. The biclustering
methods can iteratively conduct clustering from both
genes and time points, it is still hard to detect all
negative correlation candidates in large data set.
However, our mining algorithm can overcome this
difficulty.

Our experimental results on three Yeast cell cycle
expression data sets have demonstrated that maximal
negative correlation can occur between pairs of large
groups of genes, one group or both covering many genes

Figure 11. An invariable negative correlation shared by six common genes of two AIE patterns (AIE-BeforeStress-4411 and AIE-AfterStress-3827).
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from the same pathway. Based on existing knowledge
about molecular pathways, negative correlations can be
used to infer new gene regulation modules, TFs and
RNs, as shown in our case studies. With these new
elements, we are able to get a fuller and deeper picture
about the direct and/or indirect relationships of all
components in a molecular pathway. Besides, significant
invariable negative correlations are found in both normal
activity and stress activity of Yeast. All these ideas and
results highlight that maximal negative correlation is an
important characteristic in the gene expression profiles
within pathways, which is expected to be useful in the
cell stress response study, drug response evaluation,
cancer-related pathways’ detection, etc.
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