
Inherited optic atrophy (OA) is characterized by the 
degeneration of retinal ganglion cells (RGCs) and other 
neuronal populations, which results in thinning of the retinal 
nerve fiber layer (RNFL) [1]. Typical clinical features of OA 
include progressive loss of bilateral vision (usually occurs 
within the first decade), central or paracentral scotomas, trit-
anopia, and pallor of the optic discs [1-3]. Familial history, 
temporal or diffuse pallor of the optic discs disclosed by eye 
fundus, and a reduced amplitude of the waveform detected 
by visually evoked potentials (VEP) may contribute to the 
clinical diagnosis of OA [2]. According to the inheritance 
pattern, OA can be categorized into autosomal dominant 
optic atrophy (ADOA) and mitochondrial inherited Leber 
hereditary optic neuropathy (LHON). ADOA, showing a 
worldwide prevalence of 1:50,000, is the most common form 
of inherited optic neuropathy [3].

ADOA shows genetic heterogeneity [2,4]. To date, two 
genes, optic atrophy 1 (OPA1, OMIM_605290) and OPA3 
(OMIM_606580), and three loci, OPA4 (OMIM _605293), 
OPA5 (OMIM _610708), and OPA8 (OMIM_616648), are 
reported to be correlated with ADOA. Among all, OPA1 
is the most common causative gene for ADOA [5]. OPA1 
consists of 31 coding exons, and it encodes dynamin-like 
guanosine triphosphates (GTPase) localized to the mitochon-
dria. Protein encoded by OPA1 targets the external face of 
the mitochondrial inner membrane, controls the structural 
integrity of mitochondrial cristae, and keeps their junctions 
tight during apoptosis [6]. To date, over 400 variants in OPA1 
have been identified (mitodyn). About 20% of all identified 
variants associate with the “ADOA plus” syndrome [7,8]. 
Patients with “ADOA plus” syndrome present OA in child-
hood, followed by the subsequent onset of chronic progres-
sive external ophthalmoplegia (PEO), ptosis, sensorineural 
deafness, peripheral neuropathy, and myopathy in adult life 
[9]. Most reported OPA1 mutations are missense mutations 
located in the GTPase domain and dynamin central region, 
which interrupt the protein function [2,10].
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Next-generation sequencing (NGS), an approach that 
enables sequencing of a panel of candidate genes, has been 
revealed as an efficient tool for the molecular diagnosis of 
inherited retinal dystrophies (IRDs) [2,10]. Because no effec-
tive clinical therapy has been developed for OA, NGS-based 
molecular diagnosis will not only help to improve its clinical 
diagnosis, but is also essential for its prenatal diagnosis. 
Herein, by means of a targeted NGS approach, we reveal 
novel OPA1 mutations in 15 Chinese families with OA.

METHODS

Participants and clinical investigations: Our study complied 
with the Declaration of Helsinki, and it was approved and 
prospectively reviewed by the ethics committee of the First 
Affiliated Hospital of Nanjing Medical University (2017-
SRFA-034). Written informed consent was obtained from 
all participants or their legal guardians before enrollment. 

All participants underwent routine ophthalmic examinations, 
including best-corrected visual acuity (BCVA), funduscopy, 
slit-lamp examination, and fundus photography. The VEP 
test was selectively performed on patients OA02-II:1, OA08-
II:1, and OA12-II:1. Another 150 unrelated Chinese controls 
were also included, each of whom received basic ophthalmic 
examinations to exclude major ocular problems. Peripheral 
blood samples from all participants were collected in EDTA 
tubes. DNA extraction from leukocytes was performed using 
a RelaxGene Blood DNA System (Qiagen, Valencia, CA) per 
the manufacturer’s protocols.

Targeted gene capture, NGS, bioinformatics analyses, and 
Sanger sequencing: Targeted sequence capture microarrays 
that could capture the coding and exon-intronic boundary 
regions of all known retinal disease genes were used in this 
study. Details of the targeted genes of the commercial array 
have been previously described [11-13]. Sequence capture, 
enrichment, elution, and NGS were conducted in cooperation 

Figure 1. Family pedigrees. The sex (male, square; female, circle), phenotype (unaffected, empty symbol; clinically affected, black-filled 
symbol), and genotype (unaffected, +/+; genetically affected, MU/+) of all recruited members are shown. Probands are indicated by arrows.
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with BGI-Shenzhen or MyGenostics-Beijing, as previously 
stated [14,15].

All detected variants were further filtered against 
the following six single nucleotide polymorphism (SNP) 
databases, including the dbSNP144, HapMap project, 1000 
Genome Project, YH database, Exon Variant Server, and 
ExAC databases. Variants with a minor allele frequency 
value of over 0.001 were discarded. Sanger sequencing was 
subsequently performed for a mutation validation, intrafa-
milial genotype–phenotype cosegregation analysis, and 
prevalence test in 150 controls. Information of primers are 
listed in Appendix 1.

In-silico analyses: Evolutionary conservation of the 
mutated amino acids was analyzed through the align-
ment of OPA1 orthologous protein sequences from the 
following species: Homo sapiens (ENSP00000354681), 
P a n  t r o g l o d y t e s  ( E N S P T R P 0 0 0 0 0 0 2 70 9 4) , 

B o s  t a u r u s  ( E NSBTA P 0 0 0 0 0 0 2 6 013) ,  M u s 
m u s c u l u s  ( E NSR NOP 0 0 0 0 0 0 0 2 338) ,  G a l l u s 
gallus  (ENSGA LP00000042204),  Danio rer io 
(ENSDARP00000095031), Drosophila melanogaster 
(FBpp0086700), and Caenorhabditis elegans (D2013.5). 
Online predictive software, including SIFT [16], PolyPhen-2 
[17], and PROVEN [18], was applied to evaluate the potential 
pathogenicity of identified mutations. The Splicing Regula-
tion Online Graphical Engine (SROOGLE) online prediction 
software was used to determine whether splice site variations 
would alter the regular splicing sites.

RESULTS

Clinical manifestations: Family pedigrees are shown in 
Figure 1. All included patients presented typical OA symp-
toms, and their detailed clinical data are summarized in Table 
1. Briefly, the onset ages varied from infant to 12 years old. 

Table 1. Clinical features of recruited patients.

Patient ID Age (years) /Sex Onset Age (years)
BCVA (logMAR)

Optic disc VEP
OD OS

OA01-II:3 60/F 3 0.02 0.01 Pale NA
OA01-III:1 38/M 8 0.1 0.1 Pale NA
OA01-IV:1 16/F 5 0.05 0.05 Pale NA
OA02-II:2 30/F Infant 0.25 0.02 Pale Diminished
OA03-II:1 8/M 3 0.2 0.3 Pale NA
OA04-II:2 10/M 6 0.5 0.5 Pale NA
OA05-II:1 10/M 6 0.4 0.5 Pale NA
OA06-I:1 42/M 12 0.5 0.4 Pale NA
OA06-II:1 14/F 11 0.2 0.1 Pale NA
OA07-II:2 9/M 4 0.4 0.3 Pale NA
OA08-I:1 32/M 8 0.3 0.3 Pale Diminished
OA08-II:1 9/M 5 0.5 0.4 Pale Diminished
OA09-II:1 8/M 5 0.1 0.1 Pale NA
OA10-II:2 9/M 7 0.2 0.2 Pale NA
OA11-II:1 43/F 12 0.1 0.1 Pale NA
OA11-II:2 42/F 10 0.1 0.1 Pale NA
OA12-I:1 30/M 8 0.3 0.3 Pale Diminished
OA12-II:1 6/M 4 0.3 0.3 Pale Diminished
OA13-I:2 31/F 6 0.4 0.4 Pale NA
OA13-II:1 7/M 4 0.3 0.3 Pale NA
OA14-I:2 28/F 6 0.3 0.4 Pale NA
OA14-II:1 6/M 3 0.25 0.3 Pale NA
OA15-II:1 14/M 6 0.2 0.2 Pale NA

Abbreviations: OD: right eye; OS: left eye; F: female; M: male; BCVA: best corrected visual acuity; VEP: visual evoked potential; NA: 
not available.
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Patient OA02-II:2 had vision defects since infancy, while 
patients from families OA06 and OA11 were completely 
unaffected until 10 to 12 years old. Most patients reported 
having bilateral visual impairments since their first decade of 
life, which was consistent with previous reports. The disease 
progression also varied. For example, patients OA06-I:1 and 
OA11-II:1 shared a similar age and onset age. However, the 
BCVAs for patient OA06-I:1 are 0.5 OD and 0.4 OS, while 
patient OA11-II:1 had much poorer visual conditions (0.1 OU). 
Rapid disease progression was also noticed in patient OA02-
II:2. She also presented with asymmetric visual defects, with 
her BCVAs being 0.25 OD and 0.02 OS. Most patients had 
a relatively slow and stable disease progression. Nystagmus 
was noticed in all three patients from family OA01. Fundus 
presentations of all patients demonstrated bilateral optic 
nerve pallor (Figure 2). VEP results were attainable in five 
patients, including OA02-II:2, OA08-I:1, OA08-II:1, OA12-I:1, 

and OA12-II:1. All patients showed bilateral diminished 
VEP presentations. None of the patients presented systemic 
abnormalities.

Genetic investigation: Probands from all 15 families were 
selected for NGS, as mentioned before. After a comprehen-
sive genetic analysis, 14 heterozygous mutations in total in 
the OPA1 gene (NM_130837) were identified as potentially 
disease causing in the 15 families, including eight novel vari-
ants and six recurrent mutations (Figure 3 and Table 2). Eleven 
of the 14 mutations were located in the GTPase domain and 
dynamin central region (Figure 4A). All identified variants 
segregated the disease phenotypes in corresponding families 
and were absent in 150 unrelated normal controls.

The eight novel variations comprised three missense 
mutations (c.193C>G in family OA02, c.968A>G in family 
OA01, and c.2126A>G in family OA13), one deletion 

Figure 2. Fundus presentations. A-O: Fundus photographs of all probands demonstrate bilateral optic nerve head pallor.
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(c.1036_1038del in family OA15), two nonsense mutations 
(c.987_988del in family OA07 and c.1071dupT in family 
OA05), and two splice site mutations (c.1036–1G>C in family 
OA12, and c.2012+2T>G in family OA08; Figure 1 and Figure 
3, and Table 2). The novel missense variant c.968A>G, 
leading to the amino acid change from tyrosine to cysteine 
at residue 323 (p.Y323C), was located within the GTPase 
domain of the OPA1 protein (NP_570850; Figure 4A). A 
conservational analysis indicated that residue Tyr323 in OPA1 
was evolutionarily conserved among multiple species (Figure 

4B). Potential deleterious effects of this mutation was implied 
by all three types of online predicting software, including 
PROVEN (−8.03, deleterious), SIFT (0.000, damaging), and 
Polyphen-2 (1.000, probably damaging; Table 2). Another 
variant c.193C>G, causing substitution from leucine to valine 
at conserved residue 65 (p.L65V), was located in the basic 
domain of the OPA1 protein (Figure 4A,B). This variation 
was predicted to be damaging (0.016) by the SIFT online 
predicting software (Table 2). The other missense mutation, 
c.2126A>G, leading to the transformation from aspartic 

Figure 3. Chromatograms of wild-type (top) and mutant (bottom) OPA1 sequences in all recruited families.
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acid to glycine at residue 709 (p.D709G), was located in the 
dynamin central domain of the OPA1 protein (Figure 4A). 
Residue Asp709 was also highly conserved among all tested 
species (Figure 4B). The potential deleterious effects of the 
mutation were revealed by PROVEAN (−6.72, deleterious), 
SIFT (0.001, damaging), and Polyphen-2 (1.000, probably 
damaging).

We next used the SROOGLE online prediction software 
to determine whether the two splice site variations would 
cause abolishment of the regular splicing sites. According 
to our data, mutation c.1036–1G>C was found to remark-
ably decrease the splice site score from 4.81 to −3.26 in the 
Max entropy model and from 81.06 to 57.62 in the PSSM 
model. The regular splice site was found completely abol-
ished by mutation c.2012+2T>G. The nonsense mutations 
c.987_988del and c.1071dupT would introduce immediate 
translation stop codons at residues 331 and 358, respectively, 
thus generating a truncated protein or causing nonsense-
mediated mRNA decay (NMD).

DISCUSSION

Herein, we report the identification of 14 heterozygous OPA1 
variants in 15 Chinese OA families, including eight novel 
and six recurrent mutations. All included patients show 
typical OA presentation. Some of the literature suggests 
that gender might contribute to the severity of OA caused 

by an OPA1 mutation [19]. However, our data do not reveal 
such a correlation. The average onset age of female patients 
ranged from infant to 12 years old (average: 6.63 years old), 
and the average onset age of male patients ranged from 3 to 
12 years old (average: 5.93 years old). The OA progression 
shows no notable difference between males and females. Of 
all included patients, 15 are male and eight are female. The 
greater number of male patients in this study is probably 
due to the de novo OPA1 mutations in families OA07, OA09, 
OA10, and OA15.

The OPA1 protein plays an important role in maintaining 
the mitochondrial structure and inhibiting apoptosis. The 
N-terminal mitochondrial localization signal sequence of 
OPA1 can direct protein into the mitochondria. Recent studies 
indicate that OPA1 proteins accumulate in the mitochondrial 
inner membrane and serve as anchors for mitochondrial DNA 
(mtDNA), contributing to its replication and distribution 
[20,21]. OPA1 insufficiency could disrupt oxidative phos-
phorylation, disturb mtDNA maintenance and replication, 
and further interrupt regular mitochondrial function [21]. 
Changes in mitochondrial genome stability would further 
cause ATP insufficiency, abnormal cellular function, apop-
tosis, and ADOA phenotype. Two frameshift, two splice-site, 
and three nonsense mutations are identified in this study, 
which are predicted to generate truncated OPA1 proteins or 
lead to NMD. According to previous reports, the nonsense 

Table 2. Characteristics of identified OPA1 mutations.

Family 
ID

Mutation
Exon

Bioinformatics Analysis Repor ted 
/Novel MAF

Nucleotide Amino acid Type Status SIFT PolyPhen-2 PROVEN
OA01 c.968A>G p.Y323C missense Het E10 DA (0.000) PD (1.000) DE (−8.03) Novel -
OA02 c.193C>G p.L65V missense Het E2 DA (0.016) B (0.278) N (−0.63) Novel -
OA03 c.1499G>A p.R500H missense Het E16 DA (0.001) PD (1.000) DE (−4.70) CM030379 -
OA04 c.1800C>A p.S600R missense Het E19 DA (0.001) PD (1.000) DE (−4.64) CM061154 -
OA05 c.1071dupT p.T358* nonsense Het E11 - - - Novel -
OA06 c.1034G>A p.R345Q missense Het E10 DA (0.041) PD (0.978) DE (−3.50) CM002636 -
OA07 c.987_988del p.S331* nonsense Het E10 -   - Novel -
OA08 c.2012+2T>G - splice site Het E22–23 -   - Novel -
OA09 c.2873_2876del p.V958Gfs*2 frameshift Het E29 -   - [26] 4/121408
OA10 c.1499G>A p.R500H missense Het E16 DA (0.001) PD (1.000) DE (−4.70) CM030379 -
OA11 c.112C>T p.R38* nonsense Het E2 - - - CM024785 -
OA12 c.1036–1G>C - splice site Het E10–11 - - - Novel -
OA13 c.2126A>G p.D709G missense Het E22 DA (0.001) PD (1.000) DE (−6.72) Novel -
OA14 c.804_805del p.K269Nfs*1 frameshift Het E8 - - - [27] -
OA15 c.1036_1038del p.V346del deletion Het E11 - - - Novel -

Abbreviations: Het: heterozygous; DA: damaging; PD: probably damaging; B: benign; DE: deleterious; N: neutral; MAF: minor allele 
frequency.
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Figure 4. Diagrammatic representation and conservational analyses. A: Diagrammatic representation of the 14 identified mutations in the 
context of genome structure (upper) and eight isoforms of the OPA1 protein (below), derived from the alternative splicing of exons 4, 4b, 
5, and 5b. The OPA1 protein includes a mitochondria-targeting sequence (MTS), a GTPase domain, a middle domain, and a C-terminus 
GTPase effector domain (GED). B: Orthologous protein sequence alignment of OPA1 from human (H. sapiens), chimpanzees (P. troglodytes), 
cows (B. taurus), rats (M. musculus), chickens (G. gallus), zebrafish (D. rerio), fruit flies (D. melanogaster), and roundworms (C. elegans).
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mutation OPA1 Q285STOP would cause NMD in a murine 
model. This partial loss of OPA1 causes mitochondrial respi-
ratory deficiency and a substantial resistance to endoplasmic 
reticulum stress-induced death [22,23]. Another frameshift 
mutation, OPA1 329_355del, is also found to cause a 50% 
reduction in the OPA1 protein in a murine model [24]. The 
OPA1329_355del mice are found to develop visual dysfunction 
due to RGC loss and an ascending optic neuropathy, while 
the earliest changes detected in OPA1Q285STOP mice are RGC 
dendritic changes leading to dysfunctional RGCs. However, 
it is still unclear why the two murine models display such 
different phenotypes. The seven heterozygous missense OPA1 
mutations identified in this study are more likely to exert a 
dominant-negative or deleterious gain-of-function effect [25]. 
More experiments are still warranted to understand better the 
pathogenesis of OPA1 mutations.

Sometimes, clinical diagnoses are challenging in young 
patients with non-fully manifested phenotypes or due to the 
clinical heterogeneity with which hereditary retinal diseases 
manifest. Therefore, genetic tests should be kept be continu-
ously researched to aid unclear clinical diagnoses and to 
prognosticate the disease. Genetic diagnosis also promises 
gene therapy or other forms of gene-specific treatments. In 
conclusion, we revealed eight novel and six recurrent muta-
tions in the OPA1 gene in 15 Chinese OA families. Our 
findings expand the OPA1 mutational spectrum, enrich their 
phenotype–genotype correlations, provide crucial hints for 
genetic consultation in these families, and further help with 
better clinical management.

APPENDIX 1. PRIMERS USED IN THIS STUDY.

To access the data, click or select the words “Appendix 1.”
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