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Abstract

Acting as a sequence-specific transcription factor, p53 tumor suppressor involves in a vari-
ety of biological processes after being activated by cellular stresses such as DNA damage.
In recent years, microRNAs (miRNAs) have been confirmed to be regulated by p53 in sev-
eral cancer types. However, it is still unclear how miRNAs orchestrate their regulation and
function in p53 network after p53 activation in hepatocellular carcinoma (HCC). In this
study, we used small RNA sequencing and systematic bioinformatic analysis to character-
ize the regulatory networks of differentially expressed miRNAs after the p53 activation in
HepG2. Here, 33 miRNAs significantly regulated by p53 (12 up-regulated and 21 down-reg-
ulated) were detected between the doxorubicin-treated and untreated HepG2 cells in two
biological replicates for small RNA sequencing and 8 miRNAs have been reported previ-
ously to be associated with HCC. Gene ontology (GO) and KEGG pathway enrichment
analysis showed that 87.9% (29 out of 33) and 90.9% (30 out of 33) p53-regulated miRNAs
were involved in p53-related biological processes and pathways with significantly low p-
value, respectively. Remarkably, 18 out of 33 p53-regulated miRNAs were identified to con-
tain p53 binding sites around their transcription start sites (TSSs). Finally, comprehensive
p53-miRNA regulatory networks were constructed and analyzed. These observations pro-
vide a new insight into p53-miRNA co-regulatory network in the context of HCC.

Introduction

The p53 tumor suppressor can be activated by different cellular stresses, such as DNA damage,
oncogenic stresses and hypoxia [1]. As a transcription factor (TF), the p53 protein can activate
or repress target gene expression and involves in various physiological processes such as apo-
ptosis, cell cycle arrest and cell proliferation [2]. Previous study has demonstrated that p53 sup-
presses hepatocellular carcinoma (HCC) by activating its target genes such as p21 to inhibit
cell proliferation and induce apoptosis in malignant cells [3]. In addition, the loss of p53
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activity favors the development of liver tumor via dysregulating p53-mediated signaling path-
ways [4].

MicroRNAs (miRNAs) are a subset of endogenous non-coding RNAs (~22 nucleotides
long) which play vital roles in regulating genes expression via targeting the specific sites in 3’
untranslated region (3’ UTR) of mRNAs [5]. The important roles of miRNAs in HCC develop-
ment and progression have been verified by numerous experiments in recent years. For
instance, miR-152 is related to the progression of HCC through deregulation of cell prolifera-
tion, motility and apoptosis by down-regulating Wnt-1, DNMT1, ERK1/2, AKT and TNFRS6B
signaling pathways [6].

Previous studies reveal that miR-34 family can be regulated by p53 via binding to their pro-
moters directly, which induce cell cycle arrest by suppressing the cell cycle-associated proteins
in A549 and HCT116 cell lines [7]. Xi et al. analyzed the different expression profile of miRNA
using MIRCHIP2 array. They found 11 up- and 43 down-regulated miRNAs in p53-expressing
(HCT116 p53+/+) compared with p53-knockout (HCT116 p53—/—) human colorectal cancer
cell lines [8]. In HCC, a study verified that miR-200 family members were directly modulated
by p53 and involved in p53-regulated epithelial-mesenchymal transition by targeting ZEB1
and ZEB2 in C3A cells [9]. Another study has confirmed miR-509 was a direct transcriptional
target of p53 and it regulated the cell cycle G1-S phase transition to inhibit the migration and
proliferation of human hepatoma cells [10]. Although there have been reports that microRNA
involved in p53 network, no studies have been undertaken to identify certain miRNAs directly
regulated by p53 and construct p53-miRNA network in the context of HCC under DNA dam-
age. Here we used small RNA sequencing (small RN'A-seq) to explore the differential expres-
sion profiles of p53-dependent miRNAs and p53-miRNA regulatory networks in HCC cell
line. The outline of experimental design and a range of systematic bioinformatic analysis are
presented in Fig 1.

Materials and Methods
Cell culture and treatment of doxorubicin

HepG2 were purchased from ATCC and incubated with Dulbecco's Modified Eagle Medium
(DMEM) (Gibco) with 10% fetal bovine serum (Hyclone), 100 IU/ml penicillin and 100 pg/ml
streptomycin solution (Hyclone). Cell cultures were maintained at 37°C and at 5% CO,.
5.0x10° HepG2 cells were plated in 60 mm dishes and cultured for 24h. For drug treatment,
the growing cells were treated with 1pug/ml doxorubicin (Dox) (BeiJing HuaFeng). Treated cells
were collected at different time points (0, 8, 16, 20 and 24h) for RNA and protein extraction.

RNA Extraction and RT-qPCR

Total RNA was extracted from the cultured cells using Trizol Reagent (Invitrogen, USA)
according to the manufacturer’s instructions. Determine the yield and purity of the RNA by
measuring the absorbance of RNA samples at 260 and 280nm and verify the integrity of RNA
samples using 1% agarose gel.

Total RNA was reverse transcribed to cDNA using oligo(dT) primers and M-MLV reverse
transcriptase (Invitrogen, USA). GAPDH was considered as an endogenous control. The
Bulge-Loop™ miRNA qRT-PCR Primers were purchased from GuangZhou RiboBio.Co., Ltd,
U6 small nuclear RNA was used as an endogenous control. Use FastStart Essential DNA Green
Master (Roche) for real-time PCR according to the manufacturer’s protocol and all the samples
were run in triplicate on lightcycler96 instrument (Roche Diagnostics, Switzerland). Cycling
conditions were 95°C for 5min, followed by 45 cycles of 95°C for 10 sec, 60°C for 30sec and
72°C for 20sec.
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Western blotting

Cells were harvested after the treatment of Dox at different time points using 0.25% trypsin and
collected by centrifugation after washing with phosphate buffer saline (PBS) three times. Total
protein extracts were prepared in RIPA buffer supplemented with proteinase inhibitors. p53 anti-
body (DO-1) (dilution 1:500, sc-126, SantaCruz Biotechnology) and GAPDH antibody (3B3)
(dilution 1:5000, M20006S, Abmart Inc.) were used for western blot analysis according to the
manufacturer’s instructions. Goat Anti-Mouse IgG-HRP (dilution 1: 5000, M21001S, Abmart
Inc.) were used as the secondary antibody. GAPDH was used as a protein loading control. The
signals were visualized using the enhanced chemiluminescence (ECL) reagent (Thermo, USA).

Small RNA library preparation and sequencing

Length of 18-30 nt small RNAs were isolated from 10ug total RNAs using 15% denaturing
polyacrylamide gel electrophoresis. Small RNAs were ligated to a 5" adaptor and a 3’ adaptor
by T4-RNA ligase and reverse-transcribed to cDNA. HepG2 cells were treated with Dox for Oh
and 24h twice, four libraries were obtained and marked as HepG2 0Oh-1, HepG2 24h-1, HepG2
Oh-2, HepG2 24h-2. Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System
were applied to test the quality, purity and concentrations of the samples. Finally, cDNA librar-
ies were sequenced using Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA) by fol-
lowing the manufacturer’s instructions. The raw data of HepG2 Oh-1, HepG2 24h-1, HepG2
Oh-2, HepG2 24h-2 were available at Gene Expression Omnibus (GEO) with the accession
number: GSM 1923400, GSM 1923402, GSM 1923401 and GSM1923403.

Data analysis of small RNAs

The raw Illumina reads were subject to data cleaning procedures to remove contaminants from
the 50nt sequencing tags, including low quality reads, reads with 5’ primer contaminants, reads

HepG2

5’ and 3’ Adaptor ligation T .1 RNA A. Untreated

RT-PCR (biological replicate, n=2) B. Dox treatment O
1. Sample preparation

Small RNA > Mapping to Genome > IRNA, tRNA,
) snRNA and snoRNA etc.
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l’ _ | MiRNAs
Sequencing i: p53 ChIP-seq data
.‘1' Differential expression Mir2disease
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‘l’ Predicted and validated >|  p53 binding sites on
Filter low miRNA targets promoter of miRNA
quality tags
‘1’ GO enrichment and
Full-length KEGG pathway <
small RNA tags | = analysis 3. Data analysis
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Fig 1. Flow chart of experimental design and systematic bioinformatic analysis in our research. The chart depicting the main 3 steps of experimental
and computational pipeline employed in this study.

doi:10.1371/journal.pone.0149227.g001
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without 3’ primer, the insert tags, reads without the insert tags and reads with poly A. The
high-quality clean reads were mapped to human reference genome by SOAP [11] (allowing no
more than one mismatch) for the analysis of their expression and distribution on the genome.
SOAP is suitable for single-end reads and have advantage in accuracy than other short-read
alignment tool such as Bowtie and BWA [12]. Blast was used to align the reads to miRBase
database in order to identify the known miRNAs.

Differential expression analysis of miRNAs

To identify the candidate differentially expressed miRNAs (DEMs) in HepG2, we compared
the miRNA expression libraries between Oh and 24h. The relative expression of miRNAs in
each library was analyzed by normalizing each miRNA count to the total count of clean reads.
The normalized expression was used to calculate relative fold change (fold change = (normal-
ized expression in treatment)/(normalized expression in control)). Significance of each differ-
entially expressed miRNA was calculated using a statistical framework developed by Audic and
Claverie [13]. P-values were adjusted for multi-testing procedures. The selection criteria for the
most robustly differential expression of p53-related miRNAs were as followed: 1) the miRNAs
expression level must be significantly induced (|log, (fold change)| > 1) in two independent
biological replicates, 2) reads counts > 10 in one sample at least, 3) miRNA expression must be
significantly altered in at least one of these samples (p < 0.01).

ChIP-Seq data analysis of p53

An attempt to characterize the p53-regulated miRNAs, available highly reliable p53 chromatin
immunoprecipitation-sequencing (ChIP-seq) data from four studies were downloaded instead of
computational recognition to explore potential p53 binding sites on the putative promoter region
of miRNAs [14-17]. MiRNA TSSs were downloaded from miRStart database (http://mirstart.mbc.
nctu.edu.tw/), a resource of human miRNA TSSs. For TSSs of miRNAs do not collected in miRSt-
art, we defined their TSSs with the following steps: 1) obtain the genomic location of miRNAs from
UCSC database, 2) TSSs of intragenic miRNAs were identified by transcription initiation of the
host gene transcripts, 3) TSSs of the remaining miRNAs were determined by the genomic location
of first nucleotide of each pre-miRNA. Next, 10 kb upstream and 1 kb downstream of TSS of each
miRNA was defined as the putative promoter region based on previous studies [18, 19].

MicroRNA target gene prediction, functional enrichment analysis and
p53-miRNA network construction

MicroRNA target genes were predicted by Targetscan and MiRanda. Experimentally verified
miRNA target genes were obtained from Tarbase database. Gene ontology (GO) enrichment analy-
sis was performed by DAVID [20]. WEB-based gene set analysis toolkit (WebGestalt) [21] was
used to perform the KEGG pathway analysis. The significance level was set at 0.05 (p-value < 0.05).

The p53-miRNA network was constructed by Cytoscape software [22]. Protein-protein
interaction data files were downloaded from BioGRID (Version 3.2) [23], and interactions of
miRNA target proteins were identified by Perl script.

Results and Discussion

Activation of p53 in HepG2 cells after treatment with DNA-damaging
agents

We used 1pg/ml Dox to induce the expression of p53 upon DNA damage at five time points (0,
8, 16, 20 and 24h) in HepG2 cells. The mRNA levels of p53 and p21 were detected by real-time
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Fig 2. Doxorubicin induces p53 expression upon DNA damage. (A) HepG2 cells were treated with 1ug/ml Dox for 0, 8, 16, 20 and 24h. Expression fold
changes of p53 were determined using real-time PCR. The expression of p53 increased significantly from 0 to 16h and stably expressed until 24h after Dox
inducement; (B) p21, a well-known p53 downstream target gene, was chosen to validate the activation of p53 pathway after the Dox treatment; (C) Western
blot analysis of p53 expression at 0, 8, 16, 20 and 24h after treatment with 1pg/ml Dox. The p53 expression at 24h after Dox treatment was significantly
higher than in untreated HepG2 cells.

doi:10.1371/journal.pone.0149227.9002

RT-PCR. p21 is a well-known p53 target gene which was chosen to validate the activation of
p53 pathway after Dox treatment. As expected, p53 and p21 were significantly up-regulated in
mRNA level (6.33- and 5.04-fold change at 24h, respectively) in a time-dependent manner fol-
lowing Dox treatment (Fig 2A and 2B). Western blot analysis showed that p53 expression obvi-
ously increased in Dox-treated HepG2 cells compared with untreated cells and reached the
maximum expression at 24h (Fig 2C). At 24 h post-Dox treatment, untreated and treated
HepG2 cells were harvested for further small RNA sequencing.

Length distribution, nucleotide bias and chromosome distribution
characteristic of small RNAs

Approximately 98% of raw reads were preserved after filtering the low quality reads in the four
small RNA libraries (HepG2 Oh-1, HepG2 24h-1, HepG2 Oh-2 and HepG2 24h-2). After
mapped clean reads to the human genome, the reads were categorized into different RNA spe-
cies (Fig 3A). As expected, a total of 1211 known miRNAs were identified in this study and
they occupied the highest proportion in total clean reads. To investigate the length distribution
of reads in HepG2 cells, reads whose percent occupies beyond 1% of total reads and nucleotide
length ranged from 17- to 27-nt were counted. We found that the majority of reads were ran-
ged from 21- to 24-nt in length. And reads were significantly enriched in 22-nt length in both
the control (51.41%) and Dox-treated libraries (45.14%) (Fig 3B), consistent with the vital
majority of identified miRNAs which were composed of 22 nucleotides in metazoan [24].

The nucleotide bias analysis showed that uridine (U) occupied a major proportion (56.30%-
73.50%) of first and ninth nucleotide of miRNAs, suggesting that first and ninth nucleotides
were the 5’ and 3’ edges of mature miRNA seed region which were essential for the recognition
of target mRNA and miRNA-mediated translational repression [25]. Guanine (G) was rarely
present in the first base of miRNAs which were consistent with previous studies [25]. We also
found that cytosine (C) and uridine (U) were more frequently observed at 231 and 24 posi-
tion of mature miRNAs, respectively, suggesting these two positions may affect the identifica-
tion of the cleavage at the trailing of mature miRNAs (Fig 3C). In addition, the nucleotide bias
of miRNAs did not show significant differences between treatment and control groups. This
result suggests that the base composition of these differentially expressed miRNAs do not
exhibit sequence conservation feature under DNA damage compared with control. Finally,
comparing sSRNAs genome distribution of untreated cells with Dox-treated cells, we found that
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Fig 3. Characteristics of small RNAs in control and Dox-treated libraries. (A) Pie chart summarizing the annotation of small non-coding RNA species.
MiRNAs occupy the highest proportion in total distribution of small RNA; (B) Length distribution of reads in control libraries and Dox-treated libraries. The
horizontal coordinates represent reads lengths and the vertical coordinates represent percent of reads; (C) Nucleotide preference at each position of the
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with sense strand. Bars below axis: count number of reads with antisense strand.

doi:10.1371/journal.pone.0149227.9003
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doi:10.1371/journal.pone.0149227.g004

distributions of sSRNAs appeared the similar feature in each chromosome, suggesting the con-
sistency of genomic characterization of SRNA under the conditions of DNA damage (Fig 3D).

Identification and analysis of differentially expressed miRNAs regulated

by p53in HepG2

To identify the differentially expressed miRNAs (DEMs) associated with p53 more reliably in
HepG2, two independent biological replicated samples with Dox-treated at Oh and 24h were
sequenced on the Illumina HiSeq 2000 system. Finally, 127 and 215 DEMs were found with p-
value < 0.05 in 2 independent replicates, respectively (Fig 4A and 4B).

To further characterize the p53-regulated miRNAs after the treatment of Dox, we focused
on the most robustly-induced miRNAs using our selection criteria (see Materials and Meth-
ods). Finally, 33 miRNAs were identified and classified into two representative clusters based
on the expression profile using hierarchical clustering (Fig 5). Cluster 1 contained 12 up-regu-
lated miRNAs and cluster 2 contained 21 down-regulated miRNAs in two biological replicates
(Table 1). In cluster 1, a verified p53 direct target hsa-miR-34c-5p [26] was highly induced
after the treatment of Dox. Meanwhile, we discovered the highly up-regulated miR-449 cluster
members: hsa-miR-449a, hsa-miR-449b-5p and hsa-449¢-5p in our study. It has been con-
firmed that the expression of miR-449a and miR-449b-5p were 19- to 21-fold elevated after
P53 activation in ovarian neoplasms [27]. In cluster 2, 4 out of 6 miR-17-92 cluster members
(hsa-miR-18a, hsa-miR-19a, hsa-miR-20a, hsa-miR-92a-1) were all repressed after the activa-
tion of p53 protein. Previous findings indicated the similar results that miR-17-92 cluster were
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Fig 5. Heat map and cluster patterns of differentially expressed miRNAs between Dox-treated samples and control in HepG2. MiRNAs are clustered
together with similar expression profile using hierarchical clustering.

doi:10.1371/journal.pone.0149227.9005

repressed due to the direct target of p53 via specific binding on the promoter region of miR-17-
92 under hypoxic conditions [28]. Among the 33 DEMs, the differential expression profiles of
several miRNAs have been identified in various cell lines induced by Dox. For example, the
upregulation of miR-375 identified in our research was consistent with the results in multiple
cancer cell lines (CAL27, SCC-25 and K562) under the Dox treatment [29, 30]. Moreover, a
consistent pattern of expression of hsa-miR-1275, hsa-miR-27a-5p, hsa-miR-27b-5p and hsa-
miR-449c-5p across Dox-treated cell lines (HepG2, MDA-MB-231, MDA-MB-468 and MCF-
7) were found in both previous study and our research, suggesting an intimate correlation of
these miRNAs regulated pattern with the Dox treatment [31]. These findings suggest that these
miRNAs identified in our study have the DNA damage-specific regulation in the cancer cell
lines.
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Table 1. Differential expression of miRNAs derived from small RNA sequencing in HepG2 cell after activation of p53.

miRNA Replicate 1 Replicate 2 Type Host Gene
log,(fold change) p-value Sig-lable loga(fold change) p-value Sig-lable
hsa-miR-675-5p -2.26 0.00E+00 ** -2.84 2.09E-12 ** Intron/Exon H19
hsa-miR-125a-3p -1.16 7.18E-03 ** -1.08 1.67E-13 ** Intergenic
hsa-miR-148a-3p -1.46 6.74E-12 ** -1.21 0.00E+00 ** Intergenic
hsa-miR-18a-5p -1.37 1.01E-07 ** -1.47 6.01E-37 i Intron MIR17HG
hsa-miR-92a-1-5p -1.51 2.20E-160 ** -1.55 1.00E-61 ** Intron MIR17HG
hsa-miR-1277-5p -1.8 1.22E-06 ** -2.54 6.31E-21 ** Intron WDR44
hsa-miR-20a-5p -1.56 6.44E-65 ** -1.12 4.98E-104 ** Intron MIR17HG
hsa-miR-210-3p -1.06 5.45E-10 ** -1.49 5.12E-75 ** Intergenic
hsa-miR-222-5p -1.03 1.91E-02 * -1.53 3.62E-32 *¥ Intergenic
hsa-miR-27a-5p -1.14 2.53E-02 * -3.2 0.00E+00 *¥ Intergenic
hsa-miR-27b-5p -1.73 3.66E-34 ** -1.38 7.43E-202 *¥ Intron C9orf3
hsa-miR-29a-5p -1.48 5.16E-03 ** -1.16 4.15E-03 *¥ Intergenic
hsa-miR-19a-3p -2.6 7.80E-05 ** -1.32 3.74E-321 ** Intron MIR17HG
hsa-miR-33a-5p -1.26 1.59E-88 ** -3.01 4.51E-16 ** Intron SREBF2
hsa-miR-3662 -3.22 9.13E-03 ** -2.15 4.24E-09 **® Intron HBS1L
hsa-miR-7-1-3p -1.41 5.85E-04 *x -1.07 1.60E-02 * Intron/Exon HNRNPK
hsa-miR-4741 -1.66 1.72E-02 * -1.43 2.86E-27 **® Intron RBBP8
hsa-miR-590-3p -2.04 1.74E-04 ** -1.3 1.32E-06 ** Intron EIF4H
hsa-miR-196a-3p -1.77 4.93E-02 * -3.29 5.77E-11 ** Intergenic
hsa-miR-4521 -2.53 5.56E-40 ** -10.43 1.77E-52 ** Intergenic
hsa-miR-1275 -3.06 1.63E-02 * -10.08 2.42E-41 ** Intergenic
hsa-miR-146b-5p 1.07 9.65E-20 ** 1.08 4.91E-120 *¥ Intergenic
hsa-miR-449b-5p 9.92 4.06E-26 ** 8.5 1.02E-15 *¥ Intron CDC20B
hsa-miR-449c-5p 5.65 6.24E-300 ** 4.72 1.57E-209 *¥ Intron CDC20B
hsa-miR-371a-5p 6.92 6.48E-04 ** 6.88 1.22E-05 *¥ Intergenic
hsa-miR-184 7.19 6.39E-164 ** 3.32 1.63E-13 ** Intergenic
hsa-miR-34c-5p 2.68 2.96E-19 ** 9.62 4.23E-33 ** Intergenic
hsa-miR-3661 1.55 1.14E-02 * 3.46 1.16E-111 ** Intergenic
hsa-miR-375 7.84 9.06E-07 ** 4.25 0.00E+00 ** Intergenic
hsa-miR-4485-3p 291 4.24E-06 ** 3.17 1.62E-135 ** Intron MTRNR2L8
hsa-miR-1323 2.1 1.34E-03 ** 6.78 2.72E-05 ** Intergenic
hsa-miR-449a 5.35 6.38E-22 ** 9.03 2.52E-22 ** Intron CDC20B
hsa-miR-9-5p 11.05 2.98E-56 ** 25 8.76E-17 ** Intron C1orf61
*: p<0.05
**: p<0.01.

doi:10.1371/journal.pone.0149227.t001

In this study, we identified several novel p53-regulated miRNAs in HCC including hsa-
miR-1277, hsa-miR-146b, hsa-miR-3661, hsa-miR-3662, hsa-miR-371a, hsa-miR-4485 and
hsa-miR-4521. Among them, hsa-miR-3662 was recently identified in lung cancer and was
regarded as a potential early biomarker [32], indicating these new identified p53-regulated
miRNAs may be critical regulators in HCC development and progression. Moreover, hsa-miR-
3661 and hsa-miR-4521 were selected for qRT-PCR validation as they have never been studied
in hepatocellular carcinoma. The results showed that hsa-miR-3661 was 10.17-fold increased
and hsa-miR-4521 was down-regulated 6.25-fold which were consistent with sequencing
results (Fig 6).
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Furthermore, 33 selected miRNAs were injected into mir2disease, a database collecting
human disease-associated miRNAs. Our findings showed that 18 out of 33 miRNAs were asso-
ciated with various cancers, including pancreatic cancer, colorectal cancer, and breast cancer,
etc (S1 Table). Remarkably, hsa-miR-125a, hsa-miR-148a, hsa-miR-19a, hsa-miR-27a, hsa-
miR-18a, hsa-miR-20a, hsa-miR-222 and hsa-miR-9 were identified to relate to HCC. Among
them, the relative expression of miR-27a in HCC tissues was significantly higher than that of
their matched pericarcinomatous tissues. The similar results have been verified in hepatoma
cell line HepG2 by comparison with normal human liver cell line HL-7702 [33]. These evi-
dences indicated that miR-27a was shown highly specific expression in hepatocellular carci-
noma than normal liver tissues or cells. Similarly, the comparison between human
hepatocellular carcinoma samples and adjacent liver tissue showed that the expression of miR-
18a, miR-19a and miR-20a were increased significantly in HCC [34]. These previous researches
presented the crucial roles of these miRNAs in the development of malignant HCC. Moreover,
the effects of these miRNAs in hepatocarcinogenesis have been elucidated and some of them
appeared HCC tissue-specific manner. For instance, overexpressed miR-18a-5p was able to
promote proliferation of HCC cell line HepG2 whereas repressed the proliferation of breast
cancer cell line MCF-7 [35]. Some other studies reported that miR-27a was identified as an
oncogenic miRNA in HCC which possessed the ability to promote proliferation, migration and
invasion, but it played opposite roles as a tumor suppressor in acute leukemia by repressing
anti-apoptotic gene 14-3-30 [36, 37]. These studies suggest that we identified p53 regulated
miRNAs play an essential role in the hepatocellular carcinoma development and progression.

Identification of p53 binding sites in putative promoter region of DEMs

After the analysis of p53 ChIP-seq data, eighteen (5 up-regulated and 13 down-regulated) out
of 33 miRNAs have been identified the potential p53 binding sites around their TSSs and 7
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Fig 6. The relative expression of hsa-miR-3661 and hsa-miR-4521 after the p53 activation induced by
Dox.

doi:10.1371/journal.pone.0149227.9g006
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miRNAs contain multiple predicted binding sites (Fig 7). Among these p53-regulated miRNAs,
8 miRNA transcripts located on plus strands whereas 10 located on minus strands. In sum-
mary, most (91.67%) of the p53-binding sites favored to locate on the upstream of TSSs of miR-
NAs except for miR-4521, miR-7-1 and miR-3661 (S2 Table). Particularly, 69.44% of p53
binding sites prefer to locate within the 5 kb upstream of TSSs. Previous TF-binding site
enrichment analysis shown that TF-binding sites (TFBS) highly enriched in upstream of TSSs
of miRNAs (69.6%) rather than in downstream regions (30.4%) which shows the similar distri-
butions with our results [38]. Intriguingly, the p53 binding site of miR-3661 located within
miRNA hairpin precursor instead of upstream or downstream of TSSs of miRNAs. Previous
study has confirmed that the annotated TFBS can be found abundantly in pre-miRNA
sequences after genome-wide analysis of conserved TFBS on human genome [39]. Taken
together, p53-regulated miRNAs which contain p53 binding sites suggest that they are the
potential positive or negative regulators of p53 which directly physically interacts with p53.
However, excluding the reason of limited ChIP-seq dataset, other miRNAs that do not contain
p53 binding sites are most probably as a member of p53 network mediated by p53 indirectly.

miR-34c chrll: 111384164-111384240 [+]
TSS: 111383204

111374134 = I +' I_-> 111384340
miR-4521 chr17: 8090263-8090322 [+]
TSS: 8090263
80906604 8090472
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54168112 H = 54175394
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TSS: 12_53]76036
135281417 — 135376274
HBS1L
PMID: 16413492 M24120139 M24120139 M25883152 M22127205

miR-27a chr19: 13947254-13947331 [-]
TSS:13949294
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Fig 7. p53 binding sites around TSS of miRNAs. 18 miRNAs were identified to have potential p53 binding sites around TSSs. Orange, green, purple, red
and blue bar represent location of p53 binding sites after analysis of p53-ChlIP data from four studies PMID: 16413492, PMID: 24120139, PMID: 25883152
and PMID: 22127205, respectively. Dark goldenrod box represents miRNA, while thick dark blue line represents host gene. The thin black line represents the

chromosome DNA.

doi:10.1371/journal.pone.0149227.9007
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Fig 8. Heat map of gene ontology (GO) enrichment analysis of p53-miRNA target genes. 29 out of 33 miRNAs involved in biological processes
associated with cancers (p-value < 0.05).

doi:10.1371/journal.pone.0149227.g008

Gene ontology (GO) and KEGG pathway enrichment analysis

To gain insight into the functions of 33 p53-regulated DEMs in HepG2, we predicted miRNA
target genes using widely accepted Targetscan and MiRanda algorithms. We choose Targetscan
and MiRanda because they are the most popular miRNA target gene prediction tools and for
the sake of getting a balance between reducing the false positive rate and reserving true positive
results. To reduce false positives, target genes represented in both database were chosen for fur-
ther analyses. Moreover, the experimentally verified miRNA target genes from Tarbase data-
base were integrated into predicted miRNA target genes pool. Finally, we identified 4,752
predicted and 4,450 experimentally verified target genes, respectively. Next, the GO enrich-
ment analysis was employed using the DAVID tools. Finally, 29 out of 33 miRNAs were dis-
covered to participate in biological processes associated with tumorigenesis (Fig 8).
Remarkably, hsa-miR-7-1-3p, hsa-miR-20a-5p, hsa-miR-27a-5p, hsa-miR-29a-5p, hsa-miR-
148a-3p and hsa-miR-449a involved in most of the biological processes associated with cell
cycle, apoptosis, proliferation and cell migration, indicating that these miRNAs may play vital
roles in the p53-related biological processes. To determine target functions overall, we per-
formed the GO enrichment analysis for the total of 7203 target genes of 33 miRNAs. As
expected, we found most top ranked lists of enriched GO categories related to p53-mediated
functions including: regulation of apoptosis (p-value = 1.80E-15), cell cycle (p-value = 7.30E-
13) and regulation of cell proliferation (p-value = 1.70E-08), etc. (S3 Table).
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Fig 9. Heap map of KEGG Pathway enrichment analysis of p53-miRNA target genes. 30 out of 33 miRNAs participated in these pathways associated
with tumorgenesis (p-value <0.05).

doi:10.1371/journal.pone.0149227.9009

To identify the DEMs involved in cancer-related pathways, KEGG pathway analysis of their
target genes were performed by WebGestalt. Our findings indicated that 30 out of 33 miRNAs
were identified to participate in the regulation of cancer-related pathways (Fig 9). The results
demonstrated 9 miRNAs (hsa-miR-33a-5p, hsa-miR-34c-5p, hsa-miR-27a-5p, hsa-miR-148a-
3p, hsa-miR-7-3p, hsa-miR-9-5p, hsa-miR-590-3p, hsa-miR-19a-3p and hsa-miR-20a-5p)
were significantly involved in most of the cancer-related signaling pathways with low p-value.
In previous studies, various miRNAs have been experimentally verified to be involved in path-
ways described above. For instance, hsa-miR-33a-5p can inhibit cell growth by down-regulat-
ing the expression of B-catenin which affecting the Wnt pathway [40], hsa-miR-19a
significantly decreased SOCS3 mRNA levels to enhance JAK-STAT signaling pathway [41] and
hsa-miR-148a was found to be overexpressed in the Wnt signaling to suppress tumor activity
or metastasis associated medulloblastomas [42], suggesting that those miRNAs play key roles
in tumorigenesis. Next, we performed KEGG pathway analysis of all 7203 target genes of 33
miRNAs at the overall level. Notably, most of miRNAs target genes were involved in cancer-
related signaling pathways with very low p-value ranged from 1.40E-73 to 6.08E-14 (5S4 Table).
The most well-represented pathway was pathways in cancer (p-value = 1.40E-73) in which p53
involved as a master regulator. In this pathway, cell apoptosis or proliferation can be induced
by a series of miRNA target genes such as E2F3, c-myc (direct target of miR-590, miR-148a,
miR-27a and miR-34c) and MDM2 (direct target of miR-590, miR-148a, miR-27a and miR-9-
2). Furthermore, 10 out of 18 miRNAs with p53 binding sites were involved in this pathway,
suggesting their central regulatory role in the p53 network.

For this purpose, we addressed the co-regulatory network of these 10 p53-miRNAs through
employing protein-protein interactions (PPIs) from BioGRID database (Fig 10). We explored
64 miRNA-mediated feed-forward loops (FFLs), where p53 regulates a miRNA and both of
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doi:10.1371/journal.pone.0149227.9010

them regulate a target together, such as p53-miR-34c-BCL2, p53-miR-222-MAPKI1 and
p53-miR-29a-PTEN (S5 Table). BCL2 was a known target of miR-34c that also co-regulated by
P53 in oral metastatic tissues to facilitate tumor progression and metastasis [43]. Another
study verified that p53 direct target miR-29a [44] was responsible for cell migration through its
target gene PTEN [45]. In summary, we provide comprehensive and systematic function analy-
sis of DEMs and their target genes, which provide new insights into the mechanism underlying
the function of p53-regulated miRNAs and target genes in tumor suppression.
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