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A B S T R A C T   

The potential of parasites to affect host abundance has been a topic of heated contention within the scientific 
community for some time, with many maintaining that issues such as habitat loss are more important in regu-
lating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the 
consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the 
Northern bobwhite quail (Colinus virginanus), an iconic game bird that is one of the most extensively studied 
vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, 
bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some 
have referred to as “our greatest wildlife tragedy”. Here, we will discuss the history of disease and wildlife 
conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a “weight 
of evidence” approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling 
Plains of Texas. Through this, we highlight the potential of using “weight of the evidence” to better understand 
the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in 
wildlife conservation.   

1. Introduction to the history of disease in wildlife conservation 

Aldo Leopold, considered by many as the father of wildlife man-
agement, penned that disease was underestimated in wildlife conser-
vation in his 1933 treatise “Game Management”, a work that would go 
on to become a cornerstone for wildlife management in North America. 
Now in 2020, with climate change, habitat degradation, invasive spe-
cies, and growing human populations eroding the wild heritage Leopold 
sought so fervently to protect, these words are more pertinent than the 
day they were written. Yet, it was only recently that wildlife diseases 
became a “New Frontier” in conservation (Fagerstone, 2014; Friend, 
2014), likely due to the persistent paradigm that diseases are a natural 
regulatory mechanism of healthy populations with the ultimate outcome 
being one in which the host was not harmed (Elton, 1931; Lack, 1954). 
However, Leopold looked past this narrow view of diseases, stressing the 
need to consider the effects of factors such as microbes, parasites, con-
taminants, malnourishment, and any combination thereof, a perspective 

which was far ahead of its time. Today, prominent wildlife disease re-
searchers have adopted similar views, with Wobeser (2006) defining 
disease as ‘‘any impairment that interferes with or modifies the perfor-
mance of normal functions, including responses to environmental fac-
tors such as nutrition, toxicants, and climate; infectious agents; inherent 
or congenital defects; or combinations of these factors’’. Hereafter, we 
will use this definition of disease as it accounts for the complexity 
associated with disease impacts on wildlife populations and may thus 
provide greater insight into the topic. 

However, the history of diseases in the United States is long and 
varied (Fig. 1). Surges in disease reports, which were often initiated due 
to mortality being large and conspicuous (Plowright, 1988), were typi-
cally followed by an initiative that addressed the disease because the 
public demanded a response (Kadlec, 2002; Friend, 2014). Concerns for 
disease would eventually wane as other concerns took precedence. For 
example, people became more worried about chemical contaminants 
and heart disease after Rachel Carson published the seminal book “Silent 
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Fig. 1. Timeline depicting the history of wildlife diseases in the United States: blue boxes are for disease reports and outbreaks, green for improvements to disease 
research, and red for events that hindered disease research. Abbreviations: foot-and-mouth disease (FMD), Smoot-Hawley Tariff Act (SHTA), State-Federal Coop-
erative Brucellosis Eradication Program (SFCBER), Bear River Research Station (BRRS), Wildlife Disease Investigations Laboratory (WDIL), Southeastern Cooperative 
Wildlife Disease Study (SCWDS), epizootic hemorrhagic disease (EHD), World Organisation for Animal Health’s (OIE), National Wildlife Research Center (NWRC), U. 
S. Fish and Wildlife Service (USFWS). References: 1. Antolin et al. (2002), 2. Creel (1941), 3. Anderson (1978), 4. Locke and Friend (1987), 5. McCoy and Chapin 
(1912), 6. Wherry and Lamb (1914), 7. Meagher and Meyer (1994), 8. Clements (2007), 9, Bachrach (1968), 10. Busch and Parker (1972), 11. USFWS (1991), 12. 
Tunnicliff and Marsh (1935), 13. Brooks and Buchanan (1970), 14. Elton (1931), 15. Brown (2007), 16. CDFW 2019, 17. Friend (2014), 18. SCWDS 2019, 19. Shope 
et al. (1960), 20. Cohen (2000), 21. Cross et al. (2013), 22. Samuel et al. (2007), 23. Carvalho et al. (2017), 24. Dobson and Hudson (1986), 25. Jones et al. (2008), 
26. Berger et al. (1998), 27. Laurance et al. (1996), 28. Collins and Crump (2009), 29. OIE 2008, 30. Voyles et al. (2015), 31. Fagerstone (2014), 32. USFWS (2016), 
33. Scheele et al. (2019). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

C. Henry et al.                                                                                                                                                                                                                                   



International Journal for Parasitology: Parasites and Wildlife 13 (2020) 27–37

29

Spring” in 1962 and the Surgeon General announced that we should 
“close the book on infectious disease” in 1969 (Cohen, 2000; Friend, 
2014). 

Despite this, progress has been made regarding wildlife disease 
research and conservation, particularly considering that prior to 2000 
wildlife diseases were largely ignored unless they affected game species 
or livestock (Fagerstone, 2014; Cunningham et al., 2017; Preece et al., 
2017). For example, the lessons learned from chytridiomycosis, which 
has been implicated in the decline or extinction of 501 amphibian spe-
cies (Scheele et al., 2019), facilitated a quicker response to white-nose 
syndrome in bats, with the pathogen being identified and manage-
ment plans in place within four years (Voyles et al., 2015). Then in 2011, 
the National Wildlife Research Center (NWRC) listed wildlife diseases as 
a priority for the first time on their research needs assessment (Tobin 
et al., 2012; Fagerstone, 2014). Unfortunately, the wildlife diseases that 
still gain the most attention either cause massive die-offs, affect game 
species, domestic animals, or humans (Deem et al., 2001; Friend, 2014; 
Polley and Thompson, 2015); meanwhile diseases with less obvious but 
substantial effects are overlooked (Wobeser, 2006; Wood and Johnson, 
2015). Moreover, the interactions between disease and other variables 
are largely unknown, and while our understanding of the ecological 
influence of parasites has improved, it is still very much incomplete 
(Hernández and Peterson, 2007; Kendall et al., 2010; Tompkins et al., 
2011; Wood and Johnson, 2015). 

The growing human presence has also been implicated in the spread 
and proliferation of wildlife diseases through environmental contami-
nants, land use changes, shifts in animal populations, and climate 
change (Daszak et al., 2000, 2001; Deem et al., 2001; Dobson and 
Foufopoulos, 2001). Some of these factors, such as environmental con-
taminants, are directly correlated with intensification of wildlife dis-
eases (Borošková et al., 1995; Bichet et al., 2013), whereas others like 
climate change have more insidious effects (Lafferty, 2009). In Table 1, 
we provide a broad overview of the various ways in which human ac-
tivities may exacerbate the impact of wildlife diseases, citing specific 
examples of each. While this overview is by no means a comprehensive 
account of the subject, it serves to emphasize the potentially increased 
ecological role of wildlife diseases, and heightened importance of dis-
ease management in the Anthropocene. This is especially true consid-
ering the potentially catastrophic effects of diseases may be obscured by 
the intricate associations present in wild systems (McCallum, 2000; 
Friend et al., 2001). But how then, do we approach the problem of 
unraveling these complex interactions and determine the true impact of 
diseases on wildlife? 

2. Weight of evidence and its uses 

In order to determine the ultimate impacts of diseases on wildlife, it 
is necessary to assess specific effects on population attributes through 
randomized and controlled studies. However, as discussed in the 

previous section, the impacts of diseases are often discreet, dynamic, 
and influenced by multiple interacting variables. Furthermore, correla-
tive associations may be the only evidence that diseases are influencing 
a particular system and designing and implementation of empirical 
studies to assess these impacts for every population potentially affected 
by disease may not be possible. It is therefore necessary to determine 
whether further study of a system potentially at risk of being compro-
mised by disease is needed. 

Weight of evidence (WOE) is “… an inferential process that assem-
bles, evaluates, and integrates evidence to perform a technical inference 
in an assessment” used by the U.S. Environmental Protection Agency for 
a variety of assessments (Suter et al., 2017). The WOE approach is also 
effective for evaluating scenarios post hoc, where data is typically limited 
and/or only correlative (Forbes and Calow, 2002). Consequently, WOE 
may provide a valuable tool to investigate other multivariate problems 
outside of risk assessment, such as determining the causes of wildlife 
population declines. Adaptations of WOE have been effectively used in 
this regard by researchers investigating the effects of multiple stressors 
on aquatic systems (Lowell et al., 2000; Adams, 2005; Burkhardt-Holm 
and Scheurer, 2007). 

For instance, Burkhardt-Holm and Scheurer (2007) employed a WOE 
approach to identify potential causes for the decline in brown trout 
(Salmo trutta) by using an adaptation of the WOE framework developed 
by Forbes and Calow (2002). In this, they used a series of 7 questions to 
assess the plausibility, exposure, correlation, threshold, specificity, ex-
periments, and then removal of the variable of interest. These 7 ques-
tions promote a rigorous way of evaluating data that does not discount 
the plausibility of factors for which there may be only limited and/or 
correlative data. This method allowed Burkhardt-Holm and Scheurer 
(2007) to overcome uncertainty and confounding variables to positively 
identify proliferative kidney disease as the most likely cause of brown 
trout declines in half of their study areas. However, despite the success 
of WOE based studies in assessing population stressors in aquatic sys-
tems, to our knowledge, similar evaluations are lacking in terrestrial 
environments, which are also subject to an array of complex and vari-
able stressors. 

Here, the seven questions proposed by Burkhardt-Holm and Scheurer 
(2007) (Fig. 2a) were modified to specifically address disease(s) in 
wildlife populations (Fig. 2b). The original questions were robust and 
widely applicable, and this allowed us to adhere closely to the original 
framework, with 1 question remaining unchanged and 4 others only 
being rephrased to incorporate the disease aspect. However, 2 of the 
questions were modified to better evaluate the potential impacts of 
diseases given the complex nature and specific characteristics of the 
topic. Namely, thresholds of infection in diseases are often difficult to 
discern and concrete thresholds are typically unavailable. Thus, ques-
tion 4 is now used to determine whether there is an apparent threshold 
in which the disease elicits an observable or quantifiable response in the 
individual host, and this leads to question 5, which considers if this 

Table 1 
Examples for various anthropogenic factors and their influence on wild systems.  

Organism Anthropogenic Factor Result Reference 

Sparrows Pollution Trace metals increase susceptibility to malaria Bichet et al. (2013) 
Rats Pollution Chronic exposure to lead at low concentrations leads to immunosuppression Bendich et al. (1981) 
Timber rattlesnakes Habitat 

fragmentation 
Inbreeding depression and pathogenic fungal outbreak Clark et al. (2011) 

Lesser Antillean 
bullfinch 

Habitat 
fragmentation 

Increased prevalence of two blood parasites Perez-Rodriguez et al., 2018 

Bumble bees Habitat 
fragmentation 

Decreased genetic diversity and increased pathogen prevalence Cameron et al. (2011) 

Christmas Island rat Animal translocation Introduction of black rats causes outbreak of trypanosomiasis and eventual 
extinction 

Wyatt et al. (2008) 

Bighorn sheep Introduced diseases Livestock diseases hinder conservation efforts due to lack of resistance in bighorn 
sheep 

Singer et al. (2001); Clifford et al. 
(2009) 

Harbor seals Climate change Migratory changes in harp seals cause exposure to phocine distemper virus Jensen et al. (2002) 
Great pond snail Climate change High ambient temperatures cause reduced immune defense Seppälä and Jokela, 2010  
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Fig. 2. Flow diagrams showing a weight of evidence framework using the (A) 7 questions proposed by Burkhardt-Holm and Scheurer (2007) and the (B) modified 
questions for addressing disease(s) in wildlife. 
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effect may be impactful at the population level. Structuring the ques-
tions in this way permits a better evaluation of the impacts a disease may 
have on a populations as highly pathogenic diseases present at a low 
frequency may have less of an impact on a population than a widespread 
disease with subtle symptoms (McCallum and Dobson, 1995). 

3. Bobwhite, their decline, and the possible role of parasites 

Bobwhite are an iconic species and one of the most extensively 
studied and heavily managed gamebirds (Rosene, 1969; Scott, 1985; 
Hernández et al., 2013). While bobwhite declines have been noted since 
the late 1800s (Stoddard, 1931; Rosene, 1969), systematic surveys of 
bird abundance in the 1960s reinforced the severity and significance of 
these declines (Sauer et al., 2013), as did documentation of widespread 
localized extinctions of bobwhite (Brennan et al., 2007; Palmer et al., 
2012). This has led to a great deal of effort to determine and mitigate 
factors contributing to bobwhite declines, and many consider habitat 
loss and degradation to be the primary threat to bobwhite across their 
range (Palmer et al., 2012; Hernández et al., 2013). However, bobwhite 
are also influenced by other factors, including predation (Rollins and 
Carroll, 2001), weather (Lusk et al., 2002), contaminants (Ertl et al., 
2018), diseases (Peterson, 2007), and climate change (Guthery et al., 
2000), which interact to exert a cumulative effect on bobwhite pop-
ulations (Hernández and Peterson, 2007; Hernández et al., 2013). 

While bobwhite have been undergoing a general decline since the 
late 1800s, more recently, researchers have documented bobwhite 
populations faltering in places that have long been considered strong- 
holds for the species (Brennan et al., 2007; Rollins, 2007). One of 
these areas is the West Texas Rolling Plains, a region where the domi-
nant land use type (rangeland) is conducive to quail management and 
where land may often be managed for bobwhite (Rollins, 2007; 
Hernández and Guthery, 2012). Despite this, in 2010 bobwhite pop-
ulations in the Rolling Plains failed to irrupt during a year where plen-
tiful rainfall and quality habitat led to predictions of a quail boom. This 
led to the launch of Operation Idiopathic Decline (OID), a collaborative 
research effort to investigate the impact of contaminants and diseases on 
bobwhite from the region. During OID, researchers from major Texas 
universities collaboratively surveyed bobwhite in the Rolling Plains and 
found a high prevalence of eyeworms (Oxyspirura petrowi) and caecal 
worms (Aulonocephalus pennula; = A. lindquisti), with infection rates as 
high as 66% and 91%, respectively (Bruno, 2014). 

Even though this was not the first time these parasites had been re-
ported in bobwhite from the Rolling Plains (Jackson and Green, 1965; 
Jackson, 1969), OID marked the beginning of a determined investiga-
tion into the potential of parasitic infection to affect bobwhite in the 
area. Prior to OID, diseases, including parasites, were generally viewed 
as inconsequential in terms of bobwhite management (Stoddard, 1931; 
Rollins, 2002; Peterson, 2007), despite some researchers arguing for a 
greater consideration of their impacts (Robel, 1993; Brennan, 2002; 
Peterson, 2007). This perspective set the paradigm for bobwhite con-
servation, and to this day, habitat and land management practices are 
the predominant means of maintaining local bobwhite populations 
(Hernández and Guthery, 2012). However, even in areas where habitat 
is carefully and specifically managed for quail, such as the Rolling Plains 
Quail Research Ranch (RPQRR), bobwhite populations continue to 
follow the boom and bust cycles characteristic of the species (Thog-
martin et al., 2002; Rollins, 2018; Texas Parks and Wildlife Department , 
2019). While proper habitat management is a foundation for successful 
bobwhite conservation, the cause of bobwhite population fluctuations 
remains undetermined (Guthery, 2002; Hernández et al., 2002) and 
bobwhite continue to experience a range-wide decline (Sauer et al., 
2013). This suggests that additional factors are influencing bobwhite 
abundance, and it is possible that parasites have a greater effect on 
bobwhite populations than previously purported. 

4. Using the WOE framework to investigate the role of parasites 
in the bobwhite decline 

Using a WOE approach that integrates data from field and laboratory 
studies, augmented by the observations and collaboration of local 
landowners and quail hunters, may yield a more comprehensive un-
derstanding of how parasites affect bobwhite population dynamics. This 
method is employed by the Wildlife Toxicology Laboratory (WTL) at 
Texas Tech University when investigating the implications of O. petrowi 
and A. pennula in bobwhite of the Rolling Plains. Oxyspirura petrowi and 
A. pennula are parasitic nematodes that infect the eyes and caeca, 
respectively, of their definitive hosts, and undergo an indirect life cycle 
requiring an insect intermediate host for transmission (Chandler, 1935; 
Addison and Anderson, 1969; Peterson, 2007). This indirect life cycle 
further exacerbates the already complex task of understanding the 
consequence of infection, making the WOE approach particularly valu-
able in this instance. 

We compiled what was, to our knowledge, all available information 
regarding A. pennula and O. petrowi in bobwhite. We then subjected this 
information to the series of 7 questions discussed in section 2. In doing 
so, we can establish whether the research conducted thus far holds 
enough weight to warrant continued investigations into this issue and 
demonstrate the value of a WOE approach. We begin by addressing the 
first of the 7 fundamental questions, that of plausibility. 

4.1. Question 1: Does the proposed impact of the disease(s) make sense 
logically and scientifically? 

In 1979, Anderson and May provided the theoretical justification for 
the ability of parasites to suppress host abundance to the extent in which 
this results in cyclical fluctuations of host populations (Anderson and 
May 1979; May and Anderson, 1979). Since then, our understanding of 
host parasite interactions has advanced from this theoretical foundation, 
to one in which parasites are increasingly recognized for their potential 
to affect hosts at the population scale and higher, even when the effects 
are not immediately apparent (Tompkins et al., 2011). This increasing 
recognition of parasites as a mechanism affecting host population dy-
namics is mirrored with regards to the effects of parasites on bobwhite in 
the Rolling Plains ecoregion of West Texas. 

While parasites have long been known to infect bobwhite of the 
Rolling Plains, their significance in terms of bobwhite conservation has 
remained largely obscure. However, contemporary investigations of 
parasites in the region have revealed epizootic events, a high preva-
lence, and the potential of two helminths, A. pennula and O. petrowi, 
contributing to the declines of local bobwhite populations (Bruno, 2014; 
Dunham et al., 2014a; Bruno et al., 2019a). Evidence exists of parasites 
like Loa and Thelazia callipaeda, which are closely related to O. petrowi 
(Xiang et al., 2013; Kalyanasundaram et al., 2018a), causing irritation 
and impaired vision in their hosts (Otranto et al., 2004; Barua et al., 
2005; Nayak et al., 2016). Moreover, Kalyanasundaram et al. (2018a) 
determined A. pennula to have a 90% relation to the ascarids, specifically 
Toxascaris leonine which is common parasite of cats and dogs that is 
known to cause nutrient loss, weight loss, and death (Kalyanasundaram 
et al., 2017). 

In birds, similar intestinal parasites have also been documental to 
cause inactivity, weight loss, growth reduction, and inflammation of the 
caecal mucosa in infected individuals (DeRosa and Shivaprasad, 1999; 
Vandegrift et al., 2008; Nagarajan et al., 2012). Field studies have 
demonstrated the capacity of parasites to exhibit effects on hosts at the 
population level as well, as in the case of the caecal worm, Trichos-
trongylus tenuis, which suppressed populations of another Galiforme, the 
red grouse (Lagopus scoticus), by reducing fecundity and increasing 
susceptibility to predators (Hudson, 1986; Hudson et al., 1992, 1998). 
As such, the potential of parasites to induce population decline in 
bobwhite quail is being increasingly recognized as a plausible threat 
which necessitates further investigation. 
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4.2. Question 2: Is there evidence that the population of interest is, or has 
been exposed to the disease(s)? 

The first reported evidence of parasites in bobwhite from the Rolling 
Plains of Texas came in the 1940s, when Webster and Addis (1945) 
documented a number of parasites, including caecal worms (A. lind-
quisti). Further study into the parasite fauna of bobwhite in the Rolling 
Plains did not occur until the 1960s, when Jackson and Green (1965) 
conducted more rigorous assessments and found A. pennula and O. pet-
rowi to be relatively common in the regions quail. With the exception of 
studies conducted by Rollins (1980) and Demarais et al. (1987) in the 
late 1970s and early 1980s, research into parasitic infection of bobwhite 
in Texas waned once again, until over 50 years later. 

Villarreal et al. (2012) renewed the investigations into the O. petrowi 
that infect bobwhite, finding 57% of bobwhite to be infected from 2007 
to 2011, and during sampling from February 2010–January 2011, 82% 
of bobwhite were infected with A. pennula (Villarreal et al., 2016). 
Additionally, OID sparked a proliferation of studies investigating the 
impacts of parasites on bobwhite of the Rolling Plains and South Texas, 
and these studies have documented A. pennula and O. petrowi to be 
ubiquitous in quail throughout the region (Dunham et al., 2016a; Olsen 
and Fedynich, 2016). In subsequent studies, Bruno et al. (2019b) found 
40% of bobwhite sampled from 2011 to 2013 to be infected with O. 
petrowi, while 73% were infected with A. pennula. However, Dunham 
et al. (2014a) suspected previous surveys underreported eyeworm 
prevalence as those studies only examined the nictitating membrane and 
the surface of the eye. By examining eye-associated tissues as well, 
Dunham et al. (2014a) found 97% of bobwhite infected with O. petrowi. 
Today, the Rolling Plains is considered to be the epicenter of caecal 
worm and eyeworm infection in bobwhite (Kubečka et al., 2017), and 
surveys regularly yield infection rates approaching 100% with infection 
levels averaging >400 A. pennula and >30 O. petrowi (Henry et al., 2017; 
Brym et al., 2018b; RPQRF, 2019). 

Oxyspirura petrowi have also been documented in wild turkey 
(Meleagris gallopavo; Kubečka et al., 2018), songbirds (Dunham and 
Kendall, 2014), lesser prairie-chickens (Tympanuchus pallidicinctus; 
Dunham et al., 2014b), Gambel’s (Callipepla gambelii), and scaled quail 
(Callipepla squamata) (Dunham and Kendall, 2017), while A. pennula 
have been found in scaled quail (Dunham et al., 2017a) and wild turkey 
(Hon et al., 1975). The wide range of hosts for O. petrowi and A. pennula 
highlights the possibility that these parasites may be more widely 
distributed that previously thought, and if bobwhite populations recover 
the parasites may remain in reservoir hosts and be capable of infecting 
bobwhite in the future. 

4.3. Question 3: Is there evidence that the disease(s) is associated with 
adverse effects in the population in either time or space? 

Because wild bobwhite populations in the Rolling Plains are under 
constant and simultaneous exposure to a variety of dynamic and inter-
acting stressors, determining a causative link between disease and its 
effect(s) on bobwhite populations may be extremely difficult. Conse-
quently, correlative associations may provide a more pragmatic alter-
native into potential interactions as these may be the only available 
evidence in these circumstances. Correlative associations are typically 
supported by models of parasite induced host mortality (PIHM), which 
predict lower parasite burdens in surviving hosts due to the concurrence 
of host mortality and infection intensity (Wilber et al., 2016). However, 
Wilber et al. (2016) cautioned that models alone do not provide 
conclusive evidence of PIHM but should instead be used as a supplement 
to experimentation and a comprehensive understanding of parasite host 
interactions. Thus, we must also consider the cumulative effect of these 
parasites in order to obtain a clearer picture of the “parasitic pressure” a 
host may be facing (Bordes and Morand, 2009). 

For instance, heavy precipitation during 2016 (RPQRF, 2016) led to 
favorable conditions for the arthropod intermediate hosts of O. petrowi 

and A. pennula (Branson, 2014; Kistler et al., 2016a; Almas et al., 2018; 
Henry et al., 2018, 2020), which coupled with high bobwhite pop-
ulations (TPWD, 2019), created an environment rich in both interme-
diate and definitive hosts, an ideal situation for the proliferation of 
parasites (Sures and Streit, 2001; Liccioli et al., 2014). This may have 
facilitated the transmission of parasites leading to the increased infec-
tion levels of both O. petrowi and A. pennula during the spring of 2017 
(Henry et al., 2017). The increased intensity of the parasites was 
concomitant with greater difficulty trapping bobwhite, and then a sub-
sequent die-off of bobwhite that was speculated to be due to PIHM. 

Following the hunting season of 2017–2018, Brym et al. (2018c) also 
reported difficulty in trapping bobwhite, reinforcing previous reports 
suggesting a scarcity of birds that may have resulted from the consis-
tently elevated parasite burdens documented throughout the region. 
Commons et al. (2019) likewise documented difficulty trapping amidst 
high parasite burdens compared with previous years. This scarcity of 
birds was found throughout the region when TPWD (2019) reported the 
third lowest amount of bobwhite seen since 1978 in 2018, leading to 
concern for localized extinctions of bobwhite. Ultimately, there appears 
to be a correlation between high parasite burdens and reduced bobwhite 
abundance, and this link needs to be investigated further. 

4.4. Question 4: Does the disease(s) appear to have a biologically 
meaningful threshold beyond which there is an observable/quantifiable 
response in the host? 

While the widespread incidence of O. petrowi in the Rolling Plains 
may have exposed a large proportion of bobwhite to infection, it is also 
important to consider the intensity of these infections, as even highly 
pathogenic organisms may have negligible effects on their hosts if pre-
sent only in low numbers (Fredensborg et al., 2004). Consequently, 
Dunham et al. (2017a) developed infection level thresholds to provide a 
systematic way of gauging the intensity of parasitic infection in 
bobwhite; during which, a large proportion of bobwhite (48%) were 
found to have lower eyeworm infections (<20 O. petrowi), while rela-
tively few (15%) were heavily parasitized (>40 O. petrowi). Dunham 
et al. (2017a) hypothesized that this was due to highly infected in-
dividuals suffering reduced fitness, which ultimately led to mortality, 
and this is consistent with models of populations experiencing PIHM 
discussed in section 4.3. 

The hypothesis of Dunham et al. (2017a) is further supported as 
throughout 2017 heavy parasite burdens were documented in bobwhite 
that landowners observed flying into obstacles, being taken by preda-
tors, and two specimens that were hand captured (Brym et al., 2018a). 
These anecdotal accounts of parasitized bobwhite exhibiting signs of 
potential visual impairment parallel reports by Jackson (1969), who was 
the first to report such behavior in parasitized bobwhite. There was also 
a bobwhite that was hand captured during the 2017–2018 hunting 
season was severely emaciated and possessed an extreme caecal worm 
infection (n = 1722) (Brym et al., 2018c). Collection of a bobwhite with 
such a high parasite load was unusual, as Dunham et al. (2017a) found 
50% of bobwhite with <100 A. pennula and only 19% with >200, and 
the high infection may have contribute to the birds condition given that 
pathological changes were noted in the caeca of scaled quail infected 
with >100 caecal worms (Rollins, 1980). 

Hunters from the Rolling Plains continued to donate parasitized 
bobwhite during the 2017–2018 hunting season, in which the highest 
average intensities of both O. petrowi (n = 44) and A. pennula (n = 599) 
were recorded (Brym et al., 2018b). This sample also exhibited an 
increased proportion of birds in the strong and extreme infection level 
range when compared to earlier surveys of parasites. Towards the end of 
the hunting season, hunters began reporting fewer coveys and more 
feather piles indicating predation that coincided with consistently 
elevated parasites burdens (Brym et al., 2018c). Moreover, Kalyana-
sundaram et al. (2018b) documented an increase in Physaloptera sp. In 
bobwhite infected with A. pennula and O. petrowi, leading them to 
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postulate that bobwhite with high levels of these parasites may be more 
susceptible to co-infection with other helminths. These reports suggest 
that at strong and extreme levels of infection a threshold is reached in 
which bobwhite survival may be reduced and/or bobwhite become 
immunocompromised. 

4.5. Question 5: Does the individual response elicited by the disease(s) 
extend to a quantifiable impact on the host population? 

Anecdotal accounts of eyeworm infected bobwhite from the Rolling 
Plains exhibiting erratic behavior (Jackson, 1969) spurred concerns that 
these parasites may be causing visual impairment by damaging struc-
tures within the eyes of infected individuals. Later, researchers con-
ducted pathological assessments of the eyes of infected bobwhite and 
confirmed inflammation and damage to the eye tissues and cornea of 
bobwhite hosts, as well as hemorrhaging of nasolacrimal ducts (Bruno 
et al., 2015; Dunham et al., 2015, 2016b; Hunter, 2016). Because 
bobwhite are highly dependent on their sense of vision when foraging, 
navigating their environment, and evading predators, the potential ef-
fects of impaired vision may be substantial. However, currently it is 
unknown precisely how eyeworm infection impacts the visual acuity of 
infected bobwhite and how this may impact their interaction with and 
ability to survive in the environment. Although pathological evidence 
suggests that damage is occurring and is supported by anecdotal ac-
counts of impaired vision in quail infected with O. petrowi (Brym et al., 
2018a, 2018c), additional research is necessary in order to evaluate the 
effect of O. petrowi on bobwhite vision and overall impact it could have 
on a population. 

Caecal worm infections have also been correlated with negative 
impacts on bobwhite. For example, Dunham et al. (2017b) demon-
strated that birds with A. pennula are often found with only minimal 
amounts of digesta in the caeca, while Lehmann (1953, 1984) associated 
high burdens with lower levels of vitamin A and drought. These obser-
vations led the researchers to postulate that caecal worm infection could 
reduce feed intake, impede digestion, and exacerbate periods of stress, 
which are commonly associated with intestinal parasites (Petkevičius, 
2007). Due to the important functions of the avian caecum, such as 
nutrient and water absorption, antibody production, and cellular 
digestion (Clench and Mathias, 1995), disruption to its function may 
indeed exacerbate periods of stress for bobwhite, such as drought and 
food scarcity. In addition to being coincident with periods of low pre-
cipitation, caecal worm infections are also known to peak in winter 
(Lehmann, 1953; Rollins, 1980; Blanchard et al., 2019), and both of 
these periods typically result in high mortality for bobwhite (Hernández 
et al., 2005; Hernández and Peterson, 2007). Furthermore, the effects of 
A. pennula may not only be limited to survivability, but these worms 
could also impede the breeding potential of bobwhite by reducing the 
availability of vitamin A, a key nutrient for reproduction and survival 
(Nestler, 1946), as well as diverting resources from reproduction. As 
such, A. pennula may have the potential to impact bobwhite populations 
through reduced survival and fecundity, although additional research is 
needed to evaluate this potential impact at the population level. 

4.6. Future work to address questions 6 and 7 

While further studies are needed to determine if parasitic infection 
elicits other specific biological effects in bobwhite and whether they 
have a measurable impact at the population level, the WOE framework 
accounts for the well-known difficulty in determining these questions in 
a wild system. This allows us to move to questions 6 and 7 in the 
framework. Question 6 evaluates observed or specific effects that have 
been documented in the laboratory. Currently, laboratory experiments 
are underway, and the infection of bobwhite with O. petrowi in the 
laboratory has been completely worked out, from intermediate host to 
definitive host (Kalyanasundaram et al., 2019a). Challenge experiments 
have also been conducted, which determined that eyeworm and caecal 

worm glycoproteins elicit an immune response in bobwhite (Kalyana-
sundaram et al., 2019b), and O. petrowi can cause oxidative stress and 
mount an immune response (Hunter, 2016). Multiple studies are in 
development to better understand how parasites affect bobwhite 
including: studies to replicate the life cycle of A. pennula within the 
laboratory; studies to investigate the biological responses that O. petrowi 
and A. pennula may elicit in bobwhite; and experiments to assess impacts 
on the health and fitness of infected individuals. 

Finally, in regards to question 7, which entails assessing the response 
of the bobwhite populations to the removal of parasites, field studies as 
those conducted by Hudson et al. (1998) on red grouse provide a model 
for future work. However, the empirical studies by Hudson (1986) and 
Hudson et al. (1992, 1998) investigating the potential of parasites to 
affect population dynamics of red grouse took over 20 years to complete 
and utilized a medicated grit. Studies such as these are currently hin-
dered as there are currently no anthelmintics registered for use in wild 
bobwhite in the United States (Needham et al., 2007). Therefore, 
experimental manipulation studies must await registration of a treat-
ment for wild bobwhite. 

Nevertheless, a great deal of progress has been made to pave the way 
for future work investigating the interactions between bobwhite and 
parasites. Molecular techniques have been developed in order to non- 
lethally assess parasitic infection in bobwhite via a cloacal swab or 
feces sample that is evaluated by quantitative PCR (qPCR) and can 
detect the DNA for as little as one egg (Kistler et al., 2016b; Kalyana-
sundaram et al., 2018c). These methods were then adapted for use at a 
regional scale (Blanchard et al., 2018), as they are considered an 
effective form of parasite monitoring (Gray et al., 2012) that provides a 
valuable supplement to traditional methods (Archie et al., 2009). This 
will be beneficial for long term studies to non-lethally evaluate the ef-
fects of these parasites at the population level. Molecular techniques 
may also be useful in understanding the transmission dynamics of par-
asites, which are often influenced by climate (Harvell et al., 2002; 
Benton et al., 2015). For example, Blanchard et al. (2019) used qPCR 
and climatic variables to determine that temperature and precipitation 
could influence eyeworm and caecal worm egg shedding in bobwhite. 

5. Conclusions 

There is still much research needed to determine the full conse-
quences of O. petrowi and A. pennula on bobwhite, particularly since the 
interactions of multiple parasites is understudied and not well under-
stood (Pedersen and Fenton, 2007; Bordes and Morand, 2011). How-
ever, this WOE based approach reveals that parasites should be 
investigated further as they likely play a larger role in regulating 
bobwhite populations than previously thought. By using WOE, the 
pieces can begin to be assimilated and potential interactions may 
become evident (Fig. 3). This would be invaluable to studies of wildlife 
disease where it is impossible to control all factors and where disease 
effects can be abstruse (May, 1988; Woolf et al., 1993). 

The proliferation and impacts of disease amidst widespread and 
rapid global change involve overarching, interrelated, and complex 
processes, which may test the bounds of traditional methods of inquiry 
(Plowright et al., 2008). In this ever-changing world, conventional 
strategies for quail management, as well as the management of other 
species, may be insufficient (Deem et al., 2001; Palmer et al., 2012), and 
crisis management is not suitable for conserving a species either (Plo-
wright, 1988; Friend, 2014; Grant et al., 2017). Instead, multidisci-
plinary approaches are necessary and should be used when addressing 
disease and conservation of a species (Daszak et al., 2000; Deem et al., 
2001; Plowright et al., 2008; Hoverman and Searle, 2016). 

Thus, we suggest that WOE is a valuable tool for identifying potential 
instances of significant disease impacts. Although the WOE approach 
cannot answer all the questions of how a disease impacts a wild popu-
lation, “disease management requires acting with imperfect informa-
tion” (Grant et al., 2017), and WOE provides an effective means of 
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investigating multiple lines of evidence in a systematic manner. How-
ever, WOE is not a replacement for empirical studies and should be used 
to identify whether it is worthwhile to move forward with empirical 
studies that are often logistically difficult in wild populations. Following 
identification of a problem using WOE, empirical study and an active 
adaptive management strategy could be adopted for more complete 
insight into the complex nature of wildlife systems. This will help ach-
ieve immediate management needs while gaining knowledge that is 
beneficial to developing robust long-term strategies (McDonald-Madden 
et al., 2010). 
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