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Abstract
Hepatocellular carcinoma (HCC) can be potentially discovered from abdomi-
nal computed tomography (CT) studies under varied clinical scenarios (e.g., 
fully dynamic contrast-enhanced [DCE] studies, noncontrast [NC] plus venous 
phase [VP] abdominal studies, or NC-only studies). Each scenario presents 
its own clinical challenges that could benefit from computer-aided detection 
(CADe) tools. We investigate whether a single CADe model can be made flex-
ible enough to handle different contrast protocols and whether this flexibility 
imparts performance gains. We developed a flexible three-dimensional deep 
algorithm, called heterophase volumetric detection (HPVD), that can accept any 
combination of contrast-phase inputs with adjustable sensitivity depending on 
the clinical purpose. We trained HPVD on 771 DCE CT scans to detect HCCs 
and evaluated it on 164 positives and 206 controls. We compared performance 
against six clinical readers, including two radiologists, two hepatopancreati-
cobiliary surgeons, and two hepatologists. The area under the curve of the 
localization receiver operating characteristic for NC-only, NC plus VP, and full 
DCE CT yielded 0.71 (95% confidence interval [CI], 0.64–0.77), 0.81 (95% CI, 
0.75–0.87), and 0.89 (95% CI, 0.84–0.93), respectively. At a high-sensitivity 
operating point of 80% on DCE CT, HPVD achieved 97% specificity, which is 
comparable to measured physician performance. We also demonstrated per-
formance improvements over more typical and less flexible nonheterophase 
detectors. Conclusion: A single deep-learning algorithm can be effectively ap-
plied to diverse HCC detection clinical scenarios, indicating that HPVD could 
serve as a useful clinical aid for at-risk and opportunistic HCC surveillance.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common 
primary malignant tumor of the liver and is the fourth 
leading cause of cancer deaths worldwide.[1] The num-
ber of new cases of HCC increases annually.[1–3] HCC 
almost runs a fulminant course and carries a grave 
prognosis.[3]

Imaging plays a key role in the diagnosis of HCC. 
Advances in imaging technology over the past 2 de-
cades have contributed to better characterization of 
hepatic lesions. Dynamic contrast-enhanced (DCE) 
multiphase computed tomography (CT) of the liver, 
which includes noncontrast (NC), arterial phase (AP), 
venous phase (VP), and delay phase (DP) scans, is 
a preferred imaging modality for surveying patients at 
risk of HCC.[4] The American Association for the Study 
of Liver Diseases guidelines recommend DCE CT as 
the diagnostic evaluation of HCC.[5] A recent Cochrane 
meta-analysis has reported that detection sensitivity 
is 78% and specificity is 91% for HCC lesions of any 
size.[6] For analysis focusing on small lesions, sensi-
tivity has been reported to be as low as 40%.[7] Thus, 
HCC lesions are at danger of being missed at an early 
course of the disease when treatment is most prom-
ising. However, such analyses only focus on studies 
using pathological examination of the explanted liver 
or a biopsy of focal lesions as reference standards, 
meaning patients who are negative would typically 
have either very advanced chronic liver disease or a 
liver lesion of another type. Sensitivities and specific-
ities from the broader clinical population may not be 
captured. HCC lesions are also increasingly being dis-
covered in patients not known to be high risk for HCC, 
using imaging studies ordered for indications other 
than suspicious liver lesions.[8–10] Even though it is less 
informative than DCE CT, such protocols represent a 
potentially important opportunity for opportunistic HCC 
surveillance. Computer-aided solutions may help im-
prove patient surveillance in these challenging settings.

Deep learning (DL)-based computer-aided detection 
(CADe) algorithms have achieved notable successes 
within natural imagery.[11] In medical images, research-
ers have applied DL CADe to find liver lesions, but 
apart from Kim et al.,[12] current studies either do not 
compare against clinical readers[13–16] or do not enroll 
control patients without any target lesions[16,17]; thus, 
gauging the CADe model screening sensitivity and 
specificity is difficult. Another gap is that HCC surveil-
lance can be plausibly executed on different CT study 
types, each typically corresponding to its own distinct 
scenario. Three types are particularly prominent: DCE 
CT for patients at high risk for liver lesions; NC + VP 
CT abdominal studies acquired for general abdominal 
diagnostic purposes; and NC CT studies acquired for 
general diagnostic purposes or for patients unable to 
tolerate contrast agents. The effectiveness of DL CADe 

for these different scenarios needs to be assessed, 
ideally considering the makeup of the likely imaged 
population for each protocol. For DCE CT and the as-
sociated higher risk population, high sensitivity is likely 
of greater importance. For NC + VP or NC-only and the 
associated more general population, high specificity is 
likely paramount. Other contrast-phase combinations 
are also possible (e.g., for centers that do not acquire 
DP scans). Because each contrast phase can present 
distinct information, all acquired scans should be ex-
ploited in detection. Correspondingly, a deployed DL 
CADe model should be flexible enough to handle any 
contrast-phase combination that it is presented with.

In this study, we develop a flexible DL HCC lesion 
CADe algorithm, called heterophase volumetric de-
tection (HPVD), to deal with these challenges. Our 
approach integrates heteromodal learning[18] into a 
powerful volumetric detection framework.[13] This heter-
omodal (or heterophase) integration accomplishes two 
goals: (a) it enables HPVD to operate with any com-
bination of CT phase inputs, providing it with maximal 
flexibility in deployment and (b) our single HPVD algo-
rithm can perform noninferior to standard input-specific 
CADe algorithms, each trained only on one contrast-
phase combination, which makes the HPVD algorithm 
a valuable means to survey for HCC in varied and dis-
tinct patient populations.

MATERIALS AND METHODS

Patient collection and image collection

Our patient and study selection process, which was ap-
proved by the institutional review board (201800187B0) 
of Chang Gung Memorial Hospital (CGMH), is illus-
trated in Figure 1. Our target patient population com-
prised patients with one or more viable HCC lesions. 
Our control patient population comprised patients who 
were high risk with no viable HCC lesions. We drew 
patients from the following two pools: pathology-proven 
studies and nonpathology-proven negative studies. All 
negative studies were used as controls, but pathology-
proven studies were either target or control.

To construct the pool of pathology-proven studies, 
we examined the pathology reports indicating liver 
neoplasm from November 1999 to December 2017 
from CGMH Linkou, a major hospital in Taiwan. From 
these, we identified 1287 complete reports diagnos-
ing the presence of HCC from either hepatic resection 
or liver transplantation procedures that also had as-
sociated preoperative DCE CT studies in the CGMH 
Picture Archiving and Communication System (PACS) 
repository within 3 months before the procedure. The 
pathological reports specify the number of lesions and 
their liver segment location. Using this information, a 
hepatopancreatobiliary (HPB) surgeon (C.T.C. with 
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9 years of experience) located every lesion in the DCE 
CT studies, annotating each reported lesion in each 
CT study with a three-dimensional (3D) bounding box 
(bbox). If the reported lesion was not visible in the DCE 
CT scans, no bbox was drawn and the corresponding 
study was excluded. Transcatheter arterial chemoem-
bolization (TACE)-treated HCC lesions were also an-
notated, but these were recorded as a separate type. 
After the annotation and review process, a total of 1140 
DCE CT studies remained. These were split into 856, 
99, and 185 studies for training, validation, and test-
ing, respectively. Among the training and validation 
sets, 21 and 10 pathology-proven studies, respectively, 
only contained TACE-treated HCCs. These pathology-
proven TACE-only studies were included in the control 
cohort, resulting in 164 and 89 target studies in the test 
and validation set, respectively. In the training data set, 
we excluded studies with only TACE-treated HCC le-
sions for algorithmic development purposes, resulting 
in 771 studies. However, after a final review, 10 TACE-
only studies were still found among the 771 studies (de-
tails in the Supporting Material).

Patients with only TACE-treated HCC lesions from 
the pathology-proven group were considered part of 
the control cohort. To augment the control cohort fur-
ther, we constructed a pool of negative studies, which 
were defined as nonpathology-proven DCE CT studies 
where the associated radiologic report indicated no le-
sions. To do this, we extracted the CGMH radiologic 
reports of DCE CT studies from 2008 to 2017, which 
are typically only ordered if there is a suspected liver 
lesion. To identify studies where no liver lesions were 
found, we adapted the NegBio[19] radiologic report 
parser to flag and exclude studies where a found liver 
lesion was mentioned in the radiologic report. Liver le-
sion types disqualifying a study included HCC, intra-
hepatic cholangiocarcinoma, hemangioma, secondary 
metastasis, focal nodular hyperplasia, adenoma, and 
abscess findings, where we used the MetaThesaurus 
to identify synonyms for each finding.[20] Because liver 
cysts are common and easy to distinguish from HCC, 
the presence of a liver cyst did not disqualify a patient 
from being in the control cohort. The text parser iden-
tified 2559 DCE CT studies as having no liver lesion 

F I G U R E  1   Patient selection and data set preparation. aIncludes 1024 with untreated HCCs and 116 controls with only TACE-treated 
HCCs. bIncludes 164 studies containing untreated HCCs and 21 TACE-treated control studies. cIncludes 761 studies containing untreated 
HCCs, with 10 TACE-treated studies found after a final review. dIncludes 89 studies containing untreated HCCs and 10 TACE-treated 
control studies. eIncludes 45 studies containing untreated HCCs and five TACE-treated control studies. The numbers for each split are 
derived from splitting the total number of pathology studies into training (70%), test (20%), and validation (10%). CT, computed tomography; 
DCE, dynamic contrast enhanced; HCC, hepatocellular carcinoma; TACE, transcatheter arterial chemoembolization.
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findings, and from these, we randomly selected 470 
studies. From these, we manually double-checked the 
reports, excluding another 10 from the pool. We ran-
domly selected 99 and 185 of these studies to match 
the numbers in the validation and test set, respectively, 
of the pathology-proven studies. The demographic, 
clinicopathological, and scanning parameters of these 
cohorts are outlined in Table 1 and Tables S1 and S2.

After DCE CT study collection, the phase of each 
scan was manually identified for validation and test sets 
and semiautomatically identified for the training set (de-
tails in the Supporting Material). Scans within a DCE 
study were cropped to the same field of view (based 
on world coordinates). Any nonrigid misalignments be-
tween scans were rectified by registering the NC, AP, 
and DP scans to the VP scan, using SimpleElastix[21] 
for rigid alignment followed by the dense displacement 
sampling (DEEDS) algorithm[22] for nonrigid alignment. 
Finally, for each study, a liver mask was automati-
cally generated using the robust multiphase CHASe 
algorithm.[23]

Algorithmic development

The training and inference workflow of the HPVD al-
gorithm is depicted in Figure 2. HPVD enhances and 
extends a state-of-the-art deep-learning 3D CADe al-
gorithm, called volumetric universal lesion detection 
(VULD).[13] VULD accepts 3D CT scans as input and 
then outputs bboxes around any found lesion. It has 
been shown to outperform many popular deep-learning 
CADe algorithms for lesion detection.[13] However, one 
trained VULD model can only accept a specific input 
phase combination. HPVD avoids this restriction by 
enhancing VULD for heteromodal learning using 
Heteromodal Image Segmentation principles.[18] Unlike 
VULD, a single HPVD model accepts any combina-
tion of multiphase 3D inputs. During training, HPVD 
learns to predict bboxes to localize lesions from any 
input phase combination, which can range from single-
phase to the complete four-phase DCE CT. HPVD only 
localizes suspicious lesion regions without discriminat-
ing their type, so a simple postprocessing step filters 
out any TACE-treated HCC lesions from the target un-
treated HCC lesions. During inference, the automati-
cally derived liver mask is used to eliminate detected 
bboxes where less than 30% of its volume overlaps 
with the liver mask. Detailed explanations of the HPVD 
model construction, loss function, and training can be 
found in the Supporting Material.

Lesion-flagging criterion

Evaluating CADe models requires a criterion for whether 
a bbox represents a good localization. No option is 

perfect,[24] but it must reflect the end clinical goals and 
must be chosen a priori. Note the chosen criterion is 
not affected by nor does it affect algorithmic training, 
it is only used in evaluation to separate true-positive 
bboxes from false-positive (FP) ones. The main goal of 
HPVD is to flag lesions and bring them to the attention 

TA B L E  1   Demographic distribution of data sets

Feature
Target 
(n = 164)

Control 
(n = 206)

Entire test data set (pathology 
proven + negatives)

TACE present, n (%) 7 (4.3) 21 (10.2)

Age, mean (SD) 59.3 (11.1) 53.9 (13.6)

Sex, n (%)

Male 39 (23.8) 75 (36.4)

Female 125 (76.2) 131 (63.6)

Pathology-proven cohorts 
(target + TACE-only controls)

Feature Training 
(n = 771)

Test (n = 185)

Total HCC lesion numbers 851 175

Total TACE lesion numbers 73 50

HCC makeup, n (%)

None (TACE-only) 10 (1.3) 21 (11.4)

Solitary 688 (89.2) 155 (83.8)

Multiple 73 (9.5) 9 (4.9)

Procedure, n (%)

Resection 692 (89.8) 158 (85.4)

Transplantation 79 (10.2) 27 (14.6)

Hepatitis, n (%)

Hepatitis B 417 (54.1) 86 (46.5)

Hepatitis B and C 36 (4.7) 9 (4.9)

Hepatitis C 147 (19.1) 46 (24.9)

Not hepatitis B or C 56 (7.3) 17 (9.2)

Unknown 115 (14.9) 27 (14.6)

Cirrhosis, n (%) 393 (51.0) 104 (56.2)

Fatty liver, n (%)

No 539 (70.2) 133 (71.9)

Mild 167 (21.7) 39 (21.1)

Moderate 61 (7.9) 12 (6.5)

Severe 1 (0.1) 1 (0.5)

Note: We use HCC to denote untreated HCC lesions, whereas TACE 
denotes TACE-treated HCC lesions. Pathology-proven and negative-DCE 
CT studies (185 each) were enrolled as part of the test set. Of the pathology-
proven studies, 21 were TACE-only and are considered part of the control 
cohort, with the remainder considered as part of the target cohort. We 
list characteristics of the entire test data set first, followed by a listing of 
characteristics only available in the pathology-proven subset of the test set. 
We also list characteristics of the training set, which is entirely pathology 
proven.
Abbreviations: CT, computed tomography; DCE, dynamic contrast 
enhanced; HCC, hepatocellular carcinoma; TACE, transcatheter arterial 
chemoembolization.
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of the physician to avoid missing observable HCCs. A 
common evaluation criterion is the intersection over 
union (IoU) with the ground-truth bboxes.[24] However, a 
good or bad IoU does not necessarily capture whether 
a lesion is successfully flagged. We use a different 
criterion, which we call the lesion-flagging criterion. 
First, the center of a predicted bbox must lie inside the 
ground-truth bbox, which is sometimes called the point-
ing game in machine-learning literature.[25] Second, a 
predicted bbox must also have a high enough intersec-
tion over the detected bbox area (IoBB),[26] which does 
not penalize predicted bboxes smaller in area than 
the ground-truth bbox. We used a 3D IoBB threshold 
≥0.3. The lesion-flagging threshold and the difference 
between IoU and IoBB are pictorially demonstrated in 
Figure 3.

Reader study

We recruited six board-certified physicians as our 
clinical readers. We randomly selected 50 pathology-
proven and 50 negative-CT studies from the larger 
test set. Among the 50 pathology-proven studies, 45 
were target studies containing one or more untreated 
HCC lesions and five were control studies with only 
TACE-treated HCC lesions. The demographic data of 
the reader study subset are shown in Table  S3. We 

developed a plugin for the Medical Imaging Interaction 
Toolkit (MITK) viewer[27] that allowed readers to quickly 
navigate through a set of multiphase CT studies and 
mark suspicious lesions with a response evaluation cri-
teria in solid tumors (RECIST) marks.[28] A 2D box can 
be generated from the resulting RECIST marks. Each 
reader was given the MITK software and the custom 
plugin, and we asked the readers to decide if any non-
treated HCC lesions were present and if so, to mark the 
maximally suspicious finding (details in the Supporting 
Material).

Statistical analysis

We performed two primary types of analysis. The first 
was free-response receiver operating characteristic 
(FROC) analysis,[29] which is common in CADe evalu-
ations and provides a measure of how well the CADe 
models can localize all lesion findings in the CT stud-
ies. The sensitivity and FPs per study were measured 
across different confidence thresholds to produce the 
FROC curve. We compared a single HPVD model 
against three VULD models, each trained specifically 
for one of the three input phase combinations. Other 
main figures of merit were derived from localization 
ROC (LROC) analysis.[30] The LROC curve can be 
interpreted similarly as ROC curves, except that the 

F I G U R E  2   Complete workflow of the image preprocessing and detection algorithm. 3D, three dimensional; CT, computed tomography; 
DCE, dynamic contrast enhanced; HCC, hepatocellular carcinoma; HPVD, heterophase volumetric detection; NMS, non-maximum 
suppression, TACE, transcatheter arterial chemoembolization.
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ordinate of the curve is the true-positive localization 
rate (TPLR), meaning the CADe model must both (1) 
detect the presence of HCC lesion(s) when one or more 
are present and (2) localize one of them successfully. 
The confidence threshold can be varied, and the corre-
sponding TPLR and specificities can be calculated. We 
calculated the area under the curve (AUC) of the LROC 
with 95% confidence intervals and statistical signifi-
cance tests on the improvements of the HPVD AUC 
over VULD, calculated using the nonparametric pro-
cedure of Wunderlich and Noo.[30] The Bonferroni cor-
rection was applied to correct for multiple comparisons 

of the latter.[31] Please see our Supporting Material for 
more explanation on these designs.

RESULTS

High lesion-wise detection performance

FROC curves for the complete test set (n = 370) are 
rendered in Figure 4A–C. Focusing on the 0.125-FPs/
study operating point for the NC-only, NC + VP, and DCE 
CT settings, HPVD achieved 61.5%, 74.1%, and 80.5% 

F I G U R E  3   Bounding box detection. A bounding box detection is considered as a true positive if (A) its center falls inside the ground-
truth lesion bounding box and (B) if the three-dimensional IoBB is >0.3. Here for clarity, we use two-dimensional illustrations. On the right, 
the overlap area used in the numerator and denominator for the IoBB metric and the more common IoU metric are pictorially illustrated. 
IOBB, intersection over the bounding box; IoU, intersection over union.

F I G U R E  4   FROC curves of detection performance of the VULD and HPVD models. FROC curves depict performance using the 
complete test set (n = 370), where detection performance is depicted on (A) NC-only, (B) NC + VP, and (C) full DCE CT studies. CT, 
computed tomography; DCE, dynamic contrast enhanced; FP, false positive; FROC, free-response receiver operating characteristic; HPVD, 
heterophase volumetric detection; NC, noncontrast; VP, venous phase; VULD, volumetric universal lesion detection.
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sensitivity, respectively, compared to the VULD lower 
sensitivities of 51.3%, 59.8%, and 73.6%, respectively. 
As expected, performance was best under the full DCE 
CT setting and sensitivities decreased as fewer phases 
were available. The increased performance of one 
HPVD model over three different input-specific VULD 
models suggests that heterophase learning can impart 
performance improvements over and above any ben-
efits from increased flexibility. In particular, the HPVD 
high NC + VP performance suggested it still provided 
good lesion-wise detection performance despite the 
lack of arterial and delayed contrast phases.

High study-wise detection performance

Study-wise LROC curves are rendered in Figure  5. 
When using the complete test set (n = 370), the sin-
gle HPVD model can yield a higher AUC than each of 
the three VULD models, no matter the input settings 
(Figure  5A–C). However, statistically significant im-
provements were only achieved for the NC + VP setting. 
Unsurprisingly, performance was best when full DCE 
CT was available, but HPVD still managed to post an 
AUC of 0.81 when only given NC + VP CTs. The NC-
only input challenged HPVD the most, but the TPLR 
may be high enough for opportunistic screening. The 
performance at high-specificity and high-TPLR oper-
ating points, which may be good settings for low-risk 
opportunistic screening and high-risk screening, re-
spectively, is highlighted in Figure 5A–C. When using 
full DCE CT (e.g., for high-risk screening), HPVD can 
reach a specificity of 97% at the high-TPLR operating 
point of 80%. On the other hand, for potential low-risk 
screening applications, HPVD can achieve a TPLR of 
59% and 74% for the NC-only and NC + VP settings, re-
spectively, at a high-specificity operating point of 95%.

In terms of the reader-study subset (n  =  100), 
Figure 5D–F illustrates HPVD and reader performance. 
As can be seen, all readers performed well when given 
the four-phase DCE CT, but HPVD managed to outper-
form or match them. As expected, reader performance 
dropped substantially with the NC + VP and NC-only 
studies, with the two radiologists tending to perform 
better than the other specialties. In the NC + VP and 
NC-only studies, HPVD still performed well but its per-
formance dropped like the readers. These results sug-
gest that HPVD can match the performance trends of a 
diverse strata of clinical readers.

Because small lesions can challenge discovery, we 
also evaluated the effect of lesion size on performance. 
To do this, we stratified the pathology-proven cohort 
by studies that had the largest lesion ≤3 cm (n  =  92, 
49.7%) or >3 cm (n = 93, 50.3%), which is a size thresh-
old that can be used to discriminate between early and 
intermediate-stage HCC.[32] We randomly selected 
negative-control cases to match the number of target 

cases in each size stratification. Smaller sized lesions 
indeed challenged the HPVD model (Figure 6A,B), with 
HPVD reporting AUCs of 0.95 and 0.81 for large and 
small lesions, respectively, under the DCE CT setting. 
Results from the reader study subset (Figure  6C,D) 
demonstrated that such lesions also seriously chal-
lenged physician readers. Importantly, the performance 
of HPVD was better than clinical readers, suggesting 
that the CADe model could be beneficial in discovering 
HCC lesions early in their course. The LROC curves of 
NC + VP and NC-only are shown in Figures S1 and S2, 
respectively.

Finally, some qualitative examples are highlighted 
in Figure  7. Cases that were localized by HPVD but 
missed by some of the readers, exemplifying the in-
terobserver variation among human readers, are high-
lighted in Figure 7A,B. A small HCC, sized at 1.8 cm, 
was missed by all readers for all three input phase set-
tings (Figure 7C). However, HPVD correctly localized 
the lesion if given either an abdominal CT (NC + VP) or 
a full DCE CT.

DISCUSSION

This work highlights several important results. 
Foremost, a single HPVD CADe model can accurately 
localize HCC lesions in various input phase settings 
and can outperform multiple input-specific competitors. 
On our data set, HPVD performs comparably or better 
than two radiologists, two hepatologists, and two HPB 
surgeons; for small lesions, HPVD performs better than 
all tested readers. In medical centers, liver imaging in-
terpretations are performed by a specialized radiologist 
with a multidisciplinary team. However, most patients 
are diagnosed initially in regional hospitals lacking spe-
cialized radiologists where our CADe model could play 
an important role.

Effective use of CT imaging for HCC detection is 
critical for increasing patient survival, but it is compli-
cated and difficult. For one, patient distributions are 
challenging. Unlike other liver lesions, up to 76%–90% 
of patients with HCC in Western countries usually have 
cirrhosis,[33,34] causing morphologic changes that can 
obscure lesions. Additionally, cirrhosis is associated 
with hepatic nodular lesions that can be easily mistaken 
as HCC, even by expert clinicians.[35] For patients with 
cirrhosis, reported diagnostic sensitivity ranges from 
44% to 87%.[36,37] Furthermore, surgical or TACE treat-
ment of HCC can cause their own obscuring morpho-
logic changes as tissue regenerates, making it difficult 
to identify viable or new tumors. Our data collection 
protocol mirrored many of these challenges. All patients 
with a pathological HCC diagnosis from a resection or 
transplantation between 2000 and 2017 and who had 
an accompanying preoperative DCE CT study were en-
rolled from the CGMH, which is a major hospital and a 
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F I G U R E  5   Patient-wise HCC detection LROC analysis. Detection performance is depicted for (A) NC-only, (B) NC + VP, and (C) DCE 
CT studies. The complete test set results (n = 370) are presented, where performance of VULD and HPVD are illustrated. (A–C, i) LROC 
curves using the top-1 detected bbox in each patient. AUCs are reported with 95% confidence intervals. The * in (B) indicates the difference 
between the VULD and HPVD AUC is statistically significant. (A–C, ii) Patient-wise LROC analysis at two possible operating points, one 
that could be appropriate for surveilling patients at high risk (high TPLR of 0.80) and the other for opportunistic screening of patients at 
low risk (high Sp of 0.95). Some models could not achieve the high TPLR so their Sp is set as N/A. (D-F) Performance is presented for 
the reader study subset (n = 100), where reader performance is also marked. (D–F, i) Each data point represents a single reader, and 
each LROC curve represents the performance of the deep-learning model using the top-1-detected bbox in each patient. (D–F, ii) TPLR 
of each reader and the TPLR of the proposed model at a Sp chosen to match each reader's Sp. (D–F, iii) Sp of each reader and the Sp of 
the proposed model at a TPLR chosen to match each reader's TPLR. Note, VULD requires a separate model for each input contrast-phase 
setting. AUC, area under the curve; bbox, bounding box; CT, computed tomography; DCE, dynamic contrast enhanced; HCC, hepatocellular 
carcinoma; HPB, hepatopancreaticobiliary; HPVD, heterophase volumetric detection; LROC, localization receiver operating characteristic; 
N/A, not applicable; NC, noncontrast; SP/Sp, specificity; TPLR, true-positive localization rate; VP, venous phase; VULD, volumetric 
universal lesion detection.
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leading center for HCC surveillance and treatment.[38] 
Hence, its patient population should be a good repre-
sentation of the target population in East Asia, where 
HCC prevalence is particularly acute.[32] Our negative-
control population was also carefully selected as they 
were drawn from patients imaged with DCE CT, which 
is only typically ordered for patients at high risk who 
match many of the profiles of the target population.

Because the liver tissue background and other ana-
tomic structures are frequently hard to distinguish from 
HCC lesions, multiple contrast phases are needed to 
confidently detect HCC. Consequently, DCE CT is the 
standard diagnostic tool,[5] but it adds its own difficul-
ties. Imaging is conducted at several time intervals after 
contrast injection, and not all images can be acquired 
at the right timing, which makes contrast enhancement 
nonstandardized across patients. The amount and rate 
of administration of contrast and the imaging speed 
also impact DCE CT quality.[39,40] Finally, patient move-
ment and breathing can cause nonrigid misalignments 
between phases. Typical identifying DCE CT features 

may only be present in 26%–62% of HCC lesions, and 
a non-negligible number of HCCs can be hypovascular 
(with poor contrast enhancement), which can lead to a 
false-negative diagnosis.[36,37]

Despite these challenges, the current HPVD algo-
rithm can achieve a specificity of 97% at a high TPLR 
operating point of 80%, which compares well to re-
ported clinician performance.[36,37] HPVD can achieve 
a higher TPLR than all six tested readers when eval-
uating at their measured specificities, as Figure  5F 
demonstrates. In terms of small lesions, reader and 
HPVD performance drop, but the relative difference 
between HPVD and the readers (Figure 6C) is greater 
than for large lesions. When applied to DCE CT im-
ages typically used for high-risk populations, the HPVD 
model may help avoid missed lesions and may help 
avoid additional imaging or invasive biopsy procedures.

The results with DCE CT are highly promising, but 
DCE CT is not a frontline tool for opportunistic detec-
tion as it takes more time to conduct and is not read-
ily obtainable in remote centers. Thus, HCC detection 

F I G U R E  6   LROC curves using full DCE CT studies stratified by the size of the largest lesion. (A,B) Results on the full test set for 
studies with small (n = 184) and large (n = 186) lesions, respectively. (C,D) Results on the reader study subset for studies with small (n = 44) 
and large (n = 56) lesions, respectively, with reader performance also indicated. AUC, area under the curve; CT, computed tomography; 
DCE, dynamic contrast enhanced; HPB, hepatopancreaticobiliary; HPVD, heterophase volumetric detection; LROC, localization receiver 
operating characteristic; SP, specificity; TPLR, true-positive localization rate; VULD, volumetric universal lesion detection.
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applied to other CT protocols is also important to de-
velop. For instance, standard general-purpose abdom-
inal CT protocols consist of just the NC + VP scans. 
Because early stage HCC mostly manifests without 
symptoms,[3,41] opportunistically discovering incidental 

HCC findings from such protocols may be a fruitful way 
to detect early HCC; such “incidentalomas” are increas-
ingly being detected as the prevalence and use of imag-
ing has increased worldwide.[8–10] Solely using human 
clinical readers to detect incidental findings is difficult or 

F I G U R E  7   Examples of HCC detection. Each row presents DCE CT scans from one study. (A–C) Studies with pathology-proven 
HCC. (D) Negative study. In (A–C), the most representative axial slice of the lesion from the NC, VP, AP, and DP scans are shown from 
left to right. Instead of a lesion, (D) shows a false-positive detection produced by HPVD when it is given DCE CT input. Reader and HPVD 
performance are indicated by the check marks or cross marks below each study, where the two hepatopancreaticobiliary surgeons, two 
radiologists, and two hepatologists are arranged from left to right. A check mark is used to indicate that the reader or model has correctly 
classified the corresponding case. Otherwise, cross marks are used to indicate incorrect classifications. Red arrows indicate HCC lesions, 
and white arrows indicate the false-positive detection in (D). CT images were rendered using a [40, 400] Hounsfield-unit window. AP, 
arterial phase; CT, computed tomography; DCE, dynamic contrast enhanced; DP, delay phase; HCC, hepatocellular carcinoma; HPVD, 
heterophase volumetric detection; NC, noncontrast; VP, venous phase.
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infeasible as the examination of the liver may not be as 
thorough as for CT studies ordered specifically for HCC 
surveillance. In such scenarios, high-specificity operat-
ing points are likely critical to reduce FPs because the 
HCC prevalence will be lower than with high-risk popu-
lations. The HPVD TPLR is 74% at a specificity of 95% 
when using the NC + VP input (Figure 5B). Apart from 
one radiologist, HPVD can outperform clinical readers 
for this setting (Figure 5E). HPVD could be applied to 
any abdominal CT study to automatically flag suspicious 
regions requiring more investigation. The NC-only input 
setting is also clinically important because cirrhotic he-
patic disease is associated with renal insufficiency,[42] 
which can prohibit the use of contrast media to surveil 
HCC. Additionally, a high proportion of general patients 
who only undergo medical examinations have NC CT 
acquired, and incidental identification of liver tumors is 
not uncommon.[8–10] In patients with hepatic steatosis, 
the fatty sparing infiltration around the tumor in NC-
only CT can be a highly suspicious presentation of 
HCC; however, other liver tumors also showed similar 
presentation.[43–45] Although TPLRs suffer compared 
to an NC + VP protocol (59% compared to 74%), HPVD 
can still localize HCCs at high specificities of 95%.

Several published works have proposed liver lesion 
CADe solutions, including some examples that have 
only been validated on small data sets[16] or did not 
present comparative clinical reader performance.[13–16] 
Zhou et al.[17] investigated reader performance against 
their DCE CT CADe model, but only for classification 
and not for localization. They also only reported CADe 
performance at one operating point and did not specify 
their criteria for judging a detection as a true positive 
or not, which is a crucial detail for CADe evaluation.[24] 
Furthermore, they excluded patients with treated le-
sions, including TACE, and those who had surgery. 
Given the critical importance of detecting recurrent 
HCC lesions, this eliminates a major target popula-
tion. Kim et al.[12] reported a DCE CT CADe solution 
for secondary liver metastases from colorectal cancer 
and demonstrated good performance against clinical 
readers, but again no criteria were given for what con-
stitutes a good localization. Moreover, they developed 
a 2D CADe model instead of a true 3D one, like ours. 
Because they do not have the requisite 3D context, 
2D CADe models are more susceptible to FPs, which 
may explain why they reached a sensitivity of 81.3% at 
the cost of 1.3 FPs/study. By contrast, HPVD reaches 
80.5% sensitivity at only 0.125 FPs/study (Figure 4C).

Apart from any distinctions in evaluation and perfor-
mance, the proposed HPVD offers a notable techno-
logical distinction from all prior work—its heterophase 
capabilities. HPVD is flexible enough to handle any 
input phase combination setting, and we evaluated per-
formance for NC-only, NC + VP, and DCE CT inputs. 
Although only three prominent input phase settings were 
evaluated, HPVD can, in principle, operate with any of 

the 15 possible phase combinations. Therefore, a single 
HPVD model can readily adapt to centers that do not 
typically acquire the DP or to studies where one or more 
phases are missing. Standard models, like VULD,[13] 
require a trained model for each input phase setting. 
Ideally, CADe models can accept whatever phases 
are available, with stronger performance as more in-
puts are given. Indeed, the single HPVD model out-
performed VULD in each phase setting (Figure 5A–C), 
although statistical significance was only achieved for 
the NC + VP setting. It should be emphasized that HPVD 
is adapted from VULD,[13] and the distinction of note is 
the use of heterophase learning for the former. We are 
the first to demonstrate that a single CADe model can 
exhibit better performance than several input-specific 
models together while also being much more flexible.

There are several limitations of this study. To focus 
data collection and analyses on what is currently the 
most prevalent malignant liver lesion, our study fo-
cused specifically on detecting HCC and not all liver 
lesion types. Further algorithmic development on uni-
versal hepatic lesion CADe remains an important fu-
ture goal. Even if the focus remains on HCC detection, 
evaluating performance in the presence of other types 
should also be performed and would better represent 
clinical populations. Nevertheless, for this preliminary 
study, we did not include patients with other focal lesion 
types because each additional type is a potential con-
founding factor, requiring a commensurate increase in 
sample size for each factor to statistically measure per-
formance. Thus, we leave it for future work to charac-
terize performance under more varied scenarios. Our 
target cohort also is susceptible to selection bias as it 
was collected from patients who had undergone a liver 
resection or transplantation. Evaluation on a larger, 
nonpathology-proven, target-patient cohort is key, al-
though obtaining reliable gold-standard labels would 
become a challenge. Additionally, subgroup analysis on 
different etiologies of chronic liver disease would help 
further illuminate any strengths or weaknesses of the 
HPVD model. Our data are currently single center and 
retrospective; multicenter and prospective evaluation 
are other important future aims. In terms of experimen-
tal settings, our NC + VP input phase setting is meant to 
simulate the routine abdominal CT. In reality, a routine 
abdominal CT can use different contrast-injection pro-
tocols than DCE CT, and these may enhance tissues 
differently. Regarding the reader study, the custom 
CT viewing (and annotation software) used is not the 
same clinical Digital Imaging and Communications in 
Medicine viewer that readers would have been famil-
iar with. In addition, the scans were preprocessed with 
a registration algorithm that could decrease the reso-
lution of the images. Moreover, some studies had to 
be re-annotated because of data transfer errors. The 
above factors might affect the performance of the read-
ers and introduce a bias that differs from real-world 
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clinical settings. Finally, the readers included four non-
radiologists and one general radiologist who may not 
be representative of a clinical care team at a transplant 
or other liver center. Nonetheless, the application of 
the HPVD algorithm is not limited to such centers as 
its greatest benefit could be for non-liver centers or re-
gional hospitals that lack the requisite expertise.

In conclusion, we developed a flexible and power-
ful 3D HPVD algorithm that can operate with any com-
bination of DCE CT input phases. The HPVD model 
demonstrated its ability by its noninferior performance 
compared to clinical specialists on a balanced reader 
test across three different input phase settings. Further 
prospective study is warranted to demonstrate the ben-
efit of using HPVD for HCC surveillance in the clinical 
setting.
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