
molecules

Article

A Two-Layer SVM Ensemble-Classifier to Predict
Interface Residue Pairs of Protein Trimers

Yanfen Lyu 1 and Xinqi Gong 1,2,*
1 Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, School of Math,

Renmin University of China, Beijing 100872, China; lyf20130327wd@163.com
2 Beijing Advanced Innovation Centre for Structural Biology, Tsinghua University, Beijing 100084, China
* Correspondence: xinqigong@ruc.edu.cn; Tel.: +86-1062510313

Received: 11 August 2020; Accepted: 18 September 2020; Published: 23 September 2020
����������
�������

Abstract: Study of interface residue pairs is important for understanding the interactions between
monomers inside a trimer protein–protein complex. We developed a two-layer support vector
machine (SVM) ensemble-classifier that considers physicochemical and geometric properties of
amino acids and the influence of surrounding amino acids. Different descriptors and different
combinations may give different prediction results. We propose feature combination engineering
based on correlation coefficients and F-values. The accuracy of our method is 65.38% in independent
test set, indicating biological significance. Our predictions are consistent with the experimental
results. It shows the effectiveness and reliability of our method to predict interface residue pairs of
protein trimers.

Keywords: a two-layer SVM ensemble-classifier; trimer protein–protein complexes; feature
combination engineering

1. Introduction

Many protein complexes are formed by the interactions of multiple protein monomers.
These complexes can carry out many biological functions, such as gene expression and regulation,
signal transduction, or enzyme catalytic mechanisms [1]. Understanding the mechanisms of
protein–polymer interactions can provide useful information for the design of protein polymer
structures, protein functional annotation, and drug design [2]. The accurate prediction of interface
residue pairs in polymeric proteins is an important part in the study of protein polymer interactions.
Various experimental methods have been used in the research of protein polymers, such as X-ray
crystallography and nucleic magnetic resonance. It is impossible and unrealistic to find the interface
residue pairs for all protein polymers by an experimental method. Therefore, the prediction of protein
polymer interface residue pairs has become an important question in bioinformatics.

An increasing number of computational methods have been developed to predict protein monomer
binding sites and protein–protein interface residue pairs. In relation to this, Segura et al. [3] used
a two-step Random Forest classifier to predict protein binding sites. Hwang et al. [4] proposed an
index of Residue Contact Frequency to predict the protein monomer binding sites. Lyu et al. [5]
defined an index of contact frequency from the protein–protein docking result to accurately predict
protein–protein interface residue pairs. Ovchinnikov predicted residue–residue interactions across
protein interfaces using evolutionary information [6]. There are many other methods that are not
described here [7–15].

A higher number of protein monomers implies more complex interaction mechanisms of the
protein polymer. At present, there are a few methods to predict interface residue pairs of protein
trimer. Zhao et al. [16] took the sequence feature as input in multilayered Long Short-Term Memory
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networks to predict interface residue pairs of protein trimer. In this paper, we want to develop a new
and effective method for prediction of interface residue pairs in protein trimers.

Properties of protein sequences depend on the composition and distribution of amino acids.
The position and type of each amino acid in a protein sequence are unique, containing important
structural and functional information. Therefore, for a specific position amino acid in the protein
sequence, ideal descriptors should not only reflect the amino acid type but also structural information
or the role played in the performance of the protein function. Based on previous studies on protein
monomer binding sites and protein–protein interface residue pairs, we found some common properties
that can allow to distinguish interface residues from the rest of the protein, using information of
hydrophobicity, polarizability, solvent accessibility, and so on. We summarized these properties and
divided them into two categories. The first category corresponded to amino acid physicochemical
properties, including hydrophobicity [17–19], polarizability [20], and polarity [21]. The second category
corresponded to residue geometric properties, such as accessible surface area (ASA) [22] and relative
accessible surface area (RASA) [23].

In this paper, we defined an amino acid k-interval product factor to describe the influence of
surrounding amino acids based on their physicochemical properties. Hence, we described a residue
pair with three types of characteristics: amino acid physicochemical features, residue geometric
features, and amino acid k-interval product factor. Different descriptors and different combinations
may give different prediction results. We performed feature combination engineering based on
correlation coefficients and F-values for all characteristics. In general, when the number of positive
and negative samples in the dataset is seriously unbalanced, the accuracy and robustness of ensemble
classifiers is higher than those of a single classifier (negative samples: noninterface residue pairs and
positive samples: interface residue pairs). We trained a two-layer support vector machine (SVM)
ensemble-classifier method to predict the interface residue pairs of protein trimers and tested it using
an independent testing set. We also use different indicators to evaluate testing set results, which proves
that our method is feasible.

In summary, our method was divided into four parts: feature extraction, feature vector engineering,
generation of a two-layer SVM ensemble-classifier, and performance evaluation, as shown in Figure 1.
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2. Materials and Methods

2.1. Dataset

In this paper, the dataset was collected from the Protein Data Bank based on following four
requirements: the number of chains is 3, the length of each chain is between 20 and 500, it is obtained
by X-ray experiment, and there are physical bindings between each two chains in one protein trimer.
Two chains are defined as interactors if there are interface residue pairs between the two chains. (If the
contact area between any two atoms from two residues is bigger than zero, we called these two residues
in contact and these two residues are called an interface residue pair. Here, we used the Qcontacts
software to calculate contact area between two atoms.) By this way, we collect 78 protein trimers
(The data can be downloaded from Supplementary Materials). We randomly divided 78 protein trimers
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into training set and testing set, of which the number of training set is 52, accounting for 2/3 of the
total, and the remaining 26 protein trimers are used as testing set (see Table 1).

Table 1. Detailed information of the training set and testing set.

Data Set Name PDB Code

Training Set

1A12 1AHS 1AWI 1B77 1BGX 1CJD 1CUN 1DKG 1EER 1EL6 1F6F 1FNS 1FPO
1G2X 1HWG 1IDP 1IK9 1J5S 1JPS 1JRH 1KI9 1KKE 1L5A 1LW1 2ADV 2AZE
2B2Y 2B4I 2BSD 2CU5 2DJ6 2E2A 2E4M 2FB5 2FM8 2FVH 2FZ1 2GDG 2GMI
2I15 2P90 2PBQ 3CC0 3EMF 3F5C 3G65 3GI9 3N4G 3NAP 3O2D 3R1G 3VA2

Testing Set 1OSP 1OY3 1P32 1Q5X 1QB3 1S7O 1SG2 1STZ 1SY6 1W9Z 1WDJ 1YNB 1ZA7
2IG8 2IUM 2IY0 2IZW 2MS2 2R3U 2WR5 3DLI 3FFD 3M6N 3OWT 3P5J 3QKS

2.2. Features Extraction

2.2.1. The Amino Acid Physicochemical Features

A given protein sequence of length L defined on the base set Ω = {A, C, D, E, F, G, H, I, K, L, M, N,
P, Q, R, S, T, V, W, Y} is expressed by

P = P1P2P3 . . . PL. (1)

Different amino acids in Formula (1) have different physicochemical properties. These physicochemical
properties, including hydrophobicity [17–19] and polarizability [20], play important roles in multiple
protein monomer interactions. In this paper, we considered five physicochemical properties of
amino acids: hydrophobicity [17–19], polarizability [20], polarity [21], secondary structure, and codon
diversity [24]. Three versions of hydrophobicity were proposed by Tanford Charles, Jack Kyte,
and David Eisenberg in 1962, 1982, and 1984, respectively. Other previous works, [24,25] have used the
hydrophobicity value of Tanford [17] as a feature to identify protein–protein interactions. Some other
authors [15,26] used the last two versions of the hydrophobicity value [18,19] as features to predict
residue pairs in a protein–protein interface. Their prediction results were good, so we took three
versions of the hydrophobicity index in our method. Appendix A Table A1 shows the numerical values
of the five physicochemical properties for the 20 amino acids.

According to the corresponding properties of each amino acid, the protein sequence P can be
converted into seven different number sequences (see Formula (2)). We used Φ1, Φ2, Φ3, Φ4, Φ5,
Φ6, and Φ7 to represent the seven numerical sequences. These seven numerical sequences are the
hydrophobicity number sequence 1, polarizability number sequence, polarity number sequence,
secondary structure number sequence, codon diversity number sequence, hydrophobicity number
sequence 2, and hydrophobicity number sequence 3.

P =



Φ1
1Φ1

2 · · ·Φ
1
L

Φ2
1Φ2

2 · · ·Φ
2
L

Φ3
1Φ3

2 · · ·Φ
3
L

Φ4
1Φ4

2 · · ·Φ
4
L

Φ5
1Φ5

2 · · ·Φ
5
L

Φ6
1Φ6

2 · · ·Φ
6
L

Φ7
1Φ7

2 · · ·Φ
7
L

(2)

where Φ1
1 is the hydrophobicity value of P1 in formula 1, Φ1

2 is the hydrophobicity value of P2 in
formula 1, and so on. Φ2

1 is the polarizability value of P1 in formula 1, Φ1
2 is the polarizability value of

P2 in formula 1, and so on.
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2.2.2. Definition of the Amino Acid K-Interval Product Factor (AAIPF(k))

In multiple protein monomers interactions, the individual behavior of the amino acid at each
position is affected by the neighboring amino acids in the protein sequence. We define the amino acid
k-interval product factor to describe the influence of neighboring amino acids on a given residue.

The AAIPF(k) is defined as follows: the numbers at two positions with interval k are multiplied
and divided by k on the amino acid number sequence. The AAIPF(k) can be divided into: amino acid
forward k-interval product factor (AAFIPF(k)) and amino acid backwards k-interval product factor
(AABIPF(k)) (see Formulas (3)–(5)).

AAIPF(k) =

{
AAFIPF(k)
AABIPF(k)

(3)

AAFIPF(k) = (Φi
j∗Φ

i
j−k)/k (4)

AABIPF(k) = (Φi
j∗Φ

i
j+k)/k. (5)

When exploring the individual behavior of each amino acid in a protein sequence P, as previously
reported [27], we regard the protein sequence P as a cycle alphabet sequence with head-to-tail
connections, and thus number sequences can also be regarded as cycle number sequences.

Considering the dimensionality of descriptors, and using the experience of previous works [28,29],
we only used AAIPF(1), AAIPF(2), AAIPF(3), AAIPF(4), and AAIPF(5) to characterize each amino acid in
the protein sequence P. In this way, each amino acid in the protein sequence P could be represented by the
10-dimensional characteristics of each numerical sequence. To reduce the redundancy between features,
we only use the first five numerical sequences in formula 2 to calculate AAIPF(k). Thus, each amino
acid in protein sequence P could be characterized by 50 features.

We also used as features the values of five physicochemical properties of amino acids, which we
called basic first-order sequence features. Three versions of the hydrophobic values were used.
Therefore, seven basic first-order sequence features were applied to describe an amino acid.

Considering the electrostatic interaction is also one of the important factors to stabilize the protein
structure. Therefore, we used the electric property values (pK1 and pK2) as features to describe the
residue. The values of pK1 and pK2 were calculated by the propka3.1 software [30].

2.2.3. Residue Geometric Features

In several previous research studies [31–33], it has been found that accessible surface area (ASA)
and relative solvent accessible surface area (RASA) play important roles in distinguishing between
interface residues and noninterface residues. In addition to the above two geometric features, we also
use three residue geometric features, exterior contact area (ECA), interior contact area (ICA), and exterior
void area (EVA) extracted by our laboratory to describe each residue. These five geometric features
were considered the basic structural geometric features. These five geometric features and their
calculation tools are shown in Table 2.

Table 2. The five geometric features and their calculation tools.

Features Abbreviation Software or Researchers

Accessible surface area ASA Naccess V2.1.1
Relative accessible surface area RASA Naccess V2.1.1

Exterior contact area ECA Qcontacts
Interior contact area ICA Qcontacts
Exterior void area EVA NACCES V2.1.1, Qcontacts

ASA is the surface area of molecules that is accessible to solvents. Here, we used the Naccess
V2.1.1 software [34] to calculate ASA. The RASA was used to describe the exposed or buried state of
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the residue and was calculated by formula 6. The specific definition of ECA, ICA, and EVA is given in
detail elsewhere [26]. ECA and ICA were calculated by the Qcontacts software [35].

RASA =
ASAbound

ASAunbound
(6)

where ASAbound represents the solvent accessible surface area of the residue in the protein complex.
ASAunbound is the solvent-accessible surface area of this residue in unbound state.

Through the above research and analysis, we extracted a total of 64 dimensional characteristics to
describe each residue in the protein monomer. Therefore, we can use 128 dimensional characteristics
to describe a residue pair formed by residues from two protein monomers. We used Formula (7) to
standardize these 128 dimensional characteristics.

x∗ =
x−min

max−min
(7)

2.3. Feature Vector Engineering

Different characteristics and their combinations may play different roles in the prediction of
interactions interface residues pairs in multiple protein monomers. Therefore, we performed feature
vector engineering using two sets of feature vectors to describe a residue pair. We used the 128
dimensional characteristics extracted as the first set of feature vectors. Considering that some of the 128
dimensional characteristics have a strong correlation, we deleted 1/4 of the characteristics, and used the
remaining characteristics as the second set of feature vectors. We filtered the characteristics according
to the Pearson correlation coefficients r and F-values. The specific process was as follows:

In the first step, 128 dimensional characteristics were clustered according to the Pearson correlation
coefficient r. The formula of the Pearson correlation r is as follows:

r =
cov(Xk, Xl)

σkσl
(8)

where Xk and Xl represent the k-th and l-th characteristics of the sample, respectively. σk and σl
represent the mean square deviation of the k-th and l-th characteristics of the sample (sample: residue
pairs), respectively.

In the second step, we used Formula (9) to calculate the F-value of each characteristic between the
positive sample and the negative sample (negative sample: noninterface residue pairs and positive
sample: interface residue pairs). The larger the F-value of the characteristic, the greater the difference
between positive and negative samples and the greater the contribution of the characteristic to
distinguish positive and negative samples.

F(xm) =

∣∣∣∣∣∣µ+m − µ−mσ+m − σ
+
m

∣∣∣∣∣∣ (9)

where µ+m and µ−m are the mean values of the m-th characteristic of the positive sample and the negative
sample, respectively. σ+m and σ−m are the mean square deviation of the m-th characteristic of the positive
sample and the negative sample, respectively.

We preserved basic first-order sequence characteristics and basic structural geometric
characteristics. For the class with Pearson correlation coefficient |r| > 0.5, we preserved the characteristics
of a relatively large F-value, with 96 characteristics in total. We used the 96 characteristics as the second
set of feature vectors (see Appendix A Table A2).

2.4. Our Algorithms (A Two-Layer SVM Ensemble-Classifier)

Each protein trimer consists of three chains, and any two chains interact to form a
protein–protein interaction interface. We split each protein trimer into three protein–protein interactions.
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Through Section 2.2 Feature Extraction and Section 2.3 Feature Vector Engineering, two sets of feature
vectors were used to represent a residue pair. Therefore, we generated two sets of train data for the
training trimer protein complexes. The train data composed of the first (second) set of feature vector
was called Train data 1 (2).

The proportion of protein–protein interface residue pairs in all residue pairs was very low.
Therefore, the positive and negative classes in train data 1 (2) were extremely imbalanced (negative
classes: noninterface residue pairs and positive class: interface residue pairs). We used under-sampling
to deal with the class imbalance problem. To improve the performance of the method, we used the
classifier ensemble to alleviate the lack of information caused by the under-sampling. The process was
as follows:

Generation of balanced subset samples (for training set j (j = 1,2)):
First, we randomly generated 100 subset samples of negative class from all the negative class

samples in train data j. The total number of positive class was 12,687 in the entire training set. Therefore,
we set the number of negative class in each subset sample to 12,687. Second, we combined each
negative class subset sample with all positive class samples to generate a balanced subset sample.
Finally, obtained 100 balanced subset samples for train data j (j = 1,2).

Generation of an ensemble classifier:
SVM is a supervised machine learning method, which is widely used in the field of protein–protein

interactions. Here, we also used SVM to predict trimer protein complexes interface residue pairs.
There are 100 balance subset samples in train data j (j = 1,2), each of which can be used to train

an SVM model. We obtained 100 individual SVM predictors for train data j. We then developed
an ensemble SVM classifier P j by fusing the 100 individual SVM predictors in train data j through
a probability system, as shown in formula 10. Finally, a two-layer SVM ensemble-classifier P was
formed by fusing two ensemble SVM classifiers P1 and P2 through a weight ω (here, we set ω to 1/2).
We provide a flowchart in Figure 2 to illustrate how to generate a two-layer SVM ensemble-classifier P
(An implementation of our model is available at the website ftp://202.112.126.135/pub/Trimer/code).

P j(x) =
∑100

i=1
SVMi(x) (i = 1, 2, . . . , 100, j = 1, 2) (10)

where SVMi indicates the SVM predictor trained with an i-balance subset sample. x indicates a residue
pair. SVMi(x) indicates the probability that the residue pair x is the interface residue pair in the i-th
individual SVM prediction of train data j.

P(x) = ω× P1(x) + (1−ω) × P2(x) (11)

2.5. Evaluation Criteria

The output of our model is a value between 0 and 1, showing the possibility of the residue pair
to be an interface residue pair. The values were sorted from large to small. The number t predicted
interface residue pairs with highest probability were used as the top t predicted interface residue pairs.

We used the following three measures to evaluate the performance of our method. First, we defined
a three-dimensional vector NPRPT(t) = (n1, n2, n3)t, where nz (z = 1,2,3) represents the number of
positive interface residue pairs in the top t predictions for each possible protein–protein interface of a
protein trimer. Here, NPRPT(t) is the abbreviation of the number of positive interface residue pairs
in the top t predictions for each protein trimer. The first index is ‖NPRPT(t)‖0, which represents the
L0 norm of NPRPT(t). It is consistent with the meaning of the L0 norm of vector in mathematics,
which represents the number of nonzero elements in a vector. So ‖NPRPT(t)‖0 represents the number
of interfaces that we can correctly predict in each protein trimer. In the top t predictions provided,
if there is at least one positive interface residue pair, we assumed that the protein–protein interaction
interface could be predicted correctly.

ftp://202.112.126.135/pub/Trimer/code
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The second index is ‖NPRPT(t)‖1, which represents the L1 norm of NPRPT(t), see Formula (12).
It is consistent with the meaning of the L1 norm of vector in mathematics. Therefore, ‖NPRPT(t)‖1
represents the number of positive interface residue pairs in the top t predictions at a protein trimer

‖NPRPT(t)‖1 = n1 + n2 + n3. (12)

The third index is index accuracy rate (see Formula (13)).

accuracy rate (t)z =
SCT(t)
TNT

× 100%. (13)

SCT represents the sum of all correctly predicted trimer protein complexes. In the top t predictions,
if there were z protein–protein interaction interfaces satisfying at least one positive interface residue
pair, we assumed that the protein trimer was predicted correctly. TNT represents the total number of
trimer protein complexes in the dataset.

3. Results and Discussion

3.1. Application of our Algorithms on the Testing Set

There were 26 trimer protein complexes in the testing set. Each protein trimer consists of
three chains, and any two chains interact to form a protein–protein interaction interface. Therefore,
we obtained 78 protein–protein interaction interfaces. Through Section 2.2 Feature Extraction and
Section 2.3 Feature Vector Engineering, two sets of feature vectors can be used to represent a residue
pair. Therefore, we can generate test data 1 and test data 2 for the testing trimer protein complexes.
Then by inputting test data 1 and test data 2 to our proposed Algorithms, we can get the prediction
results of the 78 protein–protein interaction interfaces.

3.2. Analysis of the Testing Set Results

Table 3 shows the top t (t = 10, 15, 20, and 30) predictions and the two evaluation indexes
corresponding to the testing set results. It can be seen from Table 3 that when 3 protein–protein
interaction interfaces of each protein trimer were correctly predicted, a total of 9 trimer protein
complexes were correctly predicted in the top 10 predictions. The prediction result of 2IY0 protein
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trimer was the best, with up to 10 positive interface residue pairs. When 3 protein–protein interaction
interfaces of each protein trimer are correctly predicted, a total of 17 trimer protein complexes were
correctly predicted in the top 30 prediction results. Among them, there were 10 trimer protein
complexes for which at least 10 positive interface residue pairs were predicted.

Table 3. Two evaluation indexes of the testing set prediction results.

Protein Name
t = 10 t = 15 t = 20 t = 30

‖NPRPT‖0 ‖NPRPT‖1 ‖NPRPT‖0 ‖NPRPT‖1 ‖NPRPT‖0 ‖NPRPT‖1 ‖NPRPT‖0 ‖NPRPT‖1

1osp 2 3 2 3 2 5 3 10
1oy3 3 4 3 5 3 6 3 9
1p32 1 3 1 3 1 3 1 4
1q5x 3 5 3 5 3 6 3 10
1qb3 3 4 3 4 3 4 3 9
1s7o 3 7 3 9 3 11 3 14
1sg2 2 3 3 5 3 7 3 9
1stz 0 0 0 0 0 0 0 0
1sy6 2 2 2 2 2 3 2 5
1w9z 3 3 3 3 3 3 3 7
1wdj 2 2 2 4 2 6 2 8
1ynb 2 2 2 3 2 4 2 4
1za7 1 4 2 6 3 9 3 12
2ig8 1 1 1 2 2 3 3 5
2ium 1 2 3 4 3 6 3 9
2iy0 3 10 3 14 3 16 3 19
2izw 1 2 2 3 2 4 3 9
2ms2 3 5 3 8 3 8 3 10
2r3u 0 0 0 0 1 1 2 2
2wr5 0 0 0 0 0 0 0 0
3dli 3 3 3 3 3 3 3 6
3ffd 3 4 3 4 3 8 3 10

3m6n 0 0 0 0 0 0 1 1
3owt 1 3 2 4 2 5 2 8
3p5j 0 0 2 2 2 3 3 4
3qks 0 0 1 1 2 2 3 6

To further analyze the prediction results, we obtained the index accuracy rate (t)z from all ‖NPRPT‖0
columns in Table 3 (see Table 4). When 3 protein–protein interaction interfaces of each protein trimer
were correctly predicted in the top 15 predictions, the accuracy rate was 42.31%, i.e., more than 2/5 of
trimer protein complexes in the testing set were correctly predicted. When 3 protein–protein interaction
interfaces of each protein trimer were correctly predicted in the top 30 predictions, the accuracy rate
was as high as 65.38%. When at least 2 protein–protein interaction interfaces of each protein trimer
are correctly predicted in the top 10 predictions, the accuracy rate was 53.85%, i.e., more than half
trimer protein complexes in the testing set were correctly predicted. When at least 1 protein–protein
interaction interface of each protein trimer was correctly predicted, the accuracy rate was 76.92% in the
top 10 predictions and up to 92.31% in the top 30 predictions.

Table 4. Accuracy rate (t)z of the testing set prediction results

z t t = 10 t = 15 t = 20 t = 30

z = 3 34.62% 42.31% 46.15% 65.38%
z = 2 53.85% 73.08% 80.77% 84.62%
z = 1 76.92% 84.62% 88.46% 92.31%

There are 6479 pairs of interface residue pairs in the test set, of which 968 pairs are formed by
residues at N- and C-terminal regions, accounting for 15% (here, residues at the N- and C-terminal
regions is the residues that we have specially treated in the manuscript). We can accurately predict 190
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interface residue pairs for all testing set protein trimers, of which 48 pairs are formed by residues at
N-terminal and C-terminal, accounting for 25%.

We compared the performance of our method with the previous method [16]. When at least 1
protein–protein interaction interface of each protein trimer was correctly predicted, the accuracy of our
method is 76.92% and of the previous method [16] is 31.1% in the top 10 predictions. The accuracy of
our method is higher than them.

The analysis of the above results showed that our proposed method was able to accurately
predict the interface residue pairs of trimer protein complexes. Additionally, our predicted results
are consistent with the experimental results. In the experimental article of the 3ffd protein trimer [36],
it is mentioned that residues 20 and 24 are strictly conserved, which allows for extensive interactions
with the antibody. Residues 16, 20, 27, 52, 59, 97, 102, and 104 are also binding sites. In our top 20
prediction results, we successfully predicted 8 positive interface residue pairs. For clarity, 6 positive
interface residue pairs (Tyr 104-Phe 102, Tyr 104-Tyr 104, Tyr 104-Phe 23, Tyr 59-Phe 23, Phe 102-Phe 23,
and Thr 32-Gln 16) for the 3ffd protein trimer are shown in Figure 3a. In the experimental article of the
1s7o protein trimer [37], it is pointed out that the 1s7o protein trimer has two structural domains and
the primary interaction mainly involves the second central domain. The hydrophobic residues Ile 85,
Phe 86, Met 89, Ile 90, Leu 99, Ile 103, and Leu 106 create both an intermolecular and intramolecular
hydrophobic core in the second domain. Arg82 and Asp 110 form salt bridges, and two Arg82 guanidyl
groups in adjacent molecules contribute to the intramolecular and intermolecular interactions. In our
top 20 prediction results, we have successfully predicted 11 positive interface residues pairs formed by
these residues and their surrounding residues. For illustration purposes, we show 6 positive interface
residue pairs (Ile105-Ile109, Glu101-Ile 109, Ile 105-Ile 85, Glu 101-Val 81, Leu 106-Ile 85, and Ile 85-leu
106) in Figure 3b.
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Figure 3. Experimental three-dimensional structure of the 3ffd and 1s7o trimer protein complexes.
Figure (a) and Figure (b) are the three-dimensional structure of 3ffd and 1s7o protein trimer. We label
three protein monomers with pink, blue, and green. The number of markers in the black circle indicates
the correct predicted interface residue pair position on the two protein monomers.

The training set contains a lot of antibody fragments, which make up two of the three chains: 1BGX,
3O2D, 3R1G. 3GI9, 1JPS, 1JRH, 1FNS. Similarly, 1F6F, 1EER, 1HWG, and 3VA2 are all cytokine receptor
complexes with probable similarity between the receptor CRH domains. We deleted 1BGX, 3O2D,
3R1G. 3GI9, 1JPS, 1JRH, 1FNS 1F6F, 1EER, 1HWG, 3VA2 in the training set. The test set also contains 3
complexes with antibody chains: 3FFD, 1OSP, and 1SY6. We generated testing set 2, which deleted
3FFD, 1OSP, and 1SY6 relative to testing set. Appendix A Table A3 shows the top t (t = 15, 20, and 30)
predictions and the two evaluation indexes corresponding to the testing set 2 results. We compared
the prediction results of testing set with that of testing set 2 (Table 5). When at least 2 protein–protein
interaction interfaces of each protein trimer are correctly predicted, the accuracy of testing set 2 is about
7% lower than that of testing set. When at least 3 protein–protein interaction interfaces of each protein
trimer are correctly predicted in the top 30 predictions, the accuracy of testing set 2 is about 8.5% lower
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than that of testing set. When at least 3 protein–protein interaction interfaces of each protein trimer are
correctly predicted in the top 20 predictions, the accuracy of testing set 2 was 6% higher than that of
test set. The rest of the prediction results of the two test sets are almost the same.

Table 5. Accuracy rate (t)z of the testing set and testing set 2 prediction results.

z

t t = 15 t = 20 t = 30

Result1 Result2 Result1 Result2 Result1 Result2

z = 3 42.31% 43.48% 46.15% 52.17% 65.38% 56.52%
z = 2 73.08% 65.22% 80.77% 73.91% 84.62% 78.26%
z = 1 84.62% 82.61% 88.46% 86.96% 92.31% 91.30%

a. Result1 represents the testing set result accuracy. b. Result2 represents the accuracy of the result in the testing
set 2.

3.3. Comparison with Random Results

We assume that the stochastic prediction of interface residue pairs of each protein–protein
interaction interface in trimer protein complexes obeys a hypergeometric distribution X ∼

H(N, M, T) [38]; where X is the number of positive interface residue pairs in the top T predictions.
N is the number of all the residue pairs of one protein–protein interaction interface in one protein
trimer. M is the number of positive interface residue pairs in this protein–protein interaction interface.
Next, we can calculate the probability P that there are x positive interface residue pairs in the T
predictions of one protein–protein interaction interface by the stochastic model (see Formula (14)):

P(X = x) =
Cx

MCT−x
N−M

CT
N

. (14)

In order to simplify the calculation, we assumed that each protein–protein interaction interface
was independently identically distributed, and N is the mean value of all residue pairs in each
protein–protein interaction interface, and M is the mean value of positive interface residue pairs in
each protein–protein interaction interface. It can be seen that N is about 40,920 and M is about 83 in the
Appendix A Table A4 When at least 1 protein–protein interaction interface of each protein trimer has at
least one positive interface residue pair in T predictions, the probability P̃1 is:

P̃1(X ≥ 1) = 1−
CT

40,920−83

CT
40,920

. (15)

Consideration of the complexity of the P̃1 calculation, we have made an enlarged calculation of P̃1

(see inequality 16 and 17). Obviously, the computational complexity of the P̂1 is less than P̃1, and when
T is fixed, P̃1 is less than P̂1. When the value of T is 10, 15, 20, and 30, we can calculate P̂1 through the
Monte Carlo simulation method (see Table 6).

P̃1(X ≥ 1) = 1−
CT

40,920−83

CT
40,920

≤ 1−
40, 837− T + 1
40, 920− T + 1

(16)

P̃1 ≤ P̂1 (P̂1 = 1−
40, 837− T + 1
40, 920− T + 1

) (17)

When at least 2 protein–protein interaction interfaces of each protein trimer have at least one
positive interface residue pair in T predictions, the probability P̃2 is:

P̃2 = C2
3P̃1

2
∗ (1− P̃1) + P̃1

3
(18)
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Combining Formulas (15) and (18), we also enlarge P̃2 and obtained inequality 20.
Obviously, the computational complexity of the P̂2 is much less than P̃2, and when T is fixed,
P̃2 is less than P̂2. When the value of T is 10, 15, 20, and 30, we can calculate P̂2 through the Monte
Carlo simulation method (see Table 6).

P̃2 = C2
3P̃1

2
× (1− P̃1) + P̃1

3

= 1− 3( 40,837×40,836×···×(40,837−T+1)
40,920×40,919×···×(40,920−T+1) )

2
+ 2( 40,837×40,836×···×(40,837−T+1)

40,920×40,919×···×(40,920−T+1) )
3

≤ 1− 3( 40,837−T+1
40,920−T+1 )

2
+ 2( 40,837

40,920 )
3

(19)

P̃2 ≤ P̂2(P̂2 = 1− 3(
40, 837− T + 1
40, 920− T + 1

)
2
+ 2(

40, 837
40, 920

)
3
) (20)

When 3 protein–protein interaction interfaces of each protein trimer have at least one positive
interface residue pair in T predictions, the probability P̃3 is:

P̃3 = P̃1
3

(21)

P̃3 = P̃1
3
= (1−

40, 837× 40, 837× · · · × (40, 837− T + 1)
40, 920× 40, 919× · · · × (40, 920− T + 1)

)
3

≤ (1−
40, 837− T + 1
40, 920− T + 1

)
3

(22)

P̃3 ≤ P̂3 (P̂3 = (1−
40, 837− T + 1
40, 920− T + 1

)
3
) (23)

Table 6. Comparison of our method with that of random results.

Accuracy Rate t = 10 t = 15 t = 20 t = 30

P̂1 0.20288% 0.20290% 0.20292% 0.20298%
accuracy rate(t) 1 76.92% 84.62% 88.46% 92.31%

P̂2 0.001500% 0.001648% 0.001797% 0.00002094%
accuracy rate(t) 2 53.85% 73.08% 80.77% 84.62%

P̂3 0.0000008351% 0.0000008354% 0.0000008357% 0.0000008363%
accuracy rate(t) 2 34.62% 42.31% 46.15% 65.38%

In the same way as above, we also enlarged P̃3 and obtained P̂3 (see Inequality (22) and (23)).
When the value of T was 10, 15, 20, and 30, we calculated P̂3 through the Monte Carlo simulation
method (see Table 6).

As can be seen from Table 5, the accuracy of our method to predict the interface residue pairs of
trimer protein complexes is much higher than that of random results. When at least 1 protein–protein
interaction interface of each protein trimer was correctly predicted, our method accuracy was over
76.92% and up to 92.31%, while the random accuracy was lower than 0.20298%. When at least 2
protein–protein interaction interfaces of each protein trimer were correctly predicted, our accuracy
was over 53.85% and up to 84.62%, whereas the random accuracy was below 0.0015%. When 3
protein–protein interaction interfaces of each protein trimer were correctly predicted, our accuracy
achieved 65.38% in the top 30 predictions, and the accuracy was more than 108 times higher than that
of random results.

4. Conclusions

In this paper, we defined an amino acid k-interval product factor to describe the influence
of neighboring amino acids on a residue. This method takes advantage of the physicochemical
and geometric properties of amino acids, and also considers the influence of neighboring amino
acids (amino acid k-interval product factor) as features. Finally, we developed a two-layer SVM
ensemble-classifier method, based on feature vector engineering and SVM, to predict the interface
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residue pairs of trimer protein complexes. In our testing set, the accuracy rate of successfully
predicting one interface was 84.62%, and for two interfaces, the accuracy rate was 73.08%, in the top
15 predictions, which indicates significance for biological experimentation and biomedical-related
research. Moreover, our predicted results are consistent with the experimental results. This shows
that our method is effective and reliable to predict interface residue pairs of trimer protein complexes.
However, our accuracy rate was not high when three interfaces of one trimer are required to predict
correctly. We also did not consider protein conformational changes. These are the areas where we will
improve in the future.

Supplementary Materials: Code: ftp://202.112.126.135/pub/Trimer/code. Data: ftp://202.112.126.135/pub/Trimer.
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Appendix A

Table A1. Five physicochemical properties for the 20 amino acids.

Amino Acid Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

A 0.62 0.046 8.1 −1.302 1.57 0.17 0.50
C 0.29 0.128 5.5 0.465 −1.02 −0.24 −0.02
D −0.9 0.105 13 0.302 −0.259 1.23 3.64
E −0.74 0.151 12.3 −1.453 0.113 2.02 3.63
F 1.19 0.29 5.2 −0.59 −0.397 −1.13 −1.71
G 0.48 0 9 1.652 1.045 0.01 1.15
H −0.4 0.23 10.4 −0.417 −1.474 0.96 2.33
I 1.38 0.186 5.2 −0.547 0.393 −0.31 −1.12
K −1.5 0.219 11.3 −0.561 −0.277 0.99 2.80
L 1.06 0.186 4.9 −0.987 1.266 −0.56 −1.25
M 0.64 0.221 5.7 −1.524 −1.005 −0.23 −0.67
N −0.78 0.134 11.6 0.828 −0.169 0.42 0.85
P 0.12 0.131 8 2.081 0.421 0.45 0.14
Q −0.85 0.18 10.5 −0.179 −0.503 0.58 0.77
R −2.53 0.291 10.5 −0.055 0.44 0.81 1.81
S −0.18 0.062 9.2 1.399 0.67 0.13 0.46
T −0.05 0.108 8 0.326 0.908 0.14 0.25
V 1.08 0.14 5.9 −0.279 1.242 0.07 −0.46
W 0.81 0.409 5.4 0.009 −2.128 −1.85 −2.09
Y 0.26 0.298 6.2 0.83 −0.838 −0.94 −0.71

We used Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, and Φ7 to represent the hydrophobicity 1, polarizability, polarity, secondary structure,
codon diversity, hydrophobicity 2, and hydrophobicity 3 for the 20 amino acids.

Table A2. Forty-eight characteristics to describe a residue.

A Residue of Protein Monomer Characteristics

ASA_A Φ4 AAFIPF1(5) AABIPF2(4) AAFIPF4(5) AAFIPF5(3)
RASA_A Φ5 AABIPF1(1) AABIPF3(1) AABIPF4(1) AAFIPF5(4)
ECA_A Φ6 AABIPF1(2) AABIPF3(2) AABIPF4(2) AAFIPF5(5)
ICA_A Φ7 AABIPF1(3) AABIPF3(5) AABIPF4(3) AABIPF5(1)
EVA_A AAFIPF1(1) AABIPF1(4) AAFIPF4(1) AABIPF4(4) AABIPF5(2)
Φ1 AAFIPF1(2) AABIPF1(5) AAFIPF4(2) AABIPF4(5) AABIPF5(3)
Φ2 AAFIPF1(3) AAFIPF2(2) AAFIPF4(3) AAFIPF5(1) AABIPF5(4)
Φ3 AAFIPF1(4) AABIPF2(2) AAFIPF4(4) AAFIPF5(2) AABIPF5(5)

We used Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, and Φ7 to represent basic first-order sequence features.We use 48 characteristics to
describe a residue in the second set of feature vector.

ftp://202.112.126.135/pub/Trimer/code
ftp://202.112.126.135/pub/Trimer
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Table A3. Two evaluation indexes of the testing set 2 prediction results.

Protein Name
t = 15 t = 20 t = 30

‖NPRPT‖0 ‖NPRPT‖1 ‖NPRPT‖0 ‖NPRPT‖1 ‖NPRPT‖0 ‖NPRPT‖1

1osp 3 5 3 6 3 10
1oy3 1 3 1 4 1 5
1p32 3 6 3 6 3 10
1q5x 3 4 3 5 3 9
1qb3 3 11 3 13 3 17
1s7o 3 7 3 9 3 10
1sg2 1 1 1 1 1 1
1stz 2 2 3 3 3 5
1sy6 2 4 2 5 2 7
1w9z 1 2 2 3 2 4
1wdj 3 8 3 11 3 12
1ynb 1 1 1 2 2 4
1za7 3 6 3 6 3 8
2ig8 3 12 3 14 3 21
2ium 2 3 2 4 3 9
2iy0 3 6 3 8 3 9
2izw 0 0 0 0 1 1
2ms2 0 0 0 0 0 0
2r3u 3 3 3 4 3 7
2wr5 0 0 0 0 0 0
3dli 2 5 2 6 2 7
3ffd 0 0 2 2 2 3

3m6n 2 3 3 5 3 8

Table A4. All residue pairs and positive interface residue pairs in each protein–protein interface.

Protein–Protein Interface Positive Residue Pairs All Residue Pairs

1osp_H_L 160 46,652
1osp_H_O 30 54,718
1osp_L_O 26 53,714
1oy3_B_C 53 15,120
1oy3_B_D 38 24,640
1oy3_C_D 86 29,700
1p32_A_B 93 31,122
1p32_A_C 95 32,032
1p32_B_C 94 30,096
1q5x_A_B 42 25,238
1q5x_A_C 37 24,800
1q5x_B_C 41 24,490
1qb3_A_B 7 13,447
1qb3_A_C 172 12,317
1qb3_B_C 15 12,971
1s7o_A_B 12 11,130
1s7o_A_C 21 11,448
1s7o_B_C 78 11,340
1sg2_A_B 44 15,369
1sg2_A_C 72 20,022
1sg2_B_C 50 15,478
1stz_A_B 53 100,453
1stz_A_C 135 100,453
1stz_B_C 45 96,721

1sy6_A_H 37 36,792
1sy6_A_L 15 35,784
1sy6_H_L 164 46,647
1w9z_A_B 150 66,049
1w9z_A_C 149 65,278
1w9z_B_C 152 65,278
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Table A4. Cont.

Protein–Protein Interface Positive Residue Pairs All Residue Pairs

1wdj_A_B 153 28,272
1wdj_A_C 45 34,596
1wdj_B_C 9 28,272
1ynb_A_B 197 27,889
1ynb_A_C 25 27,889
1ynb_B_C 84 27,889
1za7_A_B 43 24,915
1za7_A_C 31 24,915
1za7_B_C 33 27,225
2ig8_A_B 98 20,306
2ig8_A_C 104 20,164
2ig8_B_C 102 20,306
2ium_A_B 86 44,521
2ium_A_C 88 44,521
2ium_B_C 88 44,521
2iy0_A_B 90 17,176
2iy0_A_C 28 35,256
2iy0_B_C 13 11,856
2izw_A_B 88 31,862
2izw_A_C 80 37,024
2izw_B_C 90 37,232
2ms2_A_B 39 16,641
2ms2_A_C 36 16,641
2ms2_B_C 41 16,641
2r3u_A_B 88 39,390
2r3u_A_C 84 37,370
2r3u_B_C 97 36,075
2wr5_A_B 169 235,225
2wr5_A_C 176 235,225
2wr5_B_C 162 235,225
3dli_A_B 86 48,841
3dli_A_C 86 48,841
3dli_B_C 84 48,841
3ffd_A_B 150 45,570
3ffd_A_P 40 3780
3ffd_B_P 26 3906

3m6n_A_B 425 70,752
3m6n_A_C 68 69,696
3m6n_B_C 74 70,752
3owt_A_B 8 21,904
3owt_A_C 59 2960
3owt_B_C 31 2960
3p5j_A_B 67 44,802
3p5j_A_C 108 30,392
3p5j_B_C 214 19,836
3qks_A_B 267 35,621
3qks_A_C 29 4179
3qks_B_C 24 3759

mean 83.0641 40,919.63

Protein–protein interface column denotes the protein–protein interface of those two chains in a protein trimer,
such as 1osp_ H_ L is the interaction interface between H chain and L chain of 1osp protein trimer.
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