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Benchmarking the MinION: 
Evaluating long reads for microbial 
profiling
Robert Maximilian Leidenfrost1*, Dierk-Christoph Pöther2, Udo Jäckel2 & Röbbe Wünschiers1

Nanopore based DNA-sequencing delivers long reads, thereby simplifying the decipherment of 
bacterial communities. Since its commercial appearance, this technology has been assigned several 
attributes, such as its error proneness, comparatively low cost, ease-of-use, and, most notably, 
aforementioned long reads. The technology as a whole is under continued development. As such, 
benchmarks are required to conceive, test and improve analysis protocols, including those related to 
the understanding of the composition of microbial communities. Here we present a dataset composed 
of twelve different prokaryotic species split into four samples differing by nucleic acid quantification 
technique to assess the specificity and sensitivity of the MinION nanopore sequencer in a blind study 
design. Taxonomic classification was performed by standard taxonomic sequence classification tools, 
namely Kraken, Kraken2 and Centrifuge directly on reads. This allowed taxonomic assignments of up 
to 99.27% on genus level and 92.78% on species level, enabling true-positive classification of strains 
down to 25,000 genomes per sample. Full genomic coverage is achieved for strains abundant as low as 
250,000 genomes per sample under our experimental settings. In summary, we present an evaluation of 
nanopore sequence processing analysis with respect to microbial community composition. It provides 
an open protocol and the data may serve as basis for the development and benchmarking of future data 
processing pipelines.

Sequencing of environmental DNA has established itself as a means to overcome the limitations of cultivation 
and to understand the composition and dynamics of microbial communities1–3. Throughout the past two dec-
ades, sequencing technologies have continually experienced a decrease in cost and increase in output. As such 
and due to its wide availability, next-generation (also known as second-generation) DNA sequencing is currently 
the major technology2,4,5. Yet, a limitation of second generation DNA sequencing remains: its short reads. While 
first generation Sanger sequencing yields up to 1,000 basepairs (bp), second-generation methods (e.g. Illumina 
MiSeq) are limited to app. 300 bp. Nanopore-based sequencing is a third-generation sequencing method enabling 
deciphering of nucleic acids exceeding several thousand basepairs. The technology is generally applicable to a 
wide variety of purposes in basic and applied research in all kingdoms, as well as to clinical and life science appli-
cations6–8. Sequencing devices employing this technology are currently distributed through Oxford Nanopore 
Technologies and the technology as a whole is, as of today, under active development. This is of particular inter-
est since nanopore sequencing, or long-read sequencing, has previously been labelled as error prone9, although 
more recent advances brought improvements to both chemistry and data processing (e.g. Brown, Nanopore 
Community Meeting Presentation 2018;10). On the other hand, single molecule sequencing using nanopores 
is generating long reads, which are, among other reasons, of interest in elucidating microbial diversity11. Other 
advantages of the first available sequencer model, the MinION, also compared to its larger siblings GridION and 
PromethION, are the lower initial investment and its mobility allowing for direct field studies12–14. Since the intro-
duction of the MinION, several studies have been presented concerning its performance. However, those were 
not taking advantage of amplification-free sequencing and employed - to date - previous15–18 or other19 versions 
of the sequencing chemistry. Aforementioned ongoing development of the technology as a whole necessitates 
new and frequent revisions and updates to sequencing protocols and downstream data processing. This is also the 
case with the development of bioinformatics pipelines and the design of tools20. For this purpose, suitable data-
sets for rigorous testing are required. Recently, such datasets have been supplied for GridION and PromethION 
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sequencers using commercially available standards21. We investigated four mixed microbial DNA samples differ-
ing by the employed DNA-quantitation technique and their composition using the MinION sequencer. The sam-
ples were composed of DNA covering up to five orders of magnitude in genome amounts from twelve bacterial 
species. The aim of the study includes an establishment of a suitable classification pipeline and an assessment of 
the accuracy of the MinION in samples with unknown microbial composition.

Results and discussion
Raw dataset description.  Using the MinION DNA-sequencing platform we generated app. 809k reads in 
Fast5 file format, equal to an estimate of 8.15 Gbp in a single run within 36 hours (see Supplementary Fig. S1,S2). 
We could observe increased yield for each pore group switch (a.k.a remux), and output of constant quality on a 
uniform read length distribution for our sequencing run (see Supplementary Figs. S3–S5). Approximately 807k 
reads equal to 7.06 Gbp were successfully basecalled and demultiplexed generating an overall yield of 662k reads 
equivalent to 6.17 Gbp for downstream analysis. Samples one to four, corresponding to the four barcodes used, 
are composed of app. 142k (#1, heterogeneous sample quantified by ddPCR), 262k (#2, heterogeneous sample 
quantified by Qubit), 110k (#3, equimolar sample quantified by ddPCR) and 148k (#4, equimolar sample quan-
tified by Qubit) reads, respectively. A total of only four reads were not properly demultiplexed by Porechop, i.e. 
assigned to a barcode not present in the library. A total of app. 140k reads were demultiplexed as “unclassified” by 
Porechop, i.e. not assigned to any barcode. All reads not assigned to barcodes #1, #2, #3 or #4 (corresponding to 
the four samples) were discarded and thus excluded from downstream analysis (Table 1).

Data classification and validation.  The use of Centrifuge with nanopore read datasets has been demon-
strated before22,23. The application of Kraken and Kraken2 on nanopore data has also been described, albeit within 
different experimental settings, such as the taxonomic classification of reads of well characterized isolates24 or 
the taxonomic classification of complete assemblies21. Taxonomic classification performed by either, Centrifuge, 
Kraken or Kraken2 allowed for the heterogeneously concentrated samples (samples #1 and #2, adjusted by ddPCR 
and Qubit, respectively) an initial choice of five out of twelve strains based on the available Krona plots (see 
Supplementary data S1). For the samples with equimolar genomic concentration (samples #3 and #4), a selection 
of twelve strains was immediately possible (Fig. 1). Generally, despite the differences in the underlying soft-
ware and databases/indices, we could observe substantial agreement25 between the results obtained from Kraken, 
Kraken 2 and Centrifuge with their respective databases as tested by Fleiss Kappa (lowest 0.778, highest 0.931).

Quantitation by ddPCR delivers slightly different results than quantitation by fluorometry such as Qubit26,27. 
This is due to e.g. different basepair compositions, staining efficiencies or denaturation of DNA prior to droplet 
generation. Thus, we investigated, if the slight difference between these two quantitation approaches (Qubit vs. 
ddPCR) were also determinable by nanopore-based DNA-sequencing. Indeed, differences in quantitation, which 
resulted in different volumes necessary for sample preparations, corresponded to different amount of reads for 
that specific organism to the same extent (see Supplementary Fig. S6).

Unblinding the ground truth to the sequencing laboratory revealed a correct, that is true positive, selection 
of all twelve strains in samples of equimolar genomic concentration, as well as a correct selection of five out of 
twelve strains in the two samples with different genomic concentration. The five strains selected from the hetero-
geneously concentrated samples made up 99.38% of the genomes calculated to be available in the actual samples 
of different genomic concentration. This corresponds to a concentration of 2.5 million to 50 million genomes per 
species and sample. Notably, read classification matching the ground truth on genus level was possible for up to 

Sample Assignment Reads
Yield 
[MBp]

Read length 
Mean [Bp]

Mean read 
quality [Q]

Read length 
N50 [Bp]

Basecalled:

1 (heterogenous, adjusted by ddPCR) Barcode 01 143,672 1,362.69 9,485 12.8 14,312

2 (heterogenous, adjusted by Qubit) Barcode 02 263,786 2,621.79 9,939 12.8 15,140

3 (equimolar, adjusted by ddPCR) Barcode 03 111,370 956.20 8,586 12.8 13,835

4 (equimolar, adjusted by Qubit) Barcode 04 150,965 1,372.85 9,094 12.8 14,385

Unclassified 137,175 748.90 5,459 7.7

Misclassified 7 0.09 10,534 8.9

Porechopped:

1 (heterogenous, adjusted by ddPCR) Barcode 01 142,008 1,331.32 9,375 12.9 14,245

2 (heterogenous, adjusted by Qubit) Barcode 02 261,833 2,571.89 9,823 12.9 15,074

3 (equimolar, adjusted by ddPCR) Barcode 03 109,948 931.52 9,472 12.9 13,777

4 (equimolar, adjusted by Qubit) Barcode 04 148,392 1,334.56 8,994 12.9 14,329

Unclassified 140,464 800.95 5,703 8.0

Misclassified 4 0.06 15,012 11.0

Table 1.  Yield (reads and bases), read length and mean quality presenting the output of the 36 h MinION 
sequencing run, after basecalling (Albacore) and adapter removal (Porechop). A clear drop in quality for 
un- and misclassified reads is observable as compared to correct assignment. Assigned Barcodes 1 to 4 match 
samples 1 to 4 (heterogeneous and equimolar adjusted by either ddPCR or Qubit). Statistics generated with 
NanoPlot, based on the sequencing_summary (Basecalled) and the individual fastq bins after porechopping.
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99.27% (Centrifuge) between all samples, whereas read classification matching the ground truth on species level 
was up to 92.78% (Centrifuge) across all samples (Table 2). Generally, accuracy and deviation metrics (root mean 
squared deviation (RMSD) and mean absolute error (MAE)) on genus level were better than on species level. 
Comparing Centrifuge, Kraken and Kraken2 running their precompiled databases/indices, Centrifuge was able 
to assign the highest fraction of reads to the theoretically expected genera and species across all samples. Also, 
Centrifuge performed best with respect to both measures of deviation (RMSD, MAE), whereas Kraken 2 was 
superior over Kraken. However, beyond the accuracy of each classifier, computational aspects need to be consid-
ered. Especially, when limited computational resources are available, such as in field applications, Kraken 2 offers 
superior processing speed and lower memory consumption compared to Centrifuge and Kraken28.

Precision and recall per species and genus reached generally high values on read level (see Supplementary 
Table S3, S4). For genera with very low abundancy, drops in precision could be observed (see Supplementary 
Table S3). Reads wrongly classified on species level were, e.g., attributable to close relatives, such as Bacillus spe-
cies to Bacillus licheniformis, Enterobacter cloacae to Enterobacter hormaechei, et cetera, or exhibited differences 
in read abundancy as compared to true positive hits, which is similar to findings reported by Deshpande et al.19 
despite a different sequencing and analysis approach. This is also reflected by the lower values of recall for these 
species on read level (see Supplementary Table S4). The necessity for accurate databases and unified nomenclature 
is discussed elsewhere29–32 and has been shown to affect classification of nanopore data18. These results indicate 
that classification is, as of yet, more reliable on genus level than on species level.

Serendipitously, rerunning the classification process after the removal of four most abundant initially selected 
strains from the read data allowed the additional selection and thus classification of four strains down to app. 

calculated ddPCR Qubit

equim
olar

heterogeneous

theoretical Centrifuge Kraken Kraken 2 NanoOK Centrifuge Kraken Kraken 2 NanoOK

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

G
en

us
 [%

]

Genus

Other and unassigned

Dickeya

Staphylococcus

Paenibacillus

Chromobacterium

Achromobacter

Xanthomonas

Micrococcus

Enterobacter

Serratia

Bacillus

Corynebacterium

Cronobacter

calculated ddPCR Qubit

equim
olar

heterogeneous

theoretical Centrifuge Kraken Kraken 2 NanoOK Centrifuge Kraken Kraken 2 NanoOK

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

S
pe

ci
es

 [%
]

Species

Other and unassigned

D. solani

S. saprophyticus

P. odorifer

C. violaceum

A. xylosoxidans

X. campestris

M. luteus

E. hormaechei

S. fonticola

B. licheniformis

C. glutamicum

C. sakazakii

Figure 1.  Centrifuge, Kraken and Kraken 2 classification results on genus and species level for equimolar 
(sample/barcode 3, adjusted by ddPCR and sample/barcode 4, adjusted by Qubit) and heterogeneously 
concentrated samples (sample/barcode 1, adjusted by ddPCR and sample/barcode 2, adjusted by Qubit) of 
12 target strains. Theoretical values and validation by NanoOK (alignments with minimap2) are given for 
comparison.
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25,000 to 500,000 genomes per sample, using Krona plots. The remaining three strains adjusted to the range 
of 500 to 5,000 genomes per sample could not be reliably retrieved from the two samples with heterogeneous 
genomic concentrations (Fig. 2). Their presence was obfuscated by the filter process, i.e. they were as abundant as 
falsely classified reads and, subsequently, a clear discrimination allowing selection and classification was impossi-
ble. With the experimental settings and proceeding as described here, this suggests a dynamic range of detection 
and viable classification between 250 and 500,000 genomes/µl of initial DNA input, corresponding to a range 
of 25,000 to 50 million genomes from material obtained from microbial communities of low diversity from the 
MinION. The range reported here is similar to the findings of Nicholls et al.21.

These results showed good consistency with a) the output from the NanoOK analysis by direct comparison 
(Table 3, see Supplementary Table S5), where at least 99.21% of all available reads could be aligned to selected 
references and b) the theoretical expectation. Moreover, mean coverages reported by NanoOK indicate potential 
for de novo genome assemblies (Fig. 3). Full genomic coverage realistically permitting de novo assembly was 
achieved for strains down to a concentration of 250,000 genomes per sample (see Supplementary Table S5). At 
comparable sequencing times, we anticipate the concentration level required to achieve full genomic coverage to 
be even lower for libraries that are not multiplexed.

Despite the error rates currently accompanying MinION sequencing, these results clearly illustrate the via-
bility and possibilities of long reads for direct taxonomic classification and abundance estimation with currently 
available bioinformatics pipelines.

Conclusion
We present a MinION DNA sequence read dataset to facilitate the Nanopore community to improve and develop 
new bioinformatics pipelines aimed at the understanding of microbial diversity. Continual benchmarking using 
updated sequencing methods and chemistries in metagenome analyses is required32. With the presented detailed 
methodology, as a whole, this study follows the FAIR Guiding Principles33 for scientific data management and 
stewardship by contributing (F)indable and (A)ccessible data under bioproject accession PRJNA545964 and cor-
responding signal level data34 that is (R)eusable for the fast-paced development of third generation sequencing 
and downstream bioinformatics in a metagenomics context.

Based on the dataset, we present a simple and straightforward analysis pipeline to investigate the composition 
of microbial communities. Given our experimental approach we were able to achieve highly accurate taxonomic 
classification of low abundant (25,000 genomes/sample) organisms to at least genus level. Full genomic coverage 
was achieved for species with an abundancy of 250,000 genomes per sample and sufficient coverage for de novo 
assembly could be obtained.

While there is no standardized approach for the characterization of bacterial communities, molecular tools are 
considered powerful to gain knowledge and insight into these35,36, and nanopore sequencing is no exception to 
this point. In summary, the presented benchmark provides insight into nanopore data and data processing for the 
taxonomic classification of microbial communities. Hence, this study contributes to the toolsets and development 
of processing pipelines available to elucidate microbial diversity.

Material and methods
The overall experimental design is setup as follows: Bacteria cultivation, DNA extraction, quantification and 
creation of mock samples were performed by the Unit for Biological Agents, Federal Institute for Occupational 
Safety and Health (BAuA). Samples were shipped to the sequencing team (Mittweida UAS). The sequencing team 
performed library preparation, sequencing and downstream processing unaware of the samples’ actual respective 
compositions (Fig. 4).

Sample Software

Genus Species

Accuracy (%) RMSD MAE Accuracy (%) RMSD MAE

1 (heterogenous, adjusted by ddPCR)

Centrifuge 99.27 0.0585 0.0286 84.10 0.0718 0.0374

Kraken 97.60 0.0589 0.0293 77.98 0.0847 0.0426

Kraken 2 98.57 0.0587 0.0290 81.18 0.0775 0.0398

2 (heterogenous, adjusted by Qubit)

Centrifuge 98.96 0.0221 0.0123 85.15 0.0494 0.0256

Kraken 97.06 0.0238 0.0140 79.54 0.0669 0.0341

Kraken 2 98.06 0.0228 0.0132 82.47 0.0576 0.0296

3 (equimolar, adjusted by ddPCR)

Centrifuge 99.26 0.0469 0.0322 92.78 0.0530 0.0417

Kraken 97.10 0.0459 0.0332 86.89 0.0600 0.0469

Kraken 2 98.37 0.0464 0.0326 89.15 0.0568 0.0450

4 (equimolar, adjusted by Qubit)

Centrifuge 99.08 0.0287 0.0224 91.49 0.0396 0.0332

Kraken 96.91 0.0290 0.0234 85.75 0.0518 0.0390

Kraken 2 98.14 0.0287 0.0228 88.03 0.0466 0.0368

Table 2.  Taxonomic assignment accuracy and corresponding deviation metrics (RMSD and MAE) for 
Centrifuge, Kraken and Kraken 2 across all four samples, on genus and species level, respectively. Centrifuge 
has highest accuracy for all samples, genus level classification metrics are superior compared to corresponding 
species level classification.
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Sample cultivation and preparation.  DNA from twelve bacterial strains was extracted to form a mock 
community sample (Table 4) for benchmarking the MinION sequencing platform using the following criteria: (A) 
Each strain is the type strain of the bacterial species and is available from the Leibniz Institute DSMZ - German 
Collection of Microorganisms and Cell Cultures GmbH (DSMZ), the National Collection of Type Cultures 
(NCTC) or the American Type Culture Collection (ATCC). (B) Each strain has a reference sequence deposited 
at the National Center for Biological Information (NCBI). (C) Each strain has several assemblies of the same 
species available at the NCBI. (D) The sequencing laboratory is blind to both, the selection itself and the actual 
composition of the strains selected.
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Figure 2.  In silico complexity reduction of the samples with heterogeneous genomic concentration (sample/
barcode 1, adjusted by ddPCR and sample/barcode 2, adjusted by Qubit) allows reliable detection of further 
strains down to an original genomic concentration around 25,000 genomes. Strains adjusted to the range of 500 
to 5,000 genomes could not be reliably detected. Theoretical values and validation by NanoOK (alignments with 
minimap2) are given for comparison.

Sample
Reads 
(total)

Reads with 
alignments [%]

Reads without 
alignments [%]

Read length 
mean [bp]

Read length 
N50 [bp]

1 (heterogenous, adjusted by ddPCR) 142,008 141,332 99.52 676 0.48 9,375 14,245

2 (heterogenous, adjusted by Qubit) 261,833 260,540 99.51 1,293 0.49 9,823 15,074

3 (equimolar, adjusted by ddPCR) 109,948 109,148 99.27 800 0.73 8,472 13,777

4 (equimolar, adjusted by Qubit) 148,392 147,217 99.21 1,175 0.79 8,994 14,329

Table 3.  NanoOK alignment statistics for each sample. Alignments were performed against RefSeq genomes.
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Bacteria were grown overnight as follows: Dickeya solaniT (Todd-Hewitt + 0,5% yeast extract (THY), 28 °C), 
Serratia fonticolaT (DSMZ-Medium 1, 28 °C), Bacillus licheniformisT (DSMZ-Medium 1, 37 °C), Corynebacterium 
glutamicumT (THY, 28 °C), Micrococcus luteusT (THY, 28 °C), Cronobacter sakazakiiT (DSMZ-Medium 1, 28 °C), 
Achromobacter xyloxidans subsp. xyloxidansT (DSMZ-Medium 1, 28 °C), Paenibacillus odoriferT (DSMZ-Medium 
1, 28 °C), Chromobacterium violaceumT (DSMZ-Medium 1, 28 °C), Enterobacter hormaechei subsp. steiger-
waltiiT (CASO, 37 °C), Staphylococcus saprophyticus subsp. saprophyticusT (DSMZ-Medium 92, 37 °C) and 
Xanthomonas campestrisT (DSMZ-Medium 1, 28 °C). DNA of 1 ml of the cell suspension derived from liquid 
culture or resuspended colonies in PBS was extracted using a modified protocol of the GenElute Plant Genomic 
DNA Miniprep Kit (Sigma Aldrich,37). DNA concentrations were quantified using the Qubit BR assay in a Qubit 
1.0 fluorometer according to the manufacturer’s protocol. Subsequently, ddPCR targeting the 16 S rRNA-gene 
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Figure 3.  Sequenced coverage per sample for each of the twelve identified strains in the community. Data based 
on NanoOK analysis.
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was conducted with app. less than 40,000 target genes according to the manufacturer’s instructions (Bio-Rad) 
using the ddPCR Supermix for Probes (no dUTP). Final concentrations of oligonucleotides were 0.4 pmol/µL 
1055Falt (ATGGRTGTCGTCAGCT), 0.2 pmol/µL 1392 R (ACGGGCGGTGTGTAC) and 0.1 pmol/µL 1115IB 
(FAM-CAACGAGCG-ZEN-CAACCC-3IABkFQ) adopted from Rothrock et al.38. Droplet generation was con-
ducted according to manufacturer’s instructions in a QX200 Droplet Generator and amplified in a T100 Thermal 
Cycler. PCR conditions were initial denaturation at 95 °C for 10 min, and 30 cycles of denaturation at 95 °C for 
30 s, annealing at 57 °C for 45 s, extension at 72 °C for 45 s with a ramp rate of 1 °C/s, followed by a final extension 
at 98 °C for 10 min and cooling to 12 °C. Droplet evaluation was performed in a QX200 Droplet Reader with 
QuantaSoft-Software.

Based on Qubit and ddPCR quantitation, the nucleic acids were adjusted to different genomic concentrations 
ranging from 5 to 5*105 genomes/µl (samples #1 and #2, corresponding to sequencing library barcodes #1 and 
#2), or to equimolar genomic concentration of 5*104 genomes/µl (samples #3 and #4 corresponding to sequenc-
ing library barcodes #3 and #4).

Samples were shipped on ice by public postal services.

Library preparation and sequencing.  A sequencing library was prepared according to manufacturer’s 
instructions. The Ligation Sequencing Kit (SQK-LSK108, Oxford Nanopore Technologies (ONT)) and the Native 
Barcoding Expansion 1–12 kit (EXP-NBD103, ONT), barcoding each of the samples (barcodes #1, #2, #3, #4), 
were used with the following exceptions: Shearing times were prolonged and an optional FFPE DNA repair step 
(M6630, New England Biolabs (NEB)) was included. The incubation times during the end-repair/dA-tailing 
(E7546, NEB) were extended from five to 20 minutes for both, the 20 °C and 65 °C incubation steps. Qubit check-
point measurements were performed according to the library preparation protocol (see Supplementary Table S1). 
Pooling of the barcoded samples was performed ‘as is’ instead of protocol-given ‘equimolar’. Sequencing was then 
performed on a R9.4 flowcell (FLO-MIN106, ONT, >1200 pores, see Supplementary Table. S2) with MinKNOW 
(version 2.1.12, ONT) at room temperature.

Base calling and demultiplexing.  Upon conclusion of sequencing, raw data in Fast5 file format were 
transferred to our server (4.17.2-1-ARCH, 20 cores with 2 threads each, 256 GB RAM) and basecalled using the 
Albacore software (version 2.0.2, ONT) with barcoding option. Subsequently, barcodes were removed from base-
called output and subsequently sorted utilizing Porechop (version 0.2.3, standard settings, https://github.com/
rrwick/Porechop). Basecalled and demultiplexed sequencing data quality was assessed with NanoPack (version 
1.13.0, https://github.com/wdecoster/NanoPlot)39.

Data classification and validation.  Taxonomic classification was performed with standard parameters 
(Centrifuge “-k 1”) on native reads using Centrifuge (precompiled index: “Bacteria, Archaea (compressed), 2018-
4-15”)22, as well as Kraken (precompiled database: “DustMasked MiniKraken DB 8GB”)40 and Kraken2 (precom-
piled database: MiniKraken2_v1_8GB)28 and the results were visualized with Krona41 and R42–45.

The interactive and intuitive Krona visualization was used to manually select up to twelve bacterial strains. The 
corresponding genome reference sequences were obtained from NCBI Reference Sequence Database46 (accessed 
on 2018-07-31).

NanoOK (version 1.34)47 was utilized for an assessment of the read dataset against the selection of NCBI 
genome reference sequences, using minimap2 aligner (version 2.11)48. To create the minimap2 index, the ref-
erence sequences obtained from NCBI Reference Sequence Database were concatenated into a single FastA file.

Statistics and additional visualizations were computed with R42–45,49,50. We calculated the accuracy of the clas-
sification performed by Centrifuge, Kraken and Kraken 2 on each sample the proportion of reads assigned to the 

Figure 4.  Overall study design and process workflow. Part One (grey), mock community creation, was 
performed by the Unit for Biological Agents, Federal Institute for Occupational Safety and Health (BAuA, 
Berlin). Part Two (black), sequencing and data processing was performed by Wünschiers Group, University of 
Applied Sciences Mittweida (Mittweida UAS).
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known input organism at the genus and species level out of the total number reads given any assignment at that 
rank18. To calculate a corresponding estimate of the accompanying error, the mean absolute error, as well as root 
mean squared deviation of classified to theoretically present fractions on genus and species level were computed. 
On read level, precision and recall for genus and species identification were computed32 for Centrifuge, Kraken 
and Kraken 2 vs. the results obtained from the NanoOK analysis, with precision being the proportion of reads 
classified correctly to reads classified and recall being the proportion of reads classified correctly to the reads from 
the NanoOK dataset, which was used as “ground truth”. All additional bioinformatics processing was performed 
in the Linux Bourne Again Shell (bash), using Samtools (version 1.9)51 and seqtk (version 1.3-r106, https://github.
com/lh3/seqtk).

Data availability
The data sets supporting the results of this article are available in the under bioproject accession PRJNA545964 
(https://www.ncbi.nlm.nih.gov/sra/PRJNA545964) and as Zenodo deposit 3600229 (10.5281/zenodo.3600229).
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