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Abstract 

Background:  While most differential coexpression (DC) methods are bound to quantify a single correlation value 
for a gene pair across multiple samples, a newly devised approach under the name Correlation by Individual Level 
Product (CILP) revolutionarily projects the summary correlation value to individual product correlation values for sepa-
rate samples. CILP greatly widened DC analysis opportunities by allowing integration of non-compromised statistical 
methods.

Methods:  Here, we performed a study to verify our hypothesis that conditional relationships, i.e., gene pairs of 
remarkable differential coexpression, may be sought as quantitative prognostic markers for human cancers. Alongside 
the seeking of prognostic gene links in a pan-cancer setting, we also examined whether a trend of global expression 
correlation loss appeared in a wide panel of cancer types and revisited the controversial subject of mutual relation-
ship between the DE approach and the DC approach.

Results:  By integrating CILP with classical univariate survival analysis, we identified up to 244 conditional gene links 
as potential prognostic markers in five cancer types. In particular, five prognostic gene links for kidney renal papillary 
cell carcinoma tended to condense around cancer gene ESPL1, and the transcriptional synchrony between ESPL1 and 
PTTG1 tended to be elevated in patients of adverse prognosis. In addition, we extended the observation of global 
trend of correlation loss in more than ten cancer types and empirically proved DC analysis results were independent 
of gene differential expression in five cancer types.

Conclusions:  Combining the power of CILP and the classical survival analysis, we successfully fetched conditional 
transcriptional relationships that conferred prognosis power for five cancer types. Despite a general trend of global 
correlation loss in tumor transcriptomes, most of these prognosis conditional links demonstrated stronger expression 
correlation in tumors, and their stronger coexpression was associated with poor survival.
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Background
In more than a decade, a genre of bioinformatics 
approaches to transcriptional correlation changes has 
been steadily progressing. By focusing on the gene–gene 
relationships rather than individual genes in isolation, 
these algorithms/methods are collectively termed Dif-
ferential Coexpression (DC) approaches, in contrast to 
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the mainstream Differential Expression (DE) approaches. 
One of the most successful applications in this line-
age is R package WGCNA [1], which has been utilized 
thousands of times after its release in 2008. Neverthe-
less, it is worth noting that WGCNA was not originally 
purported straightforward towards correlation changes; 
rather, WGCNA seeks strong correlations overarching 
heterogeneous experimental conditions with the addi-
tional requirement of cross-conditional gene differential 
expression. The vast majority of DC methods, mostly 
arriving later than WGCNA, are projected towards cor-
relation changes directly, i.e., gene–gene correlations that 
change substantially between conditions/phenotypes. 
Such differential or dynamic transcriptional relationships 
were recently denoted as conditional relationships [2].

As summarized in several reviews [3–5], DC methods 
hold unprecedented promises for unravelling disease 
dysregulation mechanisms and prioritizing supplemen-
tal disease markers. At a very abstract level, DC meth-
ods can be classified by their primary analysis entities 
(genes, gene pairs, or gene sets), the delimitation of can-
didate entities (a priori defined or data-driven), and the 
number of experimental conditions that can be com-
pared simultaneously (two or multiple) [2]. Regardless 
of all these classification angles, nearly all DC methods 
share an essential feature that they summarize one cor-
relation index under one condition and then focus on the 
change of such a  correlation index between conditions. 
Such foremost bind to condition-wise correlation values 
imposes unavoidable methodological limitations. For 
example, it is not recommended to exercise DC analysis 
when there are few samples per condition (say, n < 10), or 
when sample sizes are considerably imbalanced between 
conditions. Recently, a study of GTEx expression data-
sets denounced the independent value of DC approaches, 
declaring that most DC relationships can be more parsi-
moniously explained by DE of the involved genes [6]. On 
the other hand, though, consecutive benchmark studies 
are evaluating a growing body of DC methods and they 
generally approved of the independent or complemen-
tary benefits brought forth by DC methods [2, 7, 8].

In 2019, an innovative DC method was proposed under 
the name of “Correlation by Individual Level Product 
(CILP)” [9]. Traditionally, most DC methods rely on the 
Pearson Correlation Coefficient (PCC) to summarize the 
gene–gene correlation level for a condition that consists 
of multiple samples. Very creatively, Lea and colleagues 
sought to project the summary PCC value to individual 
post-scaling product values for separate samples in one 
condition. The CILP method is justified by an intrinsic 
mathematic property of PCC; PCC is equal to the aver-
age element-wise product of two traits measured across 
samples, after each trait is mean centered and scaled. 

Intuitively, the element-wise products of two genes’ post-
scaling expression profiles appear as compelling sample-
wise correlation measures between the two concerned 
genes. CILP thus reasonably defines sample-wise “prod-
uct correlation” values for any pair of genes, effectively 
formulating a kind of “pair correlation matrix” that is 
analogous to a “gene expression matrix” in appearance. 
With this conceptual revolution, theoretically all statis-
tical methods customized for DE analysis can be trans-
ferred to the DC framework without compromising their 
methodological beauty. For instance, Lea and colleagues 
demonstrated the successful implementation of linear 
regression model in the DC context with convenient 
incorporation of sample-wise clinical covariates [9].

Survival analysis correlates omics data with patient 
prognosis and holds promises for nominating prognosis 
markers. Survival analysis has been playing an essential 
and decisive role in bio-medical research [10, 11]. In 
the CILP introductory study [9], the authors identified 
metabolite pairs of strongest correlation loss and vali-
dated their prediction power for future development of 
metabolism disease (Fig.  3d in [9]). However, according 
to personal correspondences with Dr. Amanda Lea, the 
prognosis validation analysis was based upon levels of 
individual metabolites rather than the coexpression levels 
of metabolite pairs. Per Dr. Lea’s explanation, it would be 
more troublesome and costly to validate the coexpression 
of few metabolites in relation to the whole metabolome 
than to measure the levels of the few metabolites alone. 
However, given the fact that the few metabolites were 
prioritized in terms of DC analysis, their prognosis value 
would be much more logically and convincingly validated 
from the DC perspective than the DE perspective.

Motivated by the greatly widened opportunities offered 
by the novel CILP framework, and also intrigued by the 
logical defect that we appreciated in Dr. Lea’s survival 
analysis [9], we decided to integrate CILP with classical 
univariate survival analysis where the concerned entity is 
not a typical gene but a gene pair/link. We took advan-
tage of the comprehensive transcriptome and survival 
data of hundreds of patients from The Cancer Genome 
Atlas (TCGA), which spans dozens of cancer types thus 
offering a pan-cancer analysis opportunity. In brief, this 
study was primarily aimed to explore whether CILP is 
capable of identifying conditional transcriptional rela-
tionships as cancer prognostic markers; meanwhile, we 
also revisited the controversial subject of mutual rela-
tionship between the DE approach and the DC approach.

Of note, cancers are commonly regarded as a kind of 
network-based diseases with synthetic lethal interactions 
holding promises for new therapeutic solutions [12]. 
Currently, the computational efforts directed towards 
synthetic lethal interactions mainly exploit double 
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knockout libraries of yeast or the mutual exclusivity of 
somatic mutations revealed in thousands of human can-
cer genomes. We advocate CILP as a promising method 
to identify conditional gene links from data at the tran-
scriptome level, and we see that CILP is technically appli-
cable to data at the genomics level. It is our belief that a 
CILP-based strategy may also be exploited to help dis-
cover synthetic lethal interactions in cancer genomes.

Methods
Raw data and data preprocessing
We retrieved whole-transcriptome RNA-Seq data 
for multiple cancer types from TCGA via R package 
TCGA2STAT [13]. RNA-Seq data were log-transformed 
and quantile-normalized in a homogeneous sample 
group (e.g., tumor samples of one cancer type). Clini-
cal data for the same patient cohorts were also obtained 
via TCGA2STAT. Thirteen cancer types (BRCA, COAD, 
COADREAD, HNSC, KICH, KIPAN, KIRC, KIRP, 
LIHC, LUAD, LUSC, PRAD, and THCA) were analyzed 
in parallel in this study, because they had at least 20 
matched samples for the tumor and normal conditions. 
A full description of the 13 cancer types can be found in 
Table 1.

From COXPRESdb (v7) [14], we downloaded the coex-
pression gene lists and “coexpression supportability” 
for all human genes. Coexpression supportability of a 
gene reflects the robustness of its coexpressed gene list 
across different microarray/RNA-Seq platforms, with 
vast cross-study samples taken into consideration [15]. 
COXPRESdb recognized around 7000 human genes as 

high-supportability genes (supportability = 3). The origi-
nal COXPRESdb data were processed to yield 691,471 
conserved gene coexpression pairs, which involved only 
the top 1% coexpressed partners of each high-supporta-
bility genes.

To study global correlation change trend in tumors
For each cancer type, we calculated condition-wise PCC 
values for each of the 691,471 conserved gene pairs, 
where a “condition” denotes either the normal group or 
the tumor group. Therefore, for each cancer type, two 
series of paired PCC values were derived for  all  con-
served gene pairs. We performed linear regression analy-
sis between the paired PCCs, and plotted the regressed 
linear model to emphasize the qualitative property of 
slope (slope < 1 or not). Additionally, by examining the 
increase/decrease directionality of the absolute PCC val-
ues in the normal-to-tumor comparison, we labelled each 
conserved gene pair as either Strengthened or Weakened, 
and thus divided ~ 700  K conserved coexpression pairs 
into a Strengthened part and a Weakened part.

It was impractical to visually delineate 700 K gene pairs 
simultaneously; therefore, for the sake of meaningful 
visualization, we transiently switched to all possible gene 
pairs formed among the 500 most differentially expressed 
genes (DEGs). R package limma [16] was employed 
to identify the top 500 DEGs in a paired normal-ver-
sus-tumor setting, and PCCs for each of the 124,750 
inter-DEG pairs were calculated. A cross-conditional 
asymmetrical expression correlation heatmap was plot-
ted for each cancer type surrounding these 500 DEGs.

Table 1  Detailed information on cancer types involved in this study

§  COADREAD and KIPAN were not among original TCGA panel of cancer types; they were complex cancer types derived by authors of R package TCGA2STAT​

*Three cancer types did not return at least ten significant DCLs in their respective CILP analysis, so they were not screened for prognosis DCLs via survival analysis

Cancer type 
(abbreviated)

Cancer type (full name) Sample size in paired 
comparison

Sample size in survival 
analysis

Percentage of 
censored samples 
(%)

BRCA​ Breast invasive carcinoma 112 980 89.1

COAD Colon adenocarcinoma 26 N/A* N/A*

COADREAD§ Colorectal adenocarcinoma 32 N/A* N/A*

HNSC Head and neck squamous cell carcinoma 43 477 60.6

KICH Kidney chromophobe 25 N/A* N/A*

KIPAN§ Pan-kidney cohort (KICH + KIRC + KIRP) 129 759 74.8

KIRC Kidney renal clear cell carcinoma 72 461 67.9

KIRP Kidney renal papillary cell carcinoma 32 257 85.6

LIHC Liver hepatocellular carcinoma 50 320 70.0

LUAD Lung adenocarcinoma 58 449 65.0

LUSC Lung squamous cell carcinoma 51 444 59.5

PRAD Prostate adenocarcinoma 52 445 97.8

THCA Thyroid carcinoma 59 442 97.3
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To investigate reproducibility of correlation measures 
and differential coexpression results
To conduct the reproducibility analyses in BRCA, we 
first identified 2051 loosely defined DEGs (10% of the 
total number 19,790) in a paired tumor-versus-normal 
comparison (n = 112), using R package limma. Follow-
ing a half-thresholding strategy [17], we narrowed down 
gene pairs to 39,038 tuples whose absolute PCC value 
in either condition was ranked within the highest 1% of 
all 2,102,275 pairs among the 2051 DEGs. For each gene 
pair, by comparing the signs of two PCC values derived 
from the 112 normal samples and the 112 paired tumor 
samples, respectively, we classified it as differently 
signed, same-signed positive, or same-signed negative. 
A single round of CILP analysis was performed to com-
pare the  112 normal samples and the 112 paired tumor 
samples, where we fitted the product correlation values 
on the sample grouping variable and adjusted for the 
expression values of the two gene entities. Differentially 
Coxpressed Links (DCLs) were identified as those show-
ing False Discovery Rate (FDR) < 0.1 as converted from 
the original CILP p-value with the Benjamin-Hochberg 
method. Furthermore, these DCLs were separated into 
DE-dependent DCLs and DE-independent DCLs, where 
the former showed significant dependence of prod-
uct correlations on at least one gene entity (FDR < 0.1). 
To conduct DC analysis repeatedly for reproducibility 
assessment, we split the whole 1093  BRCA tumor sam-
ples into ten folds of roughly equal sizes (n = 112 for nine 
folds and n = 85 for one fold), and matched each fold 
of tumor samples with the same set of normal samples 
(n = 112) and performed ten rounds of CILP analysis in 
a non-paired comparison setting. Gene pairs with CILP-
derived FDR < 0.1 were deemed as DCLs, and we counted 
the DCL recurrence (times of showing DC significance) 
across the ten repeated analyses.

To identify conditional links in normal‑to‑tumor transition 
and further discriminate prognosis conditional links
For each of the 13 cancer types which sufficed the sample 
size requirement (n ≥ 20), we performed CILP analysis of 
each conserved coexpression gene pair to compare the 
product correlation values between the paired tumor and 
normal samples. The p-values out of the linear regression 
model (which degenerated to paired t-test in this case) 
were adjusted to FDR, and FDR ≤ 0.3 was imposed to 
accredit DCLs, or conditional links.

For ten cancer types, we examined the prognosis value 
of each DCL. Subject identities of the tumor RNA-Seq 
data and those of the survival data were matched, and 
the subjects who contributed paired samples in the DCL 
identification analysis above were excluded. Across the 
remaining tumor samples with concurrent RNA-Seq 

data and survival data, we centered and scaled the log-
scale expression level and derived product correlation 
values for each DCL. The product correlation values were 
dichotomized to high-coexpression and low-coexpres-
sion by the across-cohort median value, and the binary 
coexpression values were correlated with overall survival 
data through the log-rank test. The p-values out of sur-
vival analysis were adjusted to FDR; again, FDR ≤ 0.3 was 
imposed to ascertain prognosis DCLs, i.e., conditional 
links that confer survival predictability.

We denoted the genes involved in DCLs as Differen-
tially Coexpressed Genes (DCGs). We wanted to check if 
DCGs tended to be more differentially expressed across 
the whole spectrum of genes; in other words, we would 
like to see if there was a correlation between the differen-
tial coexpression and the differential expression of genes. 
We first applied limma on all 7  K high-supportability 
genes and obtained the differential expression p-values 
for each gene. The transformed differential expres-
sion p-values were treated as the RNK file in a Gene 
Set Enrichment Analysis (GSEA) [18], where we sup-
plied a set of DCGs as the gene set of interest. GSEA 
thus returned us a p-value indicating the chance of the 
DCGs being randomly placed in the sorted gene panel. 
If the GSEA p-value was sufficiently small (say, p < 0.01), 
it would suggest a significant correlation between the 
differential coexpression and the differential expression 
of genes. GSEA was accessed as an R package (https://​
github.​com/​GSEA-​MSigDB/​GSEA_R).

Results
Overall decoherence in tumor transcriptomes is observed 
in BRCA and all other TCGA cancer types
In the CILP introductory study of metabolism diseases 
[9] and our study of chronic kidney disease [19], a global 
correlation loss trend was observed from a normal tran-
scriptome to a diseased transcriptome. Coincidentally, 
years ago, the same trend was reported for five cancer 
types in an analysis of several GEO microarray datasets 
[20]. Here, we took the opportunity to verify/extend the 
possibly universal phenomenon of pathological co-tran-
scription attenuation in a wider range of cancer types, 
using RNA-Seq data from TCGA.

To our expectation, we observed a predominant co-
transcription attenuation in tumor as compared to paired 
normal, for 13 technically defined cancer types (Fig.  1). 
When we classified each of the ~ 700 K conserved coex-
pression gene pairs to either a Strengthened part or a 
Weakened part, all 13 cancer types received more than 
50% Weakened gene pairs (Fig.  1a). When we visual-
ized the linear regression model between paired PCCs 
from normal to tumor, all 13 cancer types demonstrated 
a slope less than 1 (Fig. 1b), certifying the same trend of 

https://github.com/GSEA-MSigDB/GSEA_R
https://github.com/GSEA-MSigDB/GSEA_R
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Fig. 1  Global correlation losses dominated tumor transcriptomes in comparison with paired normal transcriptomes. a By considering the  
directionality of correlation change from normal to tumor, 691 thousand ubiquitous coexpression pairs were divided into a strengthened part and 
a weakened part. b Representations of linear regression models between normal PCC and tumor PCC. c Cross-conditional asymmetrical expression 
correlation heatmaps for 13 cancer types. PCC values for all possible gene–gene pairs formed among the top 500 differentially expressed genes 
were indicated for the normal phenotype (lower-triangle) and the tumor phenotype (upper-triangle), respectively. The order of genes in the rows 
was the same as the order in the columns, so that the spots symmetrically positioned off the diagonal line depicted the same pair of genes with 
possibly varied PCC values across phenotypes
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dominant co-transcription attenuation. Lastly, when we 
visualized the paired PCCs for 500 DEGs in an asymmet-
ric correlation heatmap that overarched the normal and 
tumor conditions, the global correlation loss trend was 
unambiguously revealed in a majority of the 13 cancer 
types (Fig. 1c). According to visual judgement, there was 
substantial correlation loss in eight cancer types (BRCA, 
COAD, COADREAD, HNSC, KICH, KIPAN, KIRC, 
KIRP), weak yet discernable correlation loss in two can-
cer types (LUAD and PRAD), and an ambiguous trend 
in two cancer types (LIHC and THCA). Taken together, 
these results from diverse angles or gene scopes sug-
gested a possibly universal phenomenon of pathological 
co-transcription attenuation in a wide range of cancer 
types. This plausible global trend of pathological co-tran-
scription attenuation is in concert with prior sporadic 
reports [9, 20, 21].

Reproducibility of correlations and DCLs
Obviously, the success of a DC analysis is contingent 
upon robust coexpression quantification against variant 
same-natured sample sets. PCC is the most commonly 
practiced condition-wise correlation metric, but it is sus-
ceptible to noise samples [22]. A recent study particularly 
addressed the problem of variable PCCs resulting from 
different sample subsets [23]. The BRCA RNA-Seq data-
set has a unique, extremely imbalanced sample structure 
in terms of tumor versus normal ratio (1093 vs. 112). We 
used to take advantage of this unusual sample structure 
to study various classifiers’ tolerance to increasing sever-
ity of class imbalance [24]. Now we leveraged the 10:1 
sample size ratio to assess the reproducibility of correla-
tion measures (PCC) and DCL results across ten repeti-
tive datasets which each used a different fold of tumor 
samples.

Firstly, we observed high and stable correlation of gene 
pair PCCs across the ten folds of BRCA tumor samples 
(Additional file  1: Fig. S1): the cross-fold PCC of gene 
pair PCCs ranges in 0.76–0.86. The high concordance of 
gene pair PCC values between alternative tumor subsets 
endorsed the sample homogeneity within the same con-
dition (tumor or normal) and consistency in RNA-Seq 
data preprocessing. More importantly, the reproducible 
correlation values established the foremost validity of 
applying a DC approach to identify meaningful DCLs.

Next, we performed CILP analysis in ten runs where 
each time we matched a different fold of tumor sam-
ples (n = 112 or 85) with the same set of normal sam-
ples (n = 112). Before the ten rounds of repetitive CILP 
analysis, we performed one round of CILP analysis on 
the paired tumor-versus-normal dataset, where two vari-
ables for the gene expression values of the two gene enti-
ties were incorporated alongside the sample grouping 

variable. This sample-paired CILP analysis was exerted 
for obtaining a set of reference DCLs that were separated 
into a DE-dependent subset and a DE-independent sub-
set. Next, CILP analysis was repeatedly performed on ten 
rounds of non-paired tumor-versus-normal datasets, and 
we summarized the recurrence statistics for each refer-
ence DCL based on their occurrence as DCLs in the ten 
result sets. DCL recurrence takes value from [1, 10], the 
higher the more reproducible. We plotted the distribu-
tion of DCL recurrence for three components of refer-
ence DCLs, classified by the directionality of correlation 
signs (Fig. 2). Unsurprisingly, in many dissections of the 
data, a reference DCL was most likely to appear in only 
one of the repetitive analysis results. This general trend 
was refuted in DE-dependent, negatively correlated 
DCLs (Fig. 2c), where most reference DCLs tended to be 
confirmed in all ten non-paired CILP analyses. This led 
us to suppose that, in general, differential negative corre-
lations could be more reproducible than differential posi-
tive correlations.

From all 39,038 half-thresholded coexpression links, 
the sample-paired CILP analysis identified 8397 DE-
dependent DCLs and 5859 DE-independent DCLs. 
While DE-dependent DCLs outnumbered DE-independ-
ent DCLs, their quantity advantage is weak, at a percent-
age of 59%, noticeably lower than the previously alleged 
75% [6]. According to the distribution patterns of DCL 
recurrence, we seemingly verified the prior observation 
[6] that DE-dependent DCLs are more reproducible than 
DE-independent DCLs, especially for the most notewor-
thy subset of negatively correlated DCLs (Fig. 2b vs. Fig-
ure 2c). However, we designed another way to study the 
relationship between DEGs and DCGs, finding no signifi-
cant evidence of mutual correlation (see next section).

Conditional relationships emerging as cancer prognostic 
markers
For each of the 691,471 conserved coexpression pairs 
(derived from COXPRESdb [14]; see Methods), we per-
formed CILP analysis to identify differentially coex-
pressed links (DCLs) with FDR < 0.3. Of all 13 analyzed 
cancer types (Table 1), ten cancer types returned at least 
ten DCLs each (Table 2). Details of the DCLs for five can-
cer types (HNSC, KIPAN, KIRC, KIRP, and THCA) were 
provided in Additional file 2: Table S1.

For each DCL of each cancer type, we performed sur-
vival analysis on tumor samples with the normal-paired 
subjects excluded. The log-rank test p-value was adjusted 
to FDR and FDR < 0.3 was required to call prognosis DCL. 
At this stage, five cancer types returned 1–244 prognosis 
DCLs, whereas the other five cancer types returned null 
sets (Table 2). The prognosis DCLs tended to inter-con-
nect to limited number of genes, as exemplified in KIRP 
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Fig. 2  Distribution of DCL recurrence across ten scenarios of BRCA versus normal comparisons, where each time a different fold (1/10) of whole 
tumor samples were recruited. a All reference DCLs identified from the paired-comparison setting, which were further divided into three subsets 
according to the  paired correlation signs. b The DE-independent component of reference DCLs. c The DE-dependent component of reference 
DCLs

Table 2  Differentially coexpressed links (DCLs), differentially coexpressed genes (DCGs), and correlation between DCGs and 
differentially expressed genes (DEGs)

Survival analysis results (DCGs and DCLs) were subsets of DC analysis results that met the criterion of FDR ≤ 0.3 in DCL survival analysis

*Only the cancer types that retrieved at least two DCGs were fed to GSEA analysis, and when the gene number was more than 500 we did not perform a GSEA analysis

DC analysis results Survival analysis results

#DCL #DCG Maximum p-value 
of DCLs

GSEA p-value* #DCL #DCG Maximum p-value 
of DCLs

GSEA p-value*

BRCA​ 4920 2538 5.3e − 7 N/A 0 0 N/A N/A

HNSC 13 23 5.2e − 7 0.257 1 2 0.019 0.380

KIPAN 11,549 3950 5.4e − 7 N/A 244 331 2.6e − 5 0.210

KIRC 1213 971 5.3e − 7 N/A 7 11 0.0002 0.436

KIRP 21 34 5.1e − 7 0.930 5 8 0.010 0.071

LIHC 19 29 5.2e − 7 0.070 0 0 N/A N/A

LUAD 134 173 5.3e − 7 0.823 0 0 N/A N/A

LUSC 66 85 4.9e − 7 0.227 0 0 N/A N/A

PRAD 16 27 5.1e − 7 0.303 0 0 N/A N/A

THCA 13 21 4.9e − 7 0.856 1 2 0.015 0.614
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where five DCLs forming three discrete network modules 
(Fig. 3a). We performed a small-scaled validation experi-
ment on the DC of 12 prognosis DCLs associated with 
KIRC and KIRP using the RNA-Seq data of renal cell 
cancer (RECA-EU) from International Cancer Genome 
Consortium (https://​dcc.​icgc.​org/​proje​cts/​RECA-​EU). 
Using the CILP method, we found eight out of the total 
12 prognosis links of KIRC and KIRP showed statistically 
significant elevated correlation from normal to tumor 
(two-sided paired t-test, p < 0.05), which included three 
of the five prognosis links for KIRP (Fig. 4f ).

All five prognosis DCLs for KIRP showed increased 
coexpression in tumor versus normal, and concordantly, 
patients with high coexpression of these gene pairs had 
significantly shorter overall survival (Fig. 4). The STRING 
database [25] confirmed functional inter-connection 
for three out of the five prognosis gene pairs, namely 
CDC45:ESPL1, ESPL1:PTTG1, and ESPL1:PRC1. These 
three links formed a compact network module (Fig. 3a), 
with ESPL1 emerging as a hub. The COSMIC database 
indicates that somatic mutations in the ESPL1 gene was 
related to human lung and kidney cancers [26]. One part-
ner gene of ESPL1, PTTG1, was proved to be an onco-
gene in renal cell carcinoma [27, 28] and other cancer 
types [29–31].

For each cancer type, from the DCL superset and the 
prognosis DCL subset, we derived the so-called DCGs 
and prognosis DCGs, as those genes incident to the 
DCLs (Table  2). We employed the well-known GSEA 
algorithm to test if DCGs tended to demonstrate more 
remarkable DE. For the three cancer types (HNSC, KIRP, 
and THCA) which returned moderate number of DCGs, 

no significant correlation between gene differential coex-
pression and gene differential expression was observed 
(minimum p = 0.257, Table 2). Speaking of the prognosis 
DCGs, all five GSEA-applicable cancer types returned 
non-significant p values (minimum p = 0.071, Table  2, 
Fig. 3b). In summary, in our empirical investigation of five 
cancer types, genes’ differential coexpression attribute is 
not dependent on their differential expression attribute. 
Here, we arrived at a conclusion that is seemingly contra-
dictory to what was declared by the related study [6] and 
verified by us in the previous Results section.

Discussion
In this pan-cancer differential coexpression analysis, we 
first revisited the presumably general phenomenon of 
coexpression loss in tumors. In light of ~ 700 K conserved 
gene pairs surrounding highly supported genes curated 
by COXPRESdb, we found that each of the 13 surveyed 
cancer types showed a less-than-one slope for their lin-
ear models of tumor PCCs on normal PCCs. This meant 
that the assertion of tumor correlation attenuation may 
be extended from 5 [20] or 3 [32] to at least 11 cancer 
types (Table 1, excluding the two complex cancer types). 
To increase confidence in this extended assertion, we also 
examined and confirmed the same trend with respect 
to the all-possible gene pairs among the top-500 DEGs. 
Overall, we feel confident to propose the extended asser-
tion that a global correlation loss is present in tumor 
transcriptomes for more than ten cancer types. Very 
recently, nasopharyngeal carcinoma [33], an under-stud-
ied cancer type, has also been found with overwhelming 
transcriptional correlation losses. A possible explanation 

Fig. 3  KIRP conditional links characterized with normal-versus-tumor differential coexpression and prognosis conditional links associated with 
overall survival. a Network of 21 DCLs (conditional links) with the 5 prognosis DCLs highlighted (thick edge and solid vertex) for association with 
survival. b Placement of DCGs and prognosis DCGs in the spectrum of ~ 7 K genes of decreasing differential expression significance. DCGs and 
prognosis DCGs corresponded to DCLs and prognosis DCLs in a, respectively. The correlation between DCGs/prognosis DCGs and gene differential 
expression significance was analyzed with Gene Set Enrichment Analysis (GSEA)

https://dcc.icgc.org/projects/RECA-EU
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of such a pan-cancer global correlation attenuation may 
be the increased heterogeneity in tumor tissues.

Of note, the pan-cancer global correlation attenu-
ation took place in both positive correlations and 
negative correlations—i.e., the magnitude of absolute 
correlation values was generally reduced in tumor sam-
ples. At times, negative expression correlations were 
overlooked or downweighted [21]. Even in the CILP 
introductory study, the correlation lessening trend in 
negative correlations was not explicitly underscored. 
Reassuringly, a study of connectivity loss in three 

cancer types gave special attention to negative corre-
lations and revealed a same trend of connectivity loss 
for negative correlations [32]. In our cross-fold BRCA 
study, we even found that negatively-correlated DCLs 
were more reproducible than the positively-correlated 
DCL counterparts. While we did not trace further with 
the subset of negatively-correlated DCLs herein, future 
works may follow up to investigate possible coherent 
functions represented by negative DCLs, such as extra-
cellular space related methylation targets in colorectal 
carcinoma as proposed in the related study [32].

Fig. 4  Five KIRP conditional links that were found with prognosis predictability. a–e Differential coexpression trend and survival discrimination 
of the five conditional links. The left panel shows how the product correlation values change for each paired subject from the normal sample to 
the tumor sample; the right panel shows the survival difference between two sub-cohorts of cancer patients separated by the median product 
correlation value of the same gene pair. f Three of the five conditional links showed statistically significant (paired t-test, p < 0.05) and same-direction 
coexpression changes in renal cell cancer RNA-Seq data from International Cancer Genome Consortium
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We tried to revisit the controversial topic of mutual 
relationship between DE results and DC results. The DE 
analysis has always been the mainstream and foremost 
solution to a transcriptome study; the DC approach is 
typically touted as a beneficial complement to the default 
DE resolution. The non-trivial, added value offered by a 
DC analysis has been repeatedly discussed in early stud-
ies [34–37]. Our own study of Type-II-diabetes micro-
array data even found a DC analysis outperformed the 
traditional DE analysis to enrich drug targets [17]. In the 
present study, we empirically demonstrated in five can-
cer types that the genes involved in prognosis-significant 
conditional relationships were not conspicuous in terms 
of their differential expression attribute. This observa-
tion added to the cumulative evidence that a DC analysis 
can uncover additional biological insights that might be 
otherwise missed by a traditional DE analysis. Although 
we reproduced the same phenomenon that a major-
ity of conditional relationships are confounded with or 
explainable by (differential) expression of the gene enti-
ties [6], this confounding/correlation between DC and 
DE does not mean the genes involved in the conditional 
relationships can simply by retrieved through a tradi-
tional DE analysis. Actually, according to the definition 
of the product correlations by CILP, it is unsurprising 
that the sample-wise product correlations may be sig-
nificantly dependent on the expression vector of either 
gene from the pair. Dependence of the product correla-
tion on the gene expression does not necessarily trans-
lates to dependence of the gene expression on the sample 
grouping, which explains why DE-dependent conditional 
relationships still capture genes of survival predictability 
which did not stand out in a DE analysis.

Most importantly, we demonstrated the integration of 
the novel CILP method with the classical survival analysis 
in 13 cancer types, and successfully fetched conditional 
transcriptional relationships that conferred prognosis 
power for five cancer types. We had designed this study 
as a preliminary proof-of-concept trial, with the pri-
mary goal of confirming our hypothesis that conditional 
relationships, i.e., gene pairs of remarkable transcrip-
tional rewiring, may be sought as quantitative prognos-
tic markers for human cancers. At a rather permissive 
FDR threshold of 0.3, tens to thousands of conditional 
links survived CILP analysis, and after the next survival 
analysis step, 1–244 conditional links survived the same 
permissive FDR threshold of 0.3. Due to our pan-can-
cer analysis scope, we did not fine-tune the parameters 
involved in diverse analysis steps, or tweak the threshold 
values for focused cancer types. In fact, the FDR of the 

five prognostic DCLs retrieved for KIRP was 0.17, much 
lower than the threshold of 0.3. Future works targeting a 
specific cancer type may need to configure and optimize 
the threshold values, the gene scope, and the possible 
pre-filtration of gene pairs. The “pair correlation matrix” 
conceptualized by CILP also enables convenient incorpo-
ration of various sample-wise co-variates, such as age and 
gender. For simplicity, we did not make this attempt in 
this study, but it is quite worthwhile to try incorporating 
such clinical variables, as well as certain theme-relevant 
variables (such as smoking status in lung cancer and sun-
burn in skin cancer), into CILP-supported DC studies.

We identified five conditional gene relationships for 
kidney renal papillary cell carcinoma. It appears as an 
interesting phenomenon that, despite a general trend of 
global correlation loss in tumor transcriptomes, all these 
five prognosis conditional links demonstrated stronger 
expression correlation in tumors and their stronger coex-
pression was associated with poor survival (Fig.  4). The 
five prognostic DCLs tended to condense around the 
well-known cancer gene ESPL1, and the transcriptional 
synchrony between ESPL1 and PTTG1 (another well-
known cancer gene) tended to be elevated in patients of 
adverse prognosis. This particular gene pair, alongside 
other gene pairs identified in this study, awaits future 
validations with independent datasets. Future studies 
should also try to decipher the functional mechanisms 
underlying these prognosis-significant conditional tran-
scriptional relationships.

Conclusions
In this work, we integrated CILP with classical univari-
ate survival analysis where the concerned entity is not a 
typical gene but a gene pair/link, and thereby success-
fully identified up to 244 conditional transcriptional 
relationships that conferred prognosis power for five 
cancer types. Despite a general trend of global corre-
lation loss in tumor transcriptomes, we observed that 
most of these prognosis conditional links demonstrated 
stronger expression correlation in tumors, and that their 
stronger coexpression was associated with poor survival. 
In addition, we extended the observation of global trend 
of correlation loss in more than ten cancer types and 
empirically proved DC analysis results were independent 
of gene differential expression in five cancer types.

Abbreviations
CILP: Correlation by Individual Level Product; DC: Differential Coexpression; 
DCG: Differentially Coexpressed Genes; DCL: Differentially Coxpressed Links; 
DE: Differential Expression; DEG: Differentially Expressed Gene; FDR: False Dis-
covery Rate; PCC: Pearson Correlation Coefficient; TCGA​: The Cancer Genome 
Atlas.



Page 11 of 12Yu et al. BMC Med Genomics  2021, 14(Suppl 2):101	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12920-​021-​00958-3.

Additional file 1: Fig. S1. Robustness of PCC values across ten folds of 
BRCA tumors.

Additional file 2: Table S1. Prognosis DCLs  in five cancer types.

Acknowledgements
We’d like to thank Dr. Takeshi Obayashi from Tohoku University for promptly 
publicizing the supportability file for COXPRESdb v7 upon our request.

About this supplement
This article has been published as part of BMC Medical Genomics Volume 14 
Supplement 2 2021: Data-driven analytics in biomedical genomics (part 2). 
The full contents of the supplement are available at https://​bmcme​dgeno​
mics.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​volume-​14-​suppl​ement-2.

Authors’ contributions
Conceptualization, HY and YG; Methodology, HY and JL; Data Curation, HY 
and DC; Formal Analysis and Visualization, HY, LW, and DC; Validation, LW and 
JL; Writing—Original Draft Preparation, HY; Writing—Review and Editing, 
YG; Supervision and Project Administration, YG; Funding Acquisition, YG. All 
authors have read and approved the final manuscript.

Funding
HY and YG were supported by the Cancer Center Support Grant P30CA118100 
from National Cancer Institute. This study was supported by the Bioinformatics 
Shared Resources at the Comprehensive Cancer Center at the University of 
New Mexico. Publication costs are funded by the institutional funding from 
University of New Mexico Comprehensive Center. The funders had no role in 
the study design, data collection, analysis, decision to publish, or manuscript 
preparation.

Availability of data and materials
The data that support the findings of this study are available from public 
repositories TCGA (https://​portal.​gdc.​cancer.​gov/) and ICGC (https://​dcc.​icgc.​
org/). Majority of the data analyses were performed using R × 64 3.4.2. All R 
code written for this manuscript is available from the corresponding author 
upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Internal Medicine, University of New Mexico, Albuquerque, 
NM 87131, USA. 2 Key Laboratory of Tropical Translational Medicine of Ministry 
of Education, Hainan Medical University, Kaikou, Hainan 571199, China. 
3 College of Intelligent Systems Science and Engineering, Harbin Engineering 
University, Harbin 150001, Heilongjiang, China. 4 Key Laboratory of Resource 
Biology and Biotechnology in Western China, School of Life Sciences, North-
west University, Xi’an 710069, Shaanxi, China. 

Received: 28 March 2021   Accepted: 8 April 2021
Published: 2 December 2021

References
	1.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 

network analysis. BMC Bioinform. 2008;9:559.
	2.	 Bhuva DD, Cursons J, Smyth GK, Davis MJ. Differential co-expression-

based detection of conditional relationships in transcriptional data: 
comparative analysis and application to breast cancer. Genome Biol. 
2019;20(1):236.

	3.	 de la Fuente A. From “differential expression” to ’differential networking’—
identification of dysfunctional regulatory networks in diseases. Trends 
Genetics TIG. 2010;26(7):326–33.

	4.	 Kayano M, Shiga M, Mamitsuka H. Detecting differentially coexpressed 
genes from labeled expression data: a brief review. IEEE/ACM Trans Com-
put Biol Bioinform. 2014;11(1):154–67.

	5.	 van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene 
co-expression analysis for functional classification and gene-disease 
predictions. Brief Bioinform. 2018;19(4):575–92.

	6.	 Farahbod M, Pavlidis P. Differential coexpression in human tissues and 
the confounding effect of mean expression levels. Bioinformatics. 
2019;35(1):55–61.

	7.	 Lichtblau Y, Zimmermann K, Haldemann B, Lenze D, Hummel M, Leser U. 
Comparative assessment of differential network analysis methods. Brief 
Bioinform. 2017;18(5):837–50.

	8.	 Gonzalez-Valbuena EE, Trevino V. Metrics to estimate differential co-
expression networks. BioData Min. 2017;10:32.

	9.	 Lea A, Subramaniam M, Ko A, Lehtimaki T, Raitoharju E, Kahonen M, et al. 
Genetic and environmental perturbations lead to regulatory decoher-
ence. eLife 2019;8: e40538.

	10.	 Iams WT, Yu H, Shyr Y, Patil T, Horn L, McCoach C, et al. First-line chemo-
therapy responsiveness and patterns of metastatic spread identify 
clinical syndromes present within advanced KRAS mutant non-small-cell 
lung cancer with different prognostic significance. Clin Lung Cancer. 
2018;19(6):531–43.

	11.	 Saxon JA, Yu H, Polosukhin VV, Stathopoulos GT, Gleaves LA, McLoed 
AG, et al. p52 expression enhances lung cancer progression. Sci Rep. 
2018;8(1):6078.

	12.	 Shen JP, Ideker T. Synthetic lethal networks for precision oncology: prom-
ises and pitfalls. J Mol Biol 2018;430(18 Pt A):2900–12.

	13.	 Wan YW, Allen GI, Liu Z. TCGA2STAT: simple TCGA data access for inte-
grated statistical analysis in R. Bioinformatics. 2016;32(6):952–4.

	14.	 Obayashi T, Kagaya Y, Aoki Y, Tadaka S, Kinoshita K. COXPRESdb v7: a gene 
coexpression database for 11 animal species supported by 23 coexpres-
sion platforms for technical evaluation and evolutionary inference. 
Nucleic Acids Res. 2019;47(D1):D55–62.

	15.	 Okamura Y, Aoki Y, Obayashi T, Tadaka S, Ito S, Narise T, et al. COXPRESdb 
in 2015: coexpression database for animal species by DNA-microarray 
and RNAseq-based expression data with multiple quality assessment 
systems. Nucleic Acids Res 2015;43(Database issue):D82–6.

	16.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

	17.	 Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY. Link-based quantitative methods to 
identify differentially coexpressed genes and gene pairs. BMC Bioinform. 
2011;12:315.

	18.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102(43):15545–50.

	19.	 Yu H, Chen D, Oyebamiji O, Zhao YY, Guo Y. Expression correlation 
attenuates within and between key signaling pathways in chronic kidney 
disease. BMC Med Genomics. 2020;13(Suppl 9):134.

	20.	 Anglani R, Creanza TM, Liuzzi VC, Piepoli A, Panza A, Andriulli A, et al. 
Loss of connectivity in cancer co-expression networks. PLoS ONE. 
2014;9(1):e87075.

	21.	 Southworth LK, Owen AB, Kim SK. Aging mice show a decreasing 
correlation of gene expression within genetic modules. PLoS Genet. 
2009;5(12):e1000776.

https://doi.org/10.1186/s12920-021-00958-3
https://doi.org/10.1186/s12920-021-00958-3
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-14-supplement-2
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-14-supplement-2
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/


Page 12 of 12Yu et al. BMC Med Genomics  2021, 14(Suppl 2):101

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	22.	 Serin EA, Nijveen H, Hilhorst HW, Ligterink W. Learning from co-expres-
sion networks: possibilities and challenges. Front Plant Sci. 2016;7:444.

	23.	 Liesecke F, De Craene JO, Besseau S, Courdavault V, Clastre M, Verges V, 
et al. Improved gene co-expression network quality through expres-
sion dataset down-sampling and network aggregation. Sci Rep. 
2019;9(1):14431.

	24.	 Yu H, Samuels DC, Zhao YY, Guo Y. Architectures and accuracy of artificial 
neural network for disease classification from omics data. BMC Genomics. 
2019;20(1):167.

	25.	 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 
STRING v11: protein-protein association networks with increased cover-
age, supporting functional discovery in genome-wide experimental 
datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

	26.	 Xu H, Tomaszewski JM, McKay MJ. Can corruption of chromosome cohe-
sion create a conduit to cancer? Nat Rev Cancer. 2011;11(3):199–210.

	27.	 Wondergem B, Zhang Z, Huang D, Ong CK, Koeman J, Hof DV, et al. 
Expression of the PTTG1 oncogene is associated with aggressive clear cell 
renal cell carcinoma. Cancer Res. 2012;72(17):4361–71.

	28.	 Hamid T, Malik MT, Kakar SS. Ectopic expression of PTTG1/securin 
promotes tumorigenesis in human embryonic kidney cells. Mol Cancer. 
2005;4(1):3.

	29.	 Huang S, Liao Q, Li L, Xin D. PTTG1 inhibits SMAD3 in prostate cancer cells 
to promote their proliferation. Tumour Biol J Int Soc Oncodev Biol Med. 
2014;35(7):6265–70.

	30.	 Zhu X, Mao Z, Na Y, Guo Y, Wang X, Xin D. Significance of pituitary 
tumor transforming gene 1 (PTTG1) in prostate cancer. Anticancer Res. 
2006;26(2A):1253–9.

	31.	 Zhang G, Zhao Q, Yu S, Lin R, Yi X. Pttg1 inhibits TGFbeta signaling in 
breast cancer cells to promote their growth. Tumour Biol J Int Soc 
Oncodev Biol Med. 2015;36(1):199–203.

	32.	 Dalgic E, Konu O, Oz ZS, Chan C. Lower connectivity of tumor coexpres-
sion networks is not specific to cancer. silico Biol. 2019;13(1–2):41–53.

	33.	 Chen Y, Zhou C, Li H, Li H, Li Y. Identifying key genes for nasopharyngeal 
carcinoma by prioritized consensus differentially expressed genes caused 
by aberrant methylation. J Cancer. 2021;12(3):874–84.

	34.	 Choi JK, Yu U, Yoo OJ, Kim S. Differential coexpression analysis using 
microarray data and its application to human cancer. Bioinformatics. 
2005;21(24):4348–55.

	35.	 Mentzen WI, Floris M, de la Fuente A. Dissecting the dynamics of dys-
regulation of cellular processes in mouse mammary gland tumor. BMC 
Genomics. 2009;10:601.

	36.	 Hudson NJ, Reverter A, Dalrymple BP. A differential wiring analysis of 
expression data correctly identifies the gene containing the causal muta-
tion. PLoS Comput Biol. 2009;5(5):e1000382.

	37.	 Yu H, Lin CC, Li YY, Zhao Z. Dynamic protein interaction modules 
in human hepatocellular carcinoma progression. BMC Syst Biol. 
2013;7(Suppl 5):S2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Conditional transcriptional relationships may serve as cancer prognostic markers
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Raw data and data preprocessing
	To study global correlation change trend in tumors
	To investigate reproducibility of correlation measures and differential coexpression results
	To identify conditional links in normal-to-tumor transition and further discriminate prognosis conditional links

	Results
	Overall decoherence in tumor transcriptomes is observed in BRCA and all other TCGA cancer types
	Reproducibility of correlations and DCLs
	Conditional relationships emerging as cancer prognostic markers

	Discussion
	Conclusions
	Acknowledgements
	References


