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Abstract

Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range
of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity
with ecosystem properties (e.g., community biomass) has received less attention, despite
the presence of sharp and dynamic environmental stress gradients that might modulate
these properties. Here, we investigated whether the richness-biomass relationship in
macrobenthic subtidal communities is still apparent after accounting for environmental
stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass
of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4
across two environmental stress gradients: distance from nearest glaciers and subtidal
depth (from 5 to 30 m). In general, community biomass increased with distance from gla-
ciers and water depth. However, generalised additive models showed that distance from
glaciers and depth accounted for negligible proportions of variation in the number of func-
tional groups (i.e., functional richness) and community biomass when compared to taxo-
nomic richness. Functional richness and community biomass were positive and saturating
functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order
Desmarestiales dominated the community biomass across both gradients. Accordingly, dif-
ferences in the composition of taxa accounted for a significant and large proportion (51%) of
variation in community biomass in comparison with functional richness (10%). Our results
suggest that the environmental factors here analysed may be less important than biodiver-
sity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We sug-
gest that further manipulative, hypothesis-driven research should address the role of
biodiversity and species’ functional traits in the responses of Antarctic subtidal communities
to environmental variation.
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Introduction

Climate-change effects on natural communities and human activities can be already observed
worldwide. A direct consequence of climate change is the local alteration of natural populations
(reviewed in [1]), and a recent major synthesis indicates that the ecosystem-level consequences
of species loss can be comparable to those of global-change stressors like ultraviolet radiation,
climate warming, and elevated CO, [2]. The marine Antarctic ecosystems show probably the
world’s fastest responses to climate change, with glacier retreat being an important source of
change in environmental stress regimes [3,4]. These changes in stress—i.e. the environmental
forcing that negatively affects the performance of organisms [5,6]—are rapidly affecting the
abundance of Antarctic species (e.g. [7]). Recent surveys point to the need for intensification of
studies on the projected impact of global change-driven processes on benthic communities in
order to predict further consequences for marine functioning (e.g. [4,8]). Despite these rapid
environmental changes, the biodiversity-ecosystem functioning research in Antarctica has
lagged behind in development compared to systems from other regions.

Biodiversity can be described in terms of the number of taxonomic entities (i.e. species or
taxon richness), differences in their functional traits, and their interactions [9]. The relation-
ship between taxonomic and functional richness determines how biodiversity modulates eco-
system properties (e.g. community biomass) and partly depends on the mechanisms of
community assembly (reviewed in [10]). For example, niche differentiation implies that the
functional characteristics of species should vary in order to allow coexistence, leading to a posi-
tive relationship between the number of taxa and the number of functional groups [11]. These
positive and saturating responses of functional richness to taxonomic richness indicate that
local diversity ensures the provision of functional traits [12]. However, the physical environ-
ment can have stronger effects on some species than others; this, in turn, limits the range of
functional traits in the assemblage, so that increasing taxonomic richness may not lead neces-
sarily to an increased diversity of functional responses to the environment [11]. Accordingly,
harsh environmental conditions can weaken the relationship between taxonomic and func-
tional richness [13].

Positive richness-biomass relationships can arise from the combination of, at least, two pro-
cesses. First, species-rich communities are more likely to contain highly productive species (i.e.
“selection probability” or “compositional” effects [14]). Second, increased taxonomic richness
can lead to more productive communities through positive species interactions, such as differ-
ential use of resources (i.e. resource complementarity through niche partitioning) and facilita-
tion. Albeit manipulative experiments are useful and desirable to tease apart the contribution
of both processes to the richness-biomass relationship, they face difficulties to account for
broad-scale patterns of biomass along environmental gradients. Alternatively, variation-parti-
tion techniques (e.g. [15]) would provide relevant information from observational richness-
biomass patterns in order to construct hypotheses regarding the roles of compositional and
resource complementarity effects in a given region.

Observational work has shown variable richness-biomass relationships in natural commu-
nities [10,16-18]. An explanation to these patterns is that the relationships between taxonomic
or functional richness and community biomass vary along environmental stress gradients
[13,18,19]. In Antarctic coastal ecosystems, distance to glaciers and depth define two major
environmental gradients in terms of mechanical disturbances and physiological stress (see Fig
1 and refs. [20-23]). The closeness to glaciers is related to harsh environmental conditions for
macrobenthic assemblages due to mechanical disturbance by ice scours and physiological stress
by enhanced turbidity and sedimentation (e.g. [23]). Accordingly, significant differences in
subtidal macroalgal abundances can be observed within a couple of kilometres from melting
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Fig 1. Environmental gradients in Fildes Bay defined by the distance to the surrounding glaciers (in scales of kilometers) and depth (in scale of
meters). Both gradients are strongly modulated by light penetration and sedimentation processes caused by glacier dynamics. Depth penetration of
photosynthetically active radiation (PAR) and UV radiation are indicated.

doi:10.1371/journal.pone.0138582.g001

glaciers [7]. Regarding water depth, sharp vertical gradients in light availability and seasonal
impact of ice scouring on shallow-water assemblages generate a vertical disturbance-stress gra-
dient that modulates the distribution of dominant macroalgae [22,24-27]. Accordingly, we
might hypothesise that harsh environmental conditions due to glacier proximity and shallow
water restrict the diversity of functional traits, which in turn might lead to weak richness-bio-
mass relationships of Antarctic macrobenthic communities.

Hereby, we explored the relationship between the number of taxa, functional groups rich-
ness, and environmental disturbance-stress gradients (distance to nearest glaciers and depth,
hereafter referred to as stress gradients) with macrobenthic community biomass in a subtidal
Antarctic system of King George Island, South Shetlands. The number of functional groups
(i.e. functional richness) was partitioned into the number of functional traits that determine
organisms’ responses to environmental changes (i.e. functional response traits), and those that
determine organisms’ effects on ecosystem properties (i.e. functional effect traits). We first
tested whether, after accounting for the effects of environmental stress gradients, functional
richness and its components are positive and saturating functions of the number of taxa (taxo-
nomiic richness). Then, we tested whether community biomass significantly fit to taxonomic
richness in addition to the environmental gradients. Finally, we used variation-partition analy-
ses to infer the relative contributions of compositional effects and resource complementarity to
the richness-biomass relationship.

Materials and Methods
Ethic statement

This work was conducted as part of the activities carried out by the Algas Antarticas working
group at the Universidad Austral de Chile and fully approved by Dr. José Retamales, director
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of the Instituto Antartico Chileno (INACH), in accordance with the Protocol on Environmen-
tal Protection to the Antarctic Treaty. No additional specific permissions were required for any
sampling site, as they were located outside of the Antarctic Specially Protected Areas and the
study did not involve endangered or protected species.

Study region

The study was conducted in Fildes Bay, King George Island (Fig 1), during the austral summer
2014 (January-February). The 14 km long and 6-14 km wide Fildes Bay regularly freezes in
austral winter, from late July to mid-September [28-30]. In this location, the subtidal assem-
blages between 10 and 30 m are characterised by brown algae such as Himantothallus grandifo-
lius and Desmarestia anceps, and red algae such as Trematocarpus antarcticus, Plocamium
cartilagineum, and Palmaria decipiens [27]. The grazer gastropods Nacella polaris, Margarella
sp., the sea urchin Sterechinus neumayerii, and the predatory sea stars Odontaster validus and
Diplasterias brucei are the most conspicuous benthic mobile invertebrates [28,30]. Sessile
invertebrates such as bryozoans, ascidians, and sponges are also abundant [31,32].

In the study area, we located six sites at increasing distances (from 100s to 1000s of metres)
from glaciers Nelson and Collins (Table 1). For each site, we conduced underwater irradiance
measurements in order to represent the variation in a relevant environmental factor for the stud-
ied assemblages, which are largely dominated by photosynthetic organisms (see the previous par-
agraph above) that perform significant and species-specific responses to variations in solar
irradiation in Fildes Bay [27]. Vertical profiles of underwater solar radiation were determined by
means of a Biospherical 2500 radiometer (Biospherical Inc., San Diego, USA). The measurements
were conducted during solar noon at each site, with the exception of Nelson Strait, which could
not be sampled due to logistic constraints. Light measurements were restricted to sunny days
with less than 20% of cloud coverage. Due to the low, and sometimes unpredictable, number of
sunny days at Fildes Bay during the study period, the sample size for each location remained
relatively low (n = 2 to 4). In order to describe how irradiance attenuates with depth, we used the
following equation: E,(Z) = E,(0)e %+, where K, is the vertical attenuation coefficient for irradi-
ance, E; (Z) is the irradiance at depth z, and E,; (0) is the irradiance just below the surface [33].
The slope from the linear regression between the In of irradiance E,; (Z) and depth z was used to
estimate the vertical attenuation coefficients (K;) for 305 nm (UVB), 340 nm (UVA), and the
range between 400-700 nm (photosynthetically active radiation, PAR).

Sampling

At each site we haphazardly located five 50 x 50 cm plots at 5-10, 15-20, and 25-30 metres
depths by means of SCUBA diving. The plots were separated ca. 10 metres from each other.

Table 1. List of sampling sites surveyed in this study and their coefficients of vertical irradiance attenuation (Ky m™). Latitude and longitude are
expressed as decimal degrees. K, m™ values are expressed as means (n = 2 to 4) and standard errors of the means (bracketed). NA stands for “not
available”.

Site name Code Latitude Longitude Vertical attenuation coefficients (Ky m™)

uvB UVA PAR
1 Collins Glacier CG -62.16 -58.84 0.49 (0.02) 0.29 (0.02) 0.16 (0.01)
2 Artigas AT -62.18 -58.87 0.49 (0.01) 0.35 (0.01) 0.19 (0.03)
3 Fildes FD -62.20 -58.94 0.35 (0.01) 0.22 (0.01) 0.12 (0.01)
4 Ardley Peninsula PA -62.22 -58.94 0.42 (0.01) 0.24 (<0.01) 0.12 (0.01)
5 Nelson Strait NS -62.24 -58.97 NA NA NA
6 Nelson Glacier NG -62.26 -58.98 0.53 (0.03) 0.26 (0.03) 0.14 (0.01)

doi:10.1371/journal.pone.0138582.1001
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For each plot, we removed all sessile and mobile macrobenthic (>5 mm length) organisms,
which corresponded to our lowest detection limit in situ. All the sampled organisms from a
given plot were placed and transported in a 5-mm-pore individual mesh bag. Sessile organisms
were removed from the substratum with a scraper. Special care was placed in sampling mobile
organisms that were associated to macroalgae. However, very mobile organisms (e.g. amphi-
pods and small substrate-associated gastropods [34]) could well have escaped from the sample
and probably their values of biomass were underestimated. Since large organisms dominate
these assemblages (see Study region section above), nevertheless, missing small albeit ecolog-
ically relevant organisms should have had a limited impact on the estimation of functional
group and community biomass.

In the laboratory, organisms were sorted and identified to the lowest taxonomic level possi-
ble, usually to species level. Morphological and life history traits of taxa were reviewed in refer-
ences [35-38]. Each organism was weighted (wet weight, 0.01 g accuracy, here after referred to
as “ww”), and small individuals such as amphipods were weighted in groups in order to esti-
mate average individual weight.

Species’ traits were defined as those characteristics that determine how the species responds
to environmental changes (i.e. functional response traits) or how the species affects community
biomass (i.e. functional effect traits; see also refs. [1,10]). Each taxon was categorised according
to two response traits, i.e. mobility and dispersal potential; and three effect traits, i.e. trophic
type, growth type, adult body size (Table 2). We assigned to each taxon a 5-character code
according to all possible combinations of traits (see categories in Table 2). Then, the biomass of
each code (i.e. functional trait group) was estimated by summing the biomass of all taxa for
each group [39,40]. Finally, the number of taxonomic identities and functional trait groups
(hereafter referred to as taxon richness and total functional richness, respectively), the biomass
of each functional trait group (i.e. response and effect richness), and community biomass were
estimated from the taxon biomass dataset. Response and effect richness were analysed
separately.

Statistical analysis

Generalised additive models (GAMs [41]) were used to analyse the richness, biomass, and
spatial data. The flexibility of GAM allows assessing non-linear relationships without fitting
arbitrarily selected functions [42]. Therefore, we considered GAM as a suitable tool for exami-
nation of saturating response of ecosystem properties to taxonomic richness. We fit (1) total
functional richness, (2) functional response richness, (3) functional effect richness, and (4)

Table 2. Functional response and effect traits used to categorise the subtidal taxa identified in Fildes Bay during the austral summer 2014. Each
taxon was scored with a combination of uppercases (bracketed) in order to estimate functional richness and biomass.

Functional response traits

Mobility
Sessile (S)
Mobile (M)

Limited mobility (L)

Functional effect traits

Dispersal potential Trophic type Growth type Adult body size
No planktonic stage (N) Autotrophs (A) Bushy (B) <1cm (S)
Anchiplanic (A) ' Deposit feeder (D) Filamentous (F) 1-10 cm (M)
Actaeplanic (C) 2 Herbivores (H) Encrusting (E) 10-100 cm (L)
Carnivores (C) Massive (M) 100-1000 cm (X)
Suspension feeder (S) Foliose (L) >1000 cm (G)

1 Anchiplanic are those organisms with stages that stay few hours to a few days in the plankton
2 Actaeplanic organisms stay one week to two months in the plankton.

doi:10.1371/journal.pone.0138582.t002
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log;-transformed community biomass in separate models as response variables. The models
included as explanatory variables the taxonomic richness, the linear distance to nearest glacier
(km), and depth stratum (three levels: 5-10, 15-20, and 25-30 m). In order to account for the
contribution of taxon composition to community biomass patterns, we included in the model
the PC1 and PC2 from a principal component analysis on the log;,-transformed matrix of
taxon biomass. We assumed a Poisson and Gaussian distribution of errors for functional rich-
ness (fits 1 to 3) and community biomass (fit 4), respectively. The appropriate smoothness for
each model was found by means of Un-Biased Risk Estimators (UBRE) and Generalised Cross
Validation (GCV) for functional richness and biomass, respectively. Model selection was done
according to automatic penalisation and additional shrinkage of the smooth terms to zero, so
that uninformative terms were removed from the model. In addition, we used interactive
model selection in which each term was checked and removed when three criteria were ful-
filled: (i) The estimated degrees of freedom were close to zero (due to shrinkage of smooth
term), (ii) the confidence intervals for the smooth everywhere included zero, and (iii) the
UBRE or GCV scores decreased after the term is removed from the model [43,44].

Finally, we partitioned the variation in community biomass with respect of total functional
richness and the matrix of taxonomic identity biomass (i.e. taxonomic composition) in order
to assess the degree to which resource complementarity and compositional effects could have
influenced the richness-biomass relationship. We used adjusted r* in redundancy analysis ordi-
nations (RDA) as estimators of each conditioned fractions of variance. The significance of vari-
ance fractions (functional richness and taxonomic composition) was tested by means of a RDA
[15,45]. GAMs and variance partitioning were conducted in the mgcv and vegan packages of
the R environment version 3.1.1, respectively [46].

Results
Environmental variability in terms of vertical irradiance attenuation

Vertical irradiance attenuation (K; m™') showed the minimum values at sites located in the
centre of the bay, in particular Fildes (Table 1). For the UVB wavelength, the maximum values
of attenuation were observed near both glaciers (Collins and Nelson) and Artigas. On the other
hand, the attenuation of UVA and PAR peaked at the Artigas, followed by Collins and Nelson
glaciers (Table 1).

Spatial variability of taxonomic richness and functional groups biomass

A total of 66 taxonomic identities (Table 3), accounting for a mean community biomass of
1445 g m™ ww, were identified in the study area. The benthic system was characterised by taxa
varying from very abundant and ubiquitous—such as the sea star O. validus (Fig 2A), the sus-
pension-feeding sea cucumber Abyssocucumis sp. (Fig 2E), the gastropod N. polaris (Fig 21),
and the brown alga H. grandifolius (Fig 2M)—to taxa with rare occurrence and very low bio-
mass, e.g. the shallow-water green alga Monostroma hariotii (Fig 2P). Site-level taxonomic
richness ranged from three to 28 identities and community biomass from 417 g m™ ww to
2627 g m™ ww (Fig 3). Taxon richness and community biomass showed a high spatial varia-
tion, with higher values in sites located near the centre of the bay (Fig 3). In addition, the high-
est taxonomic richness was observed at 25-30 m depth, while total biomass was highest
between 5-15 m (Fig 3).

Regarding species mobility and dispersal potential (i.e. functional response traits), sessile
taxa and those with short planktonic stages had the highest contribution to community bio-
mass (Fig 4). This uneven distribution of biomass remained at the three depth strata (Fig 4). In
addition, taxa with limited mobility showed a high spatial heterogeneity (coefficients of
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Table 3. List of taxonomic identities identified at six subtidal sites at Fildes Bay, King George Island. The occurrence of each taxon in each site is

shown.

Taxon Collins Glacier Artigas

Chlorophyta

Monostroma hariotii

Ochrophyta

Ascoseira mirabilis X
Cystosphaera jacquinotii

Desmarestia anceps

Desmarestia antarctica

Desmarestia menziesii X
Halopteris obovata

Himantothallus grandifolius X
Rodophyta

Antarcticothamnion polysporum

Ballia callitricha

Callophyllis atrosanguinea

Callophyllis sp.

Callophyllis variegata

Ceramium sp.

Curdiea racovitzae

Delesseria sp. X
Georgiella confluens
Gigartina skottsbergii X

Gymnogongrus sp.

Hymenocladiopsis sp.

Iridaea cordata

Myriogramme manginii

Pachymenia sp.

Palmaria decipiens X
Pantoneura plocamioides

Phycodrys sp.

Picconiella plumosa

Plocamium cartilagineum

Trematocarpus antarcticus

Porifera

Unid. Porifera sp. 1 X
Cnidaria

Unid. Alcyonacea sp. 1

Unid. Hydrozoa sp. 1

Annelida

Flabelligera mundata X
Mollusca

Laternula elliptica
Limea pygmaea
Margarella sp.
Nacella polaris
Neobuccinum eatoni

X X X X

Unid. Gastropoda sp. 1 X

X X X X X X

Ardley Peninsula

X X X X X

Nelson Strait

X X X X

Nelson Glacier

(Continued)
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Table 3. (Continued)

Taxon

Unid. Polychaeta sp. 1
Unid. Polyplacophora sp. 1
Unidentified Venereidae sp. 1
Unidentified Venereidae sp. 2
Unidentified Venereidae sp. 3
Yoldia eightsii
Arthropoda

Glyptonotus antarcticus
Unid. Gammaridae sp. 1
Unid. Pycnogonida sp. 1
Unid. Serolidae sp. 1
Equinodermata

Abatus agassizii
Abyssocucumis sp.
Diplasterias brucei
Odontaster meridionalis
Odontaster validus
Ophionotus sp.
Sterechinus neumayeri
Unid. Asteroidea sp. 1
Unid. Asteroidea sp. 2
Chordata

Cnemidocarpa verrucosa
Unid. Ascideacea sp. 1
Others

Parborlasia corrugatus
Unid. Brachiopoda sp. 1
Unid. Bryozoa sp. 1

Unid. Nematoda sp. 1
Unid. Nemertea sp. 1
Unid. Sipunculidae sp. 1

doi:10.1371/journal.pone.0138582.t003

Collins Glacier Artigas Fildes Ardley Peninsula Nelson Strait Nelson Glacier
X X X X X
X X
X
X
X
X X X
X X
X
X
X X X
X X
X X X
X X
X
X X X X
X
X X X X
X
X X
X
X X
X X X X X

variation [CV] of 63% and 97% for depth and distance from glacier, respectively). Functional
effect traits also showed variable patterns (Fig 5): autotrophs (macroalgae) showed the highest
contributions to community biomass, with green algae varying sharply among depth strata and
distances from glaciers (CV = ca. 170% for both gradients). On the other hand, brown algae
were ubiquitous along both gradients and hence showed lower CV than green algae (CV = 19%
and 7% for depth and distance from glacier, respectively). The contribution of other trophic
groups was larger at central sites and especially at deeper waters (Fig 5). Suspension feeders
dominated the assemblages at Nelson Glacier (Fig 5); this group was more variable along the
depth gradient (CV = 89%), than the glacier-distance gradient (CV = 54%). Bushy (e.g. D.
anceps), followed by foliose (e.g. H. grandifolius), growth forms dominated the shallow-water
assemblages (Fig 5B). At deeper waters, the dominance shifted from bushy to foliose forms
(Fig 5E and 5F). The highest site-specific number of growth forms was observed at Artigas
(AT, centre of the bay). >1000-cm and >100-cm organisms dominated the shallow-water

PLOS ONE | DOI:10.1371/journal.pone.0138582 September 18,2015 8/20
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Fig 2. Representative taxa identified in Fildes Bay. Taxa are sorted according to trophic level (rows) and frequency of occurrence (columns). Common
and rare taxa occurred on >80% and <10% of the sampling units, respectively. Remarks for each taxon are based on authors’ personal observations and
published data [35-38].

doi:10.1371/journal.pone.0138582.9002

assemblages (Fig 5C); this pattern of dominance shifted toward a >1000-cm and >1-cm pat-
tern at deeper waters (Fig 5G and 5I).

The spatial patterns of abundances along both environmental gradients strongly varied
among major taxonomic groups. The brown alga Himantothallus grandifolius showed the
highest abundances at central sites (Fig 6A), suggesting that this species accounted for most of
the spatial variation of primary producers. Desmarestia anceps showed highest abundances at
Artigas (AT) and Ardley peninsula (PA, Fig 6B). The abundance of Palmaria decipiens peaked

PLOS ONE | DOI:10.1371/journal.pone.0138582 September 18, 2015 9/20
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Fig 3. Spatial patterns of site-specific taxon richness and community biomass in Fildes Bay. Site
codes are in Table 1.

doi:10.1371/journal.pone.0138582.g003
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Fig 4. Functional response traits: proportional contributions to site community biomass of taxa
grouped according to functional response traits (i.e. mobility and dispersal potential) in the study
region. Site codes are in Table 1.

doi:10.1371/journal.pone.0138582.g004
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Fig 5. Functional effect traits: Proportional contributions to site community biomass of taxa grouped according to functional effect traits (i.e.

trophic type, growth type, and adult body size) in the study region. Site codes are in Table 1.

doi:10.1371/journal.pone.0138582.g005
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Fig 6. Abundance of major taxonomic groups and species in Fildes Bay. Sites codes are in Table 1. Values are expressed as means * standard errors
of the means.

doi:10.1371/journal.pone.0138582.9006

at near-glacier sites (Fig 6C). Major invertebrate taxa also varied in relation with the closeness
to the glaciers and depth: sponges peaked at AT and Nelson Strait (NS, Fig 6D), Gastropoda
also increased at NS (Fig 6E), Bivalvia was more abundance at the centre of the bay (Fig 6F),
and Asteroidea, which spread in almost all sites, peaked at Collins Glacier (CG, Fig 6G).

Relationships of functional richness and community biomass with
taxonomic richness

According to the model selection procedures, only the smoothed term of taxonomic richness
was retained as explanatory variable for three measurements of functional richness analysed
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Table 4. Estimate parameters of Generalised Additive Models (GAMs) for total functional richness, response and effect richness, and log, trans-
formed community biomass. The full models included depth stratum (Depth, three categories), and the smooth terms of taxon richness [s(TR)], the PC1
and PC2 from a PCA on taxonomic composition [s(PC1) and s(PC2), respectively], and distance to nearest glacier [s(DNG)]. The best models were selected
according on extra penalisation of estimated degrees of freedoms of the smooth terms (edf) and interactive model selection. The UBRE and GCV scores,
and % deviance explained by each model (Dev.) are provided.

Response
Model
Total functional richness Full
Best
Response richness Full
Best
Effect richness Full
Best
Comm. biomass (log;o) Full
Best

doi:10.1371/journal.pone.0138582.t004

Parametric coefficients Smooth terms

(Intercept) Depth2 Depth3 s(TR) s(PC1) s(PC2) s(DNG) Score Dev.

1.47 -0.04 -0.02 3.30 ~0.00 ~0.00 ~0.00 0.04 95.5
1.45 3.28 <0.01 95.3
0.88 0.15 0.08 2.28 ~0.00 ~0.00 ~0.00 -0.66 65.4
0.95 2.36 -0.70 64.5
1.36 -0.11 0.03 3.09 ~0.00 ~0.00 ~0.00 -0.75 93.5
1.35 3.09 -0.78 92.4
2.42 -0.27 -0.35 3.71 2.88 5.50 ~0.00 0.24 70.1
2.42 -0.27 -0.35 3.71 2.88 5.50 0.23 70.1

(Table 4). The best model for log;, community biomass retained all terms except the distance
from nearest glacier (Table 4). Log;o community biomass tended to decrease with depth, as
shown by the negative estimate coefficients (Table 4). The three measures of functional rich-
ness showed positive and saturating relationships with taxonomic richness (Fig 7A to 7C), sug-
gesting a high degree of redundancy in the assemblage. According to the distribution of
smooth term residuals, log;o community biomass was positively related with taxonomic rich-
ness, conforming to the expected saturating curve (Fig 7D).

Both, functional richness and taxonomic composition accounted for significant proportions
of variance in log;, community biomass (P < 0.01 for both fractions, residual * = 0.14). Never-
theless, the individual fraction of taxonomic composition was five-fold larger than that of func-
tional richness (adjusted r* = 0.51 and 0.10, respectively). Albeit not testable, the interaction
between both sources of variability accounted for a comparatively large fraction of variation in
community biomass (adjusted r* = 0.25).

Discussion

Our results showed that taxonomic richness and community biomass of subtidal organisms
varied along two environmental gradients, decreasing with closeness to glacier and water
depth. In general, vertical irradiance attenuation tended to increase in the nearby of glaciers,
hinting for reduced light availability in these areas. Despite these spatial patterns, the environ-
mental gradients accounted for limited fractions of variation in community biomass when
compared to taxonomic richness. Taxonomic richness was tightly related with the number of
functional trait groups (total functional richness), the number of traits that can determine spe-
cies’ responses to environmental changes (functional response richness), and the number of
traits that modulate species’ effects on biomass (functional effect richness). On the other hand,
the combined variation of taxon-specific abundances—which was driven by large canopy-
forming autotrophs—was retained in the generalised additive model for community biomass.
Both, functional richness and taxonomic composition accounted for significant fractions of the
variation in community biomass, but the latter fraction was five-fold larger than the former
(i.e. 51% and 10%, respectively). These results suggest that, in comparison to the environmental
stress gradients here investigated, biodiversity might account for the largest proportion of vari-
ation in community biomass in Fildes Bay. Biodiversity, by providing key functional traits,
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doi:10.1371/journal.pone.0138582.9007

may represent a high insurance value for the functioning of these subtidal Antarctic communi-
ties facing current and projected climate change scenarios.
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Spatial variability of taxonomic richness and community biomass

The diversity survey reported in our study varied in relation to similar studies carried in King
George Island, e.g. in the sheltered areas of Admiralty Bay. In Admiralty Bay, macro-fauna at
depths >10 m is dominated by filter feeders adapted to withstand sedimentation such as the
bivalve Laternula eliptica and ascidians; in shallower sites, which are subjected to ice perturba-
tion, mobile organisms such as Serolis polita are commonly found [31]. Similarly, Johnston

et al. [47], reported marked differences in benthic composition between sheltered bays and
islands in the East coast of Antarctica. While sponges and hydroids show high abundances in
bays (likely due to ice and sedimentation regimes), canopy-forming algae such as Desmarestia
sp. (6-12 m) and H. grandifolius (depth > 12 m) dominate the assemblages around the islands.
On the other hand, the patterns described in our study are well in line with the spatial patterns
of subtidal seaweed-dominated assemblages in the western Antarctic Peninsula [48,49]. Collec-
tively, these results highlight the high scale-dependent spatial variation in subtidal assemblages
in maritime and peninsular Antarctica.

In terms of abundance, brown algae followed by red algae were the dominant organisms
accounting for more than 80% of the total biomass, especially at shallower locations. In the
case of Rhodophyta, their increase in sites close to glaciers suggests advantages related with
light use efficiency. In fact, many red algae living at depth >20 m normally are understory spe-
cies shaded by the canopy of large brown algae of the order Desmarestiales. Another finding
was that size of organisms, especially seaweeds, decreased with depth and closeness to glaciers,
which could be related with a prevalence of sedimentary, more unconsolidated substrate at
these locations and lower primary productivity due probably to enhanced light attenuation.
Recently it was demonstrated that light conditions near glaciers, primarily characterised by
enhanced melting and sedimentary runoff, limit algal photosynthesis and modify the lower
limit of colonization of macroalgae [50]. Similarly, relative contribution of suspension feeders
increased with depth and closeness to glaciers. In contrast to the patterns found in sedimentary
bottoms [31], in Fildes Bay—which is characterised mostly by hard substrate—mobile organ-
isms were less represented and not varied strongly across the environmental gradients. It
should be born in mind, however, that the abundance of small organisms such as seaweed-
associated amphipods and substrate-associated gastropods would have been underestimated in
our study. Nevertheless, the complex and dynamic substrate characteristics of this zone may
stimulate the partitioning of niches in the macrobenthic assemblage (see below), as has been
previously suggested for the inner part of Fildes Bay [32].

Relationships of functional richness and community biomass with
taxonomic richness

In this study, we reported positive and saturating relationships between the number of taxa
and functional groups of subtidal marine organisms. Albeit correlative patterns do not imply
causality, these relationships might point to niche partitioning and a certain amount of insur-
ance for functionality against species loss [11,51]. Nevertheless, the small fraction of variance
in community biomass explained by functional richness suggests that niche partitioning has a
relatively limited role in the assembly of these Antarctic subtidal assemblages. Moreover, func-
tional response richness reached a saturating level at communities with relatively low taxo-
nomic richness (ca. 10 taxonomic units), indicating that above this level higher taxonomic
richness could not lead to increased functionality. Recent observational studies suggest that
local-scale relationships between species richness and biomass depend on the environmental
conditions, likely due to context-dependent productivity and strength of competition [18].
Probably, the strong environmental filters that characterise the subtidal ecosystem at Fildes
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Bay (e.g. [27]) may exert an overall control on the development of the assemblage and con-
strain the number of functional traits. For example, light limitation at depth close to 30 m (the
depth at which penetrates the 1% of the surface light) defines different morpho-functional
adaptations of macroalgal assemblages: massive and thick structures provide large brown algae
with low light transmittance, while increased concentrations of light-harvesting pigments pro-
vide delicate red algae with increased abilities to absorb light in deeper waters [52].

While niche complementarity (here represented by the number of functional groups)
accounted for a 10% of variation in community biomass, compositional effects accounted for
more than 50% of the variation in this ecosystem function. Positive selection effects are evident
when species’ contribution to community biomass and competitive abilities are positively cor-
related [53]. In our study, larger and massive primary producers were dominant across the sys-
tem, accounting for a significant proportion of the community biomass. Dominant kelp-like
algae, such as H. grandifolius, can monopolise the primary substratum and exclude competi-
tively other benthic organisms (e.g. [54]), which can prevent the occurrence of resource com-
plementarity among taxa (e.g. [55]). However, the interaction between taxonomic composition
and functional diversity still accounted for a 25% of the variation in community biomass, sug-
gesting that both, species composition and diversity can control the productivity of this system.
The presence of key species with large effects on biomass and increased differences in func-
tional traits, therefore, could interactively influence the richness-biomass relationship in these
Antarctic communities. Further manipulative biodiversity-ecosystem functioning research
should test this hypothesis in this system.

Besides largely contributing to community biomass, large autotrophs can also enhance the
productivity of other species. Large, bioengineering autotrophs usually modify the environ-
ment and provide shelter to other smaller species in intertidal and subtidal habitats (e.g. [56-
58]). Accordingly, the dominant kelp-like macroalgae could well have influenced the biomass
patterns of the communities by facilitating the establishment and biomass accrual of other
species, as previously shown between seaweeds and mesograzers in the western Antarctic
Peninsula [59]. Many Antarctic brown algae show broad depth distribution between 5 and
30 m, which is mostly the result of low-light adaptation [60]. This characteristic of canopy-
forming species provides the understorey with relatively stable environmental conditions
along a wide depth profile [8]. The relationships between biodiversity (i.e. taxonomic rich-
ness and composition) and productivity can be bidirectional, as changes in the former can be
both a cause and a consequence of changes in the latter [61]. Therefore, we suggest the
hypothesis that facilitative interactions—mediated by species with key functional traits—
could lead to bidirectional biodiversity-ecosystem functioning relationships and complex
patterns of biomass, as those reported by previous observational studies in other ecosystems
(e.g. [18,62,63]).

In summary, our study provided observational evidence of a consistent relationship between
taxonomic richness and biomass of subtidal communities in Fildes Bay, west Antarctic Penin-
sula. Richness showed, in comparison with environmental stress gradients, a strong relation-
ship with community biomass. Albeit this is an snapshot of the system, our results agree with
previous manipulative work that supports the major role of biodiversity in the functioning of
natural ecosystems [2]. The abundance of taxa with key functional traits, and resource comple-
mentarity in lesser extent, seemed to drive the biomass patterns. With this work, we hope to
stimulate further manipulative research aimed to test the roles of key functional traits and
resource complementarity in maintaining the functioning of marine Antarctic ecosystems.
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