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ABSTRACT

Detecting allelic biases from high-throughput se-
quencing data requires an approach that maximises
sensitivity while minimizing false positives. Here, we
present Allelome.PRO, an automated user-friendly
bioinformatics pipeline, which uses high-throughput
sequencing data from reciprocal crosses of two
genetically distinct mouse strains to detect allele-
specific expression and chromatin modifications. Al-
lelome.PRO extends approaches used in previous
studies that exclusively analyzed imprinted expres-
sion to give a complete picture of the ‘allelome’ by
automatically categorising the allelic expression of
all genes in a given cell type into imprinted, strain-
biased, biallelic or non-informative. Allelome.PRO of-
fers increased sensitivity to analyze lowly expressed
transcripts, together with a robust false discovery
rate empirically calculated from variation in the se-
quencing data. We used RNA-seq data from mouse
embryonic fibroblasts from F1 reciprocal crosses to
determine a biologically relevant allelic ratio cutoff,
and define for the first time an entire allelome. Fur-
thermore, we show that Allelome.PRO detects differ-
ential enrichment of H3K4me3 over promoters from
ChIP-seq data validating the RNA-seq results. This
approach can be easily extended to analyze histone
marks of active enhancers, or transcription factor
binding sites and therefore provides a powerful tool
to identify candidate cis regulatory elements genome
wide.

INTRODUCTION

Mammalian cells are diploid and thus contain two copies
of every gene locus, one inherited from the male, and one
from the female parent. Mitochondrial genes, plus genes on
the sex chromosomes in males, are the only exception to this
rule. Since each diploid gene locus has the possibility to be
expressed independently from either parental chromosome,
different allelic states of expression can arise. The majority
of mouse genes are considered to show equal or ‘biallelic’
expression from both parental alleles based on the absence
of parental-specific phenotypes in the majority of genes an-
alyzed by gene knockout (1). Genes that deviate from bial-
lelic expression by showing preferential expression of one of
the two parental alleles are described as showing ‘monoal-
lelic’ expression. To date, only a small subset of mammalian
genes is known to show monoallelic expression. When ei-
ther parental allele can show preferential expression, this is
known as random monoallelic expression (RMAE). How-
ever, when one parental allele consistently and heritably
shows preferential expression, this is known as parental-
specific or imprinted monoallelic expression (IMAE).

Random monoallelic expression has been shown to af-
fect clustered gene families, such as the allelic exclusion of
the B- and T-cell receptor genes that allows clonal lympho-
cytes to express a single receptor with a unique specificity
(2), the ‘singular’ expression of the clustered olfactory re-
ceptor genes that allows neurons to discriminate olfactory
signals (3), and more recently, the stochastic monoallelic ex-
pression of the cadherin-related PCDH neuronal receptor
clusters that may act in neuronal self recognition (4). All
X-chromosome linked genes in female placental mammals
also show random monoallelic expression, due to RMAE
of a single locus containing the Xist long non-coding (lnc)
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RNA, which controls X-chromosome inactivation (5). The
X-chromosome can also display imprinted paternal-specific
inactivation in some rodent extra-embryonic tissues, due to
preferential paternal expression of the Xist lncRNA (6). In
all these cases, RMAE can occur in inbred mouse strains,
and thus can be initiated from genetically identical parental
alleles, indicating an epigenetic mechanism.

In contrast to the clustered gene families mentioned
above that use RMAE to generate specificity in clonal cells,
up to 10% of solo autosomal genes were reported to show
RMAE in isolated cell lines that could be stably propagated
(7,8). Similarly, an estimated 12–24% of expressed genes
showed monoallelic gene expression in single cells of F1
mouse pre-implantation embryos, indicating that this could
be a widespread phenomenon that may play a role in gener-
ating diversity in individual cells (9). In cases of true RMAE
an important point to bear in mind is that, although a gene
may show monoallelic expression that can be detected by
single cell assays, at the population level the gene will ap-
pear biallelic if the allele expressed is random in each cell.

In addition to IMAE and RMAE, a third category of
monoallelic expression that may occur in outbred individ-
uals is non-random monoallelic expression or strain bias.
Such strain bias may occur due to genetic differences be-
tween the alleles that affect expression of certain genes. For
example, expression differences could arise from nucleotide
polymorphisms influencing the interaction of promoters
and enhancers with transcription factors and thereby affect-
ing transcription rates. Such polymorphisms could also act
at a post-transcriptional level by influencing miRNA bind-
ing and RNA stability, or allele-specific processing, such as
alternative splicing or alternative UTR generation (10–12).
The Xist lncRNA that controls X-chromosome inactivation
in female cells can also show a strain bias due to genetic
variation at the X-inactivation center (Xic) locus that influ-
ences the likelihood of Xist being expressed from that chro-
mosome (13). Mus musculus castaneus (CAST/EiJ) mice are
known to possess a stronger Xic allele than Mus muscu-
lus domesticus, thus in the FVB/N x CAST/EiJ reciprocal
crosses used in our study, the FVB/N X-chromosome will
be preferentially inactivated (13,14).

Imprinted monoallelic expression primarily affects small
clusters of unrelated genes (15). Currently 96 of the 123
known imprinted genes either lie in genetically character-
ized imprinted clusters, or, due to their close proximity are
likely to lie in clusters (Supplementary Table S2). Thus most
imprinted genes are clustered. A novel feature of several
gene clusters showing IMAE in contrast to those showing
RMAE, is their association with a long non-coding (lnc)
RNA (16–18), that in four cases has been shown to induce
imprinted gene silencing (reviewed in (15)). While some solo
genes clearly show imprinted expression, the imprinted sta-
tus of many has been challenged (19–21). Thus, the num-
ber of solo imprinted genes is not yet known. The defin-
ing characteristic of an imprinted gene is preferential ex-
pression from one parental chromosome. However, the ex-
act ratio of parental-specific expression that constitutes im-
printed expression has not yet been defined. The total num-
ber of known imprinted genes is also relatively low, only
∼0.5% of protein-coding genes and approximately equal
numbers of maternally-expressed and paternally-expressed

imprinted genes are known. This total number of imprinted
genes was obtained from examination of a limited set of tis-
sues such as embryo, placenta and fetal brain that are pre-
dicted to use imprinted gene expression to regulate pre- and
post-natal growth of the mammalian embryo (22–24). How-
ever, it has only recently been appreciated that imprinted ex-
pression shows considerable tissue-specificity (25) and also
developmental regulation (15). Given that only a limited
number of tissues and developmental stages have been as-
sayed so far, and even fewer studies of different mammalian
taxonomic strains conducted, it is not known if the to-
tal number of imprinted genes has been underestimated.
This possible underestimation of the total number of im-
printed genes has implications for understanding the bio-
logical function of imprinted gene expression in mammals.

In recent years many studies have used high-throughput
RNA sequencing (RNA-seq) of tissues from reciprocal
crosses between genetically distinct inbred mouse strains to
identify imprinted expression (26–30). These studies based
on a few tissue types only found a small number of novel
imprinted genes compared to those listed in publically avail-
able databases (www.otago.ac.nz/IGC). In contrast, one
study reported parental-specific expression of 1300 tran-
scripts in embryonic and adult mouse brain (31). How-
ever, a subsequent study indicated that the vast major-
ity of these transcripts were false positives, and empha-
sized the need for careful controls including the use of bi-
ological replicates, the need to empirically determine the
false positive rate, and the need for independent valida-
tion of the imprinted status of the gene (32). With these
three requirements in mind, we developed Allelome Pro-
filer (Allelome.PRO), an automated and user-friendly bioin-
formatic pipeline based on a previously described method
(32,33), but modified to improve the robustness and sen-
sitivity of imprinted expression detection, and also to de-
tect strain bias gene expression as well as biallelically ex-
pressed and silent genes. Critically, in addition to a false
discovery rate cutoff based on a statistical score, we intro-
duced an allelic ratio cut-off for both parental and strain
bias that removes loci showing a minor allelic bias with
high sequencing coverage, thus enabling the allelic status
of all genes to be categorised. This cut-off was determined
from the expression patterns of known imprinted genes and
from X-linked genes on X-chromosomes showing skewed
X-inactivation. We use primary mouse embryo fibroblasts
(MEFs) and we define different allelic states of expression
as imprinted, strain-biased, biallelic, non-informative (due
to low or no expression) or having no single nucleotide poly-
morphisms (SNPs). We also show that Allelome.PRO can
detect allelic differences in high-throughput chromatin im-
munoprecipitation sequencing (ChIP-seq) data and demon-
strate that H3K4me3, a promoter mark associated with ac-
tive transcription, can be used as an independent validation
of the RNA-seq allelome. Together this approach allows a
high-resolution analysis of the entire allelome of any cell
type and has the potential to expand our understanding
of genetic and epigenetic mechanisms underlying IMAE,
RMAE and the phenotypic differences between strains.

http://www.otago.ac.nz/IGC
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MATERIALS AND METHODS

Generation of mouse embryonic fibroblasts (MEFs)

CAST/EiJ (CAST) mice were purchased from the Jack-
son Laboratory (www.jax.org) and FVB/NJ (FVB) from
Charles River to generate reciprocal crosses. After recip-
rocal mating (CASTxFVB and FVBxCAST), mouse em-
bryonic fibroblasts (MEFs) were derived from E12.5 em-
bryos after removing the head, viscera and urogenital sys-
tem. The remaining carcass was homogenised to a single cell
suspension using Trypsin/EDTA (Gibco) and plated on 6
cm dishes. Female MEFs from passage 2 of a confluent 10
cm plate were used for the RNA analysis, whereas MEFs
from passage 5 of three confluent T175 cm2 flasks were used
for ChIP. The sex of the embryos was determined by PCR
combining a Y-chromosome specific assay and an autoso-
mal assay (34).

RNA and ChIP-seq sample preparation

Total RNA and DNA were extracted using TRI-reagent
(Sigma–Aldrich T9424) according to the manufacturers
protocol. Total RNA was DNaseI treated using the DNA-
FreeTM kit (Ambion). Ribosomal RNA was depleted from
total DNaseI-treated RNA using the RiboZero rRNA
removal kit (Human/Mouse/Rat) (Epicentre). Strand-
specific RNA-seq libraries were prepared employing the
TruSeq RNA Sample Prep Kit v2 (Illumina) modified as
described for strand-specific sequencing (35). Native ChIP
for H3K4me3 (antibody: cat. 07-473, lot 2019729, Milli-
pore) was conducted as described (36). ChIP-seq libraries
were prepared using the TruSeq ChIP Sample Prep Kit (Il-
lumina). 100 bp paired end sequencing for RNA-seq and 50
bp single end sequencing for ChIP-seq were performed by
the Biomedical Sequencing Facility (BSF) in Vienna using
the Illumina HiSeq 2000 platform.

Alignment of sequencing data

Raw RNA sequencing data was aligned using STAR (ver-
sion 2.3.1z12) (37), GSNAP (version 2014.07.04) (38) and
TopHat (version 2.0.12, bowtie 2.2.3) (39) to allow a com-
parison between the three aligners. Reads mapping to mul-
tiple locations were excluded using specific parameters
(STAR: –outFilterMultimapNmax 1), combining only out-
put files that contained uniquely aligned reads (GSNAP), or
by removing secondary alignments identified by the SAM
flag (TopHat). Additional parameters for the STAR align-
ment were a maximum intron size of 100 000 bp and out-
filtering of non-canonical splice junctions. SNP-tolerant
alignment was enabled for GSNAP by providing infor-
mation about the SNP variants between the two crosses.
TopHat was run using a RefSeq based transcriptome index
and parameters chosen to exclude novel junctions as well as
novel insertions and deletions. As sequencing was done in a
strand specific manner, the aligned reads were subsequently
separated according to strand using a custom Perl script.
STAR alignment of ChIPseq data was conducted with dif-
ferent parameters to disable spliced reads, i.e. a maximum
intron size of 1, and prevent soft clipping by enforcing end-
to-end alignment (–alignEndsType EndToEnd). All aligned

BAM files were sorted afterwards using SAMtools (version
0.1.19).

Preparation of annotation files

The NCBI RNA reference sequences collection (RefSeq)
annotation was downloaded from the UCSC genome
browser on 2 July 2014. Transcripts <100 bp were removed
and the remaining transcripts were separated by transcrip-
tional orientation and used for strand specific analysis of
RNA-seq by Allelome.PRO. An annotation of ±2 kb win-
dows around the transcription start site (TSS) of RefSeq an-
notations was used to analyze ChIP-seq by Allelome.PRO.
Sliding window annotations for the whole genome were cre-
ated using makewindows from the BEDtools suite (version
2.20.1).

The Single Nucleotide Polymorphism (SNP) annotation
file was created from a VCF file containing SNP variant
data of 18 mouse strains, downloaded from the Sanger in-
stitute (40). SNP information for the strains CAST/EiJ
and FVB/NJ were extracted and converted to the required
browser extensible data (BED) format using a custom script
that is available together with Allelome.PRO (details see
manual, Supplementary Material). Note that the name field
in this file contains SNP information. Only homozygous
high quality SNPs were used and SNPs overlapping anno-
tated pseudogenes were removed.

Reference list of imprinted genes

We defined the list of known imprinted genes by first merg-
ing the lists provided by the Harwell and Otago databases
(http://www.mousebook.org/imprinting-gene-list,
http://igc.otago.ac.nz, (41–43)). Genes that were not
annotated by the RefSeq or UCSC database were then
removed. We defined multiple imprinted isoforms from the
same gene, and groups of closely linked lncRNAs with the
same reported imprinted expression pattern to be a single
imprinted gene. These cases are indicated in Supplementary
Table S2 where we define 123 known imprinted genes. The
Allelome.PRO results for RNA-seq and ChIP-seq for
these genes are also included in this table, together with
information from the literature including where imprinted
expression is reported to occur, and if the imprinted status
of the gene is disputed.

Saturation curves

Saturation curves were created by Allelome.PRO runs on
random sampled subsets of aligned reads. Random sam-
pling was performed using the Picard toolset (version 1.111)
for sampling rates of 5, 10, 15, 20, 25, 30, 35, 40, 50,
60, 70, 80 and 90% of total reads. Three technical repli-
cates were produced using different random seeds (1, 2
and 3). Reads were separated according to the transcribed
strand after sampling to allow strand-specific analysis by
Allelome.PRO. Basic statistical analysis of the resulting
data was performed using R (44).

Simulation of sequencing errors

Aligned RNA-seq reads from the region surrounding the
Igf2r imprinted cluster (GRCm38/mm10 chr17:12350000–

http://www.jax.org
http://www.mousebook.org/imprinting-gene-list
http://igc.otago.ac.nz
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13000000) were extracted from the BAM files of the two for-
ward and two reverse FVB/CAST MEF crosses and con-
verted to FASTQ format. With a custom made Perl script
we randomly generated errors for each base in a read at dif-
ferent frequencies (1%, 5%, 10% or 15%), and repeated this
three times. Then we re-aligned the FASTQ files and ran
Allelome.PRO.

Determining experimental error from in silico mixing of
CAST/EiJ and FVB/N reads

100bp paired end RNA-seq data from FVB/N adult heart
and CAST/EiJ adult heart was aligned to the reference
genome using STAR. For CAST 85.3% reads were uniquely
aligned, while for FVB 86.7% reads were uniquely aligned.
To create in silico the two forward and two reverse crosses
needed to input into Allelome.PRO, we took aliquots of
reads from each strain and then combined them. Based on
the alignment rate we calculated the number of input reads
needed to uniquely align 3 million reads for each strain, and
took sequentially four aliquots of this amount of reads from
the FASTQ file (the FASTQ file lists the reads as they come
off the Illumina machine, and therefore the order should
be random), and then combined FVB and CAST aliquots
to create the four technical replicates. We aligned the four
technical replicates using STAR, assigned two replicates
as forward and two as reverse crosses, and then used Al-
lelome.PRO to calculate allelic expression. By combining
equal numbers of CAST and FVB reads we expect most
genes to have an allelic ratio around 0.5, but strain bias
genes will show unequal ratios. However, we do not ex-
pect to find any imprinted genes. Therefore, we defined a
false discovery rate (FDR) for imprinted expression as the
percentage of informative genes (biallelic, strain bias, im-
printed) called imprinted. We determined the FDR with no
allelic ratio cutoff (plotted as 0.5) and at allelic ratio cutoffs
of 0.6, 0.7, 0.8, 0.9 and 1.0, and at minread settings of 1, 2
and 3 (the minread parameter of Allelome.PRO defines the
minimum number of reads over a SNP required before it is
included in the analysis).

RESULTS

Allelome.PRO requirements

The Allelome Profiler (Allelome.PRO) pipeline uses cus-
tom Perl, shell and R scripts to analyze allelic specific fea-
tures in massive parallel DNA sequencing data (see manual,
Supplementary Material). Allelome.PRO is designed for
Linux based operating systems and uses efficient software
suites to optimize both the runtime and memory footprint,
with SAMtools and BEDtools being the only dependencies
(45,46). The Allelome.PRO pipeline depends on data ob-
tained from genetically distinct individuals or pooled sam-
ples from two strains and requires three files to be provided
by the user in order to start the fully automated analysis
(Figure 1A). First, a file defining single nucleotide poly-
morphisms (SNPs) between the two strains is required in
browser extensible data (BED4) format (note the special re-
quirements for the name field detailed in the methods). Sec-
ond, an annotation file defining the genomic regions to be
analyzed must be provided in BED6 format (i.e. a BED file

Figure 1. Allelome.PRO workflow to detect allele-specific genome features
using RNA-seq and ChIP-seq data. (A) Allelome.PRO requires three types
of input files: A SNP file (BED6), an annotation file (BED6) and 4 aligned
BAM files from F1 reciprocal crosses (2 each of forward and reverse cross).
The output categorizes the candidates in the annotation file into the fol-
lowing seven categories: Imprinted: MAT, maternally expressed (red) and
PAT, paternally expressed (blue); Strain-biased: Strain1 expressed (brown)
and Strain2 expressed (turquoise); BAE, biallelic expression (green); NI,
non-informative (e.g. due to low coverage) (gray); NS, no SNP located in-
side the locus (black). Allelome.PRO further provides a result file (BED6)
that can be uploaded to the UCSC genome browser for visual inspection.
(B) The Allelome.PRO algorithm starts by using BEDtools to intersect the
SNP file with the annotation file. The resulting intersection of SNPs located
within the annotated candidates is then used to filter out aligned reads that
do not overlap any of these SNPs. In the next step, a 1:1 relationship be-
tween aligned reads and SNPs is established by trimming the reads so that
each read overlaps just one SNP. Subsequently a pileup file of reads at the
SNP positions is created using SAMtools. Read counts for the two alleles
are summed up over all SNPs within a locus. A binomial distribution is
used to assess the significance of the observed allelic biases, and the result-
ing allelic score is defined as the negative logarithm of the derived P value
(–log10(P)). An allelic score cutoff based on a user-set false discovery rate
(FDR) is then empirically calculated using mock comparisons. The final
allelic ratio cutoff filters out remaining candidates with an allelic ratio be-
low a user-set limit (see the manual for details, Supplementary material).
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with six fields as defined on http://genome.ucsc.edu, (47)).
Overlapping regions with identical names (fourth field in
the BED file) are merged into single loci. Finally, aligned se-
quencing data must be provided as an aligned compressed
binary version of the Sequence Alignment Map (BAM) file
(45). Allelome.PRO is capable of analysing any DNA se-
quencing data, however we have tested and optimized it for
the massive parallel sequencing of cDNA ends (RNA-Seq)
and of chromatin immunoprecipitation (ChIP-Seq). In or-
der to apply statistical testing for allele specific enrichment
Allelome.PRO requires four biological samples for RNA-
Seq or ChIP-Seq. These are two replicate samples from the
F1 offspring of a forward cross between strain1 (mother)
and strain2 (father), and two replicates from a reverse cross,
where the strains of the mother and father are reversed (Fig-
ure 1A). Multiple efficient software solutions are available
to map short sequences from massive parallel sequencing
to reference genomes, typically called aligners, and all of
these report alignments as BAM files. In order to allow
maximum flexibility Allelome.PRO is not dependent on a
specific aligner, but rather requires one BAM file per bio-
logical replicate. The output of Allelome.PRO provides a
categorization for each locus in the annotation file (Fig-
ure 1A). Furthermore, Allelome.PRO provides a BED file
that allows a visual display of the data and can be viewed
on any genome browser, such as the UCSC genome browser
(http://genome.ucsc.edu, (47)).

Allelome.PRO pipeline

The Allelome.PRO pipeline operates using a number of
discrete sequential steps (Figure 1B). First reads from the
aligned BAM files that overlap SNPs within the loci pro-
vided in the annotation file are extracted using filters that
require BEDtools (46). This step limits analysis to reads in-
formative for allelic analysis reducing the number of reads
that need to be processed in subsequent steps and thereby
improving the efficiency of the pipeline. The extent to which
runtime is reduced depends on the number of SNPs, the
proportion of the genome covered by the annotation file,
and the genomic distribution of the sequencing data. Next,
reads overlapping multiple SNPs are trimmed using a cus-
tom script, so that each read covers a single SNP and is
counted only once, a necessary step for statistical analysis.
SAMtools (45) is then used to generate a pileup file of reads
at the SNP positions. Pileup files are used to calculate the to-
tal number of reads aligning to each allele. These numbers
are summed up for all covered SNPs within each annotated
locus separately for each of the four biological samples. A
binomial test, implemented in R (44), is then used to assess
the significance of deviation of the observed allelic biases
from the expected 1:1 distribution for biallelic expression
for each of the four samples. An allelic score is then calcu-
lated for each sample by negative logarithm transformation
of the P value (–log10(P)) (29). Two scores are then calcu-
lated for each loci by comparing the four samples with each
other, a parental bias and strain bias summary score. Loci
are then assigned into allelic categories based on whether
the allelic score is over the empirically derived false discov-
ery rate (FDR) cutoff and a user defined allelic ratio. Cal-
culation of the summary scores, the FDR and definition of

the allelic ratio cutoff are described in detail below. The Al-
lelome.PRO program can be downloaded at the following
link: https://sourceforge.net/projects/allelomepro/.

Validation of Allelome.PRO using RNA-seq and ChIP-seq of
F1 MEFs

To validate the Allelome.PRO pipeline and define allelic ex-
pression and H3K4me3 enrichment in a pure cell type, we
performed RNA-seq and ChIP-seq on female F1 MEFs
derived from reciprocal crosses between the inbred mouse
strains CAST/EiJ (CAST) and FVB/NJ (FVB). We per-
formed two biological replicates from the forward and
reverse cross to match the Allelome.PRO requirements.
Sequencing reads were aligned to the GRCm38/mm10
genome using the STAR aligner (version 2.3.1z12) (37). For
RNA-seq we performed strand-specific ribosomal depleted
100 bp paired-end RNA sequencing (see ‘Materials and
Methods’ section). Ribosomal depletion of total RNA was
chosen rather than polyA enrichment to allow analysis of
intron located SNPs. On average we obtained 106.6 (±3.3)
million total reads per biological replicate, 72% (±4%) of
which were uniquely aligned. For ChIP-seq of H3K4me3
we applied 50 bp single-end sequencing and obtained 48.6
(±2.2) million total reads per biological replicate and 93%
(±1%) uniquely aligned reads. For the Allelome.PRO run
we downloaded SNP variant data from the Sanger insti-
tute (40) and extracted 20.4 million high quality SNPs be-
tween CAST and FVB (see ‘Materials and Methods’ sec-
tion). We then used this data to validate and optimize the
Allelome.PRO pipeline as described in the following sec-
tions.

Calculation of the allelic score and false discovery rate

Two allelic scores, a parental bias score and a strain bias
score, were calculated for each annotated region (RefSeq
gene for RNA-seq, RefSeq gene TSS ± 2 kb for H3K4me3
ChIP-seq) in each F1 sample from two forward and two
reverse FVB (F) and CAST (C) crosses (CF1, CF2, FC1,
FC2). Previous approaches using a similar experimental de-
sign and statistical method calculated an allelic score for im-
printed expression (imprinted score) from RNA-seq data
for the 4 possible reciprocal comparisons (32,33). By cal-
culating scores for the individual samples we were able to
include SNPs covered in single samples that would be ex-
cluded in the reciprocal comparison approach, thereby in-
creasing the power of the analysis. The parental bias score
was calculated using summed maternal and paternal reads
over SNPs per loci (MAT >0, PAT <0), and the strain bias
score using summed strain 1 (CAST) and strain 2 (FVB)
reads over SNPs per loci (CAST >0, FVB <0). To dis-
tinguish different categories of allelic enrichment we made
two comparisons between the scores of the four samples,
a parental bias and strain bias comparison as illustrated in
the reciprocal tables (Figure 2A). Two summary scores were
then calculated for each locus, a parental or imprinted score
(i.score) and a strain bias score (s.score). If a consistent pos-
itive or negative bias was seen in all 4 samples, the lowest
value was taken as the summary score, otherwise if the di-
rection of the bias was not consistent the summary score

http://genome.ucsc.edu
http://genome.ucsc.edu
https://sourceforge.net/projects/allelomepro/
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Figure 2. False discovery rate (FDR) allelic score cutoff based on mock analysis. (A) Two allelic scores were calculated for each annotated loci for each
of the four samples, a parental bias score (MAT >0, black; PAT <0, white) and a strain bias score (CAST >0, black; FVB <0, white). The allelic score
is defined as the negative logarithm of the binomial distribution of reads coming from one allele versus both alleles (–log10(P)). Reciprocal analysis was
conducted to categorize allelic enrichment for each loci by comparing the parental bias scores (left) and strain bias scores (right) between the four samples.
The allelic score patterns in the four samples for each allelic enrichment category are displayed: parental biased (MAT, PAT), strain-biased (CAST, FVB)
and biallelic genes (BAE, only 2 of 12 possible biallelic combinations are displayed). A summary imprinted score (i.score) and strain-biased score (s.score)
is calculated by comparing the four samples. If the bias is in the same direction for all four samples then the minimum score is taken, while if direction of
bias is inconsistent for any of the four samples then the score is set to 0 (striped pattern). Each loci can have either an i.score value (imprinted) or an s.score
value (strain biased), while the other score equals zero, or both the i.score and s.score equal 0 (biallelic). The absolute value of the i.score and s.score are
calculated and then used for calculating the false discovery rate (FDR) in (D). (B) Pseudocode illustrating how the final allelic score (i.score or s.score) is
derived from the allelic scores of the four biological replicates. (C) Mock analysis of parental bias and strain bias allelic scores to calculate i.scores and
s.scores are conducted as for the reciprocal analysis in (A), except the scores of one sample from each cross are inverted. This results in the removal of
parental bias and strain bias genes, which no longer have a consistent direction of bias and therefore have a score of 0. In contrast, 4 from 12 possible
biallelic score combinations now have parental scores or strain bias scores in the same direction, resulting in a summary i.score or s.score value different
from 0. These score values should be low compared to true allelic biases as they showed random deviations from a 0.5 ratio representing the technical and
biological variation in the data. The absolute values of these mock scores are then compared to the values calculated in the reciprocal analysis to calculate
the FDR in (D). (D) The false discovery rate (FDR) was estimated as the number of detected candidates with allelic biases (parental and strain bias) in
the mock analysis, divided by the number of detected candidates with allelic biases in the reciprocal analysis. In this example RefSeq genes on the forward
strand were analyzed in E12.5 mouse embryonic fibroblasts (MEFs) RNA-seq data using an FDR of 1%.

was set to 0. Using this approach, each locus had a value
for only one score (either the i.score or the s.score), while
the other score equalled 0, or both scores were 0. That is,
loci showed parental-specific enrichment (i.score >0 or <0,
s.score = 0), strain-specific enrichment (i.score = 0, s.score
>0 or <0) or non-enrichment (biallelic or non-informative,
i.score = 0, s.score = 0) (Figure 2B the logic for the allelic
score calculation). Finally, the absolute value (>0) of the
i.score and s.score was calculated, a step necessary for the
calculation of the false discovery rate (FDR) as described
in the following section (Figure 2A and C).

There are 16 possible combinations of positive (>0) and
negative (<0) allelic scores for the four samples, two of
which show allelic biases in the same direction for parental
bias, and two for strain bias (Figure 2A). It is expected by
chance that 4 in 16 biallelic loci will also show an allelic
bias in the same direction for all four samples, for either the

parental or strain bias comparisons, leading to an i.score or
s.score >0 or <0, although the allelic score should be lower
than for true imprinted or strain bias loci as the allelic ra-
tio should be close to 0.5. Therefore, we sought to reduce
the number of false positives by setting a FDR based on
the level of random allelic enrichment in our data empir-
ically determined by mock analysis (Figure 2C). This ap-
proach was based on mock analysis of the four samples as
reported earlier (32), but with several modifications. Pre-
viously, mock comparisons between samples of the same
genotype were used to determine the FDR, as no differ-
ence in allelic expression is expected (32,33). Thus two mock
comparisons are possible with four reciprocal comparisons.
In contrast, we calculate a score for each sample rather than
for the comparisons, enabling four scores to be used for the
mock analysis and allowing the reciprocal and mock analy-
sis to be performed in the same way. To perform mock anal-
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ysis we negated the allelic scores in one biological replicate
of each cross (CF2, FC2), and then performed the analysis
in an identical manner as for the reciprocal analysis gen-
erating an i.score and s.score for each locus in the annota-
tion (Figure 2C). Using this approach loci previously show-
ing parental or strain bias (Figure 2A) now had an i.score
and s.score of 0, while some biallelic loci (expected 4 in 12)
now had an i.score or s.score >0 or <0 (Figure 2C). This
mock analysis gave an estimate of the technical and biologi-
cal variation in our data and was used to calculate the FDR.
To calculate a single FDR for monoallelic enrichment we
first pooled the absolute value of the i.score and s.score for
all loci for both the reciprocal and mock analysis (Figure 2A
and C). This differed from previous approaches that com-
pared only parental allele bias to calculate the FDR (32,33),
and increased the robustness of the FDR due to the larger
number of strain bias loci compared to parental bias loci
(∼20-fold higher in this study). The FDR (%) was calcu-
lated as the number of loci exceeding the score cutoff in the
mock analysis, divided by the number of regions exceeding
the score cutoff in the reciprocal analysis, multiplied by 100.
For each run Allelome.PRO provides a plot showing the
number of monoallelic loci at different score cutoffs in the
reciprocal and the mock analysis as well as the correspond-
ing FDR. A vertical line indicates the score cutoff at the user
defined FDR, which in this study was 1% (Figure 2D).

Empirical determination of an allelic enrichment cutoff

Defining allelic enrichment by an allelic score FDR cutoff
alone can lead to artefacts, as biallelic genes can overcome
the FDR cutoff if by chance all four samples share the same
direction of bias and SNP coverage is high enough. Follow-
ing this, we observed that if we analyzed our data with the
FDR cutoff as the only filtering criteria, some highly ex-
pressed genes with small deviations from a biallelic ratio
could produce scores over the FDR cutoff. Loci showing a
minor allelic ratio bias are often not validated by indepen-
dent methods (32), and even if validated there is no evidence
that such minor biases are biologically meaningful. There-
fore, we empirically determined an allelic ratio cutoff from
our data based on known imprinted and strain bias genes,
and used this to filter loci over the FDR cutoff to further
reduce false positives.

In order to determine a biologically relevant allelic ra-
tio cutoff we first plotted the distribution of allelic ratios
for all 65 genes classified as imprinted by the FDR cut-
off in analysis of our RNA-seq data (Figure 3A). Of these
43 have been reported to show imprinted expression previ-
ously (29,42,43). Notably, a biphasic distribution was ob-
tained with most known imprinted genes showing allelic
ratios >0.85, and most of the novel imprinted genes iden-
tified by our RNA-seq showing much lower allelic ratios.
Six known imprinted genes (H13, Gnas, Inpp5f, Phactr2,
Cobl, Trappc9) were also clustered in this low ratio group.
However, these are all genes with reported tissue-specific
imprinted expression in a tissue other than MEFs (27,48–
52). No novel imprinted gene was identified in the RefSeq
annotation with this allelic ratio cut-off.

To determine an appropriate FDR cutoff for genes
with a strain biased expression pattern, we made use of

Figure 3. Setting the allelic ratio. (A) The allelic ratio distribution for the
65 parental bias genes with an i.score higher than the FDR cutoff in RNA-
seq data from MEFs. Plotted are both a histogram in grey and a density
curve for this distribution. The black bars overlapping the histogram indi-
cate known imprinted genes. (B) The allelic ratio distribution for all strain-
biased loci with an allelic score higher than the FDR cutoff in RNA-seq
data from MEFs. Plotted are both a histogram in gray and a density curve
for this distribution. The black bars overlapping the histogram indicate
strain-biased loci on the X chromosome. Densities were estimated using a
Gaussian kernel function calculated in R.

known skewed X-inactivation in our MEFs. This is a well-
documented effect in female cells from crosses between
M. musculus domesticus (FVB) and M. musculus castaneus
(CAST) that results in the predominant inactivation of the
FVB derived X-chromosome (13,14). The allelic ratio distri-
bution of genes on autosomes showed a prominent peak be-
tween 0.5 and 0.6, close to a biallelic expression ratio (Fig-
ure 3B). However, we also noted a shoulder peak around
0.7, which followed the distribution of the X-linked genes
(Figure 3B, black bars). Following this, genes on the X-
chromosome showed a mean allelic ratio of 0.735 in our
analysis. The majority of X-linked genes showing a signif-
icant strain bias over a ratio of 0.7 (>85%). Therefore, in
order to have a single allelic cutoff for strain biased and
parental biased genes and to distinguish allelic bias from
biallelic expression, we used an allelic ratio >0.7 cutoff to-
gether with a 1% FDR cutoff for further analyses. At an al-
lelic ratio cutoff of 0.7, two novel candidate imprinted genes
were detected in addition to the 37 known imprinted genes
detected with an allelic ratio cutoff of 0.85. These genes were
not detected in a previous study of MEFs (Table 1) (53),
and were not validated by differential H3K4me3 analysis
(Table 2), indicating that they were false positives. This in-
dicates that a lower parental bias allelic ratio cutoff is ac-
ceptable when novel candidates are subject to independent
validation.
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Table 1. RefSeq genes showing imprinted expression in MEFs detected by Allelome.PRO

Chr. Start End Str. Candidate Cov. SNPs Allelic ratio RPKM Cat. Tran et al.
chr1 63200357 63314575 + Zdbf2 49 0.03 2.39 PAT confirmed
chr2 174281236 174295436 – Nespas 19 0.08 3.61 PAT confirmed
chr6 4674349 4747204 – Sgce 64 0.01 0.61 PAT confirmed
chr6 4747305 4760516 + Peg10 24 0 59.85 PAT confirmed
chr6 5383385 5433021 + Asb4 43 0.86 6.39 MAT confirmed
chr6 30733505 30748466 + Mest 34 0 1.04 PAT confirmed
chr6 58905232 58907126 – Nap1l5 1 0 6.71 PAT not inform.
chr7 6675442 6696432 – Zim1 64 0.99 10.45 MAT not inform.
chr7 6705959 6730419 – Peg3 108 0 218.19 PAT confirmed
chr7 6706759 6707624 + Peg3os 3 0 8.43 PAT° not inform.
chr7 6730582 6967219 + Usp29 73 0.01 1.11 PAT not inform.
chr7 59619157 59678878 – Ipw 12 0 0.34 PAT not inform.
chr7 59969576 59974431 – D7Ertd715e 9 0 8.17 PAT confirmed
chr7 59982500 60005156 – Snurf 27 0 1.71 PAT confirmed
chr7 59982501 60140219 – Snrpn 32 0.01 0.08 PAT confirmed
chr7 61705849 61927574 – A230057D06Rik 75 0.01 0.27 PAT not inform.
chr7 61943900 61982303 – A330076H08Rik 26 0 0.56 PAT not inform.
chr7 62348276 62349927 + Ndn 1 0.01 156.97 PAT confirmed
chr7 62461870 62464510 – Peg12 6 0.01 27.94 PAT confirmed
chr7 142575531 142578146 – H19 8 1 5666.39 MAT confirmed
chr7 142650767 142661035 – Igf2 15 0 207.89 PAT confirmed
chr7 142659692 142670356 + Igf2os 14 0.01 8.13 PAT confirmed
chr7 143107253 143427042 + Kcnq1 27 0.06 0.03 PAT° not inform.
chr7 143213110 143296547 – Kcnq1ot1 358 0.01 2.45 PAT confirmed
chr7 143458338 143461050 – Cdkn1c 2 0.99 93.04 MAT confirmed
chr10 13090787 13131695 + Plagl1 183 0.01 18.43 PAT confirmed
chr11 11930498 12037420 – Grb10 437 0.99 328.94 MAT confirmed
chr11 22972004 22976496 + Zrsr1 7 0 7.25 PAT not inform.
chr12 85686719 85709087 + Batf 5 0.19 1.17 PAT not inform.
chr12 109452822 109463336 + Dlk1 18 0.13 0.47 PAT confirmed
chr12 109540995 109571729 + Meg3 89 1 4.05 MAT confirmed
chr12 109603944 109661711 + Rian 278 1 236.84 MAT confirmed
chr12 109734980 109749457 + Mirg 91 1 11.8 MAT confirmed
chr14 31260374 31323896 – Dnah1 11 0.73 0.17 MAT not inform.
chr15 72589619 73061204 – Trappc9 313 0.3 0.44 PAT° not inform.
chr15 72805599 72810324 – Peg13 27 0.01 9.54 PAT confirmed
chr15 96994822 97055956 – Slc38a4 179 0.04 178.84 PAT confirmed
chr17 12682405 12769706 – Igf2r 257 0.98 336.9 MAT confirmed
chr17 12741310 12859884 + Airn 251 0.04 1.11 PAT confirmed
chr18 12972251 12992948 + Impact 118 0.02 224.23 PAT confirmed

Columns show the GRCm38/mm10 location (Chromosome, Start, End, Strand) of each candidate, as well as the allelic ratio (maternal reads over total
reads) and the Allelome.PRO classification indicating whether the gene shows paternal or maternal expression. The last column shows the results published
in a previous MEF study, which used JF1/M x TgOG2 reciprocal crosses compared to FVB/N × CAST/EiJ crosses used in this study (53). The false
positive call for Kcnq1 (◦) and Peg3os (◦) was the result of bleed-through in strand specific sequencing from the antisense overlapping Kcnq1ot1 and Peg3
respectively. Trappc9 (◦) was called because of a sense overlap with Peg13.
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Table 2. H3K4me3 ChIPseq data results confirm the RNA-seq allelome

ChIP-seq RNA-seq

Chr. Start End Candidate Allelic 
Ratio Result Allelic 

Ratio Result

chr1 63198357 63275268 Zdbf2* 0.06 PAT 0.03 PAT
chr2 152685147 152689147 Mcts2 0.03 PAT - NS
chr2 174293436 174297436 Nespas 0.00 PAT 0.08 PAT
chr6 4745204 4749204 Sgce 0.01 PAT 0.01 PAT
chr6 4745305 4749305 Peg10 0.00 PAT 0.00 PAT
chr6 5381385 5385385 Asb4 0.51 CAST 0.86 MAT
chr6 30731505 30740052 Mest* 0.01 PAT 0.00 PAT
chr6 58905126 58909126 Nap1l5 0.02 PAT 0.00 PAT
chr7 6694432 6698432 Zim1 0.94 MAT 0.99 MAT
chr7 6728419 6732419 Peg3 0.00 PAT 0.00 PAT
chr7 6704759 6708759 Peg3os - NI 0 PAT°
chr7 6728582 6732582 Usp29 0.00 PAT 0.01 PAT
chr7 59676878 59680878 Ipw - NS 0 PAT
chr7 59972431 59976431 D7Ertd715e - NI 0 PAT
chr7 60003156 60007156 Snurf 0.00 PAT 0.00 PAT
chr7 60003156 60142219 Snrpn* 0.02 PAT 0.01 PAT
chr7 61925574 61929574 A230057D06Rik - NI 0.01 PAT
chr7 61980303 61984303 A330076H08Rik 0.02 PAT 0.00 PAT
chr7 62346276 62350276 Ndn 0.04 PAT 0.01 PAT
chr7 62374978 62378978 Magel2 0.02 PAT - NI
chr7 62418139 62422139 Mkrn3 0.02 PAT - NI
chr7 62462510 62466510 Peg12 0.02 PAT 0.01 PAT
chr7 142576146 142580146 H19 0.99 MAT 1.00 MAT
chr7 142655481 142663035 Igf2* 0.01 PAT 0.00 PAT
chr7 142657692 142661692 Igf2os 0.02 PAT 0.01 PAT
chr7 143105253 143109253 Kcnq1 - NI 0.06 PAT°
chr7 143294547 143298547 Kcnq1ot1 0.01 PAT 0.01 PAT
chr7 143459050 143463050 Cdkn1c - NI 0.99 MAT
chr10 13088787 13092787 Plagl1 0.00 PAT 0.01 PAT
chr11 12025971 12039420 Grb10* 0.98 MAT 0.99 MAT
chr11 22970004 22974004 Zrsr1 0.01 PAT 0.00 PAT
chr12 85684719 85688719 Batf 0.46 NI 0.19 PAT
chr12 109450822 109455454 Dlk1* 0.11 PAT 0.13 PAT
chr12 109538995 109547397 Meg3* 1.00 MAT 1.00 MAT
chr12 109601944 109605944 Rian - NI 1 MAT
chr12 109732980 109736980 Mirg - NI 1 MAT
chr14 31321896 31325896 Dnah1 0.46 BAE 0.73 MAT
chr15 73053812 73063204 Trappc9* 0.51 BAE 0.3 PAT°
chr15 72808324 72812324 Peg13 0.00 PAT 0.01 PAT
chr15 97053956 97057956 Slc38a4 0.01 PAT 0.04 PAT
chr17 12767706 12771706 Igf2r 1.00 MAT 0.98 MAT
chr17 12739310 12743310 Airn 0.01 PAT 0.04 PAT
chr18 12970251 12974251 Impact 0.01 PAT 0.02 PAT

Column details and symbol (o) are as in Table 1. The chromosome start/end indicates the region containing all transcription start sites of the target gene
that were evaluated. Asterisks (*) indicate genes for which multiple windows were evaluated. Gray font indicates discordance between the allelic ratio for
H3K4me3 and RNA-seq (see text for details).
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Genome-wide allele-specific expression in MEFs

Previous studies analyzed RNA-seq, ChIP-seq or DNA
methylation-seq to detect either parental or strain specific
allelic enrichment, but none defined the allelic enrichment
status, or allelome, of all annotated loci in a given cell type
or tissue. In order to do this, we defined biallelic loci as those
loci not identified as showing a parental or strain bias, but
with enough SNP coverage to theoretically overcome the al-
lelic score FDR at an allelic ratio cutoff of 0.7. Those loci
with a lower SNP coverage (non-expressed or very lowly ex-
pressed genes) were defined as non-informative, while the
final category included loci with no SNPs. In summary, by
introducing an allelic ratio cutoff in combination with an
allelic score cutoff, Allelome.PRO was able to categorize
all loci in an annotation into 7 categories: maternal bias
(MAT), paternal bias (PAT), strain 1 bias (CAST), strain
2 bias (FVB), biallelic (BAE), non-informative (NI) and no
SNP (NS).

Next, we investigated how many RNA-seq sequencing
reads were necessary to categorize allelic data, and which
alignment program produced the best results with RNA-seq
data. The saturation curves for the STAR aligner showed
saturation for the number of imprinted genes (red and
blue) already at low sampling rates (10–20%, or 10–20 mil-
lion reads per replicate) (Figure 4A, left) (37). In contrast,
the numbers of strain-biased (brown and turquoise) and
biallelic genes (green) continued to increase with increas-
ing number of reads, although the slope decreased with
higher sample rates indicating the data was near satura-
tion. With increased sequencing depth the number of bial-
lelically expressed genes increased in parallel with a de-
crease in the number of non-informative genes. Satura-
tion curves were also produced from the data aligned with
GSNAP and TopHat (Figure 4A, middle and right, respec-
tively) (38,39). The saturation curves were broadly similar
for all three aligners, with the exception of strain-biased
genes. Both STAR and GSNAP detected more CAST than
FVB strain bias genes (494 CAST versus 391 FVB (STAR)
and 583 CAST versus 240 FVB (GSNAP)), but in con-
trast TopHat detected more FVB than CAST strain bias
genes (338 CAST versus 1009 FVB). This is likely due to
an alignment bias, as the FVB strain is more closely re-
lated to the C57BL/6J reference strain than CAST, and
therefore TopHat may have difficultly aligning some CAST
reads leading to false positive FVB strain bias genes and the
failure to detect some CAST bias genes. We observed that
STAR aligned more reads over SNP positions than GSNAP
or TopHat, which, combined with the much shorter run-
time, convinced us to use STAR for further analysis. Still,
one of our main concerns in choosing STAR over GSNAP
was that STAR does not offer an option for SNP-sensitive
analysis like GSNAP. However, when we correlated allelic
ratios determined by GSNAP and by STAR they showed
very high correlation (R2 = 0.99), indicating that alignment
biases did not affect the overall results.

The results for the Allelome.PRO run with STAR aligned
data showed 40 imprinted genes, 10 of which were mater-
nally expressed while 30 showed paternal expression. Fur-
thermore, we detected 494 CAST bias (299 on chromosome
X) and 391 FVB bias genes (three on chromosome X), con-

firming the X-inactivation between these strains. Of the re-
maining genes, 12140 were classified as showing biallelic ex-
pression, 8930 as non-informative and 1208 could not be
assessed as they contained no SNP (Figure 4B). The al-
lelic ratios of the detected imprinted genes are displayed
in Figure 4C with detailed information including genomic
location, number of covered SNPs, and allelic ratio given
in Table 1. Additionally, details for all informative SNPs
over detected imprinted genes is given in Supplementary
Table S1, and the full table including all informative genes
is available from the Gene Expression Omnibus (GEO, ac-
cession number GSE69168). Only 31 of the 123 known
imprinted genes were detected as imprinted (Supplemen-
tary Table S2). In most cases, this was likely due to tissue-
specific imprinted expression where the genes were called
non-informative (not expressed) or biallelic, although six
genes could not be assessed for imprinted expression due to
strain bias, and seven genes were not assessed because they
were not included in the RefSeq annotation that we used.
Our results showed a high level of agreement with a pre-
vious RNA-seq study conducted in MEFs from a JF1/M
× TgOG2 reciprocal crosses, with 27 of 32 reported im-
printed genes detected (Table 1) (53). Of the five genes that
we did not detect, one had no SNP in our cross (Nnat),
two were not part of the RefSeq annotation that we used
(AK050713 and Rtl1as), and we excluded one from our an-
notation due to its small size (AF357425). However, using
Allelome.PRO with sliding window annotations (2, 4, 6 and
8 kb) we could confirm imprinted expression of AK050713,
Rtl1as and AF357425 (data not shown). The fifth candidate,
Blcap, was categorized as biallelically expressed in our data,
which was in agreement with reports that this gene only ex-
hibits imprinted expression in brain (54). We detected 13 im-
printed gene candidates by RNA-seq in our study that were
not detected in a previous study of MEFs (53). Two were
probable false positives due to overlap with other imprinted
genes: Kcnq1 due to anti-sense overlap with Kcnq1ot1 and
the incomplete strand-specificity of our sequencing tech-
nique, and Trappc9 due to sense overlap with Peg13. Kcnq1
and Trappc9 were lowly expressed compared to their over-
lapping genes, and visual inspection of the genome browser
revealed that these long genes showed an increased signal
in the overlap region with the shorter Kcnq1ot1 and Peg13,
further indicating that this signal from this overlapping re-
gion was responsible for the probable false positive call.
We called Dlk1 as paternally imprinted, while the previous
study classified it as paternally biased and did not include it
in their final list (53). The remaining 10 imprinted gene can-
didates that we detected were characterized in the previous
study as either lacking SNPs, being non-expressed or low
expressed, or no data was presented (53). This indicates the
increased sensitivity of our method due to the large number
of SNPs used, our ability to detect SNPs in introns due to
the use of total RNA-seq, and the Allelome.PRO approach
of summing all covered SNPs within a gene, all of which
together enabled us to detect imprinted expression of lowly
expressed genes. Similarly, using all SNPs covered in at least
one replicate, and summing up all SNPs within a gene, en-
abled us to also call lowly expressed long non-coding (lnc)
RNAs with high confidence. This was illustrated by the ex-
ample of Igf2r and Airn (Figure 4D). Coverage across the
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Figure 4. Allelome defined in MEFs using RNA-seq. (A) Saturation curves showing the Allelome.PRO results for different samplings of the total RNA-seq
reads from MEFs for three different aligners, STAR, GSNAP and TopHat (from left to right). Reads were sampled from total uniquely aligned reads in
three technical replicates (STAR: 77.47 ± 1.89, GSAP: 76.89 ± 1.94, TopHat: 94.47 ± 2.02 millions of reads per replicate). The six curves in each plot
represent the categories listed in Figure 1 except the ‘No SNP’ category, which is omitted. The curves for imprinted genes (blue, red) show saturation at
low sample rates and little differences between the three aligners. The curves for strain-biased genes (brown, turquoise) show an increase of strain-biased
genes with increasing read number, although the slope decreases with higher sample rates it does not plateau. The three aligners detect different numbers
of strain bias genes, with STAR and GSNAP detecting more CAST than FVB biased genes, while TopHat detects more FVB than CAST strain bias genes.
All aligners show an increase in the number of biallelic genes detected, and a decrease in the number of non-informative genes with increasing number of
sequencing reads. (B) Categorization of RefSeq genes as produced by Allelome.PRO for strand-specific RNA-seq data of MEFs. Genes were categorized
into seven categories, as listed in Figure 1 with numbers given above. The pale brown bar shows the amount of CAST strain-biased genes on chromosome
X. Xist shows a strain bias towards the FVB allele as indicated on the turquoise bar. (C) The imprinted genes from (B) in more detail. The ratio between
maternal and paternal allele is illustrated as red and blue bars. Genes were sorted by chromosome number and genomic location and gene names are
given on the x-axis. This Figure is also part of the Allelome.PRO output. (D) Ribosomal depletion followed by 100bp paired end deep sequencing allows
the detection of SNPs within the introns of protein coding genes and lowly expressed long non-coding (lnc) RNAs. UCSC genome browser screenshot
showing data on the protein-coding gene Igf2r and the long non-coding (lnc) RNA Airn in MEFs. The tracks depict (from top to bottom): RefSeq genes,
Allelome.PRO allelic expression categorization, RNA-seq aligned reads, informative SNPs on the forward and reverse strand in grey, and total SNPs in
black.
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Airn gene body was much lower than coverage of Igf2r ex-
ons, but due to the large number of available SNPs (grey
bottom track, informative SNPs) typical for a non-coding
gene, the Airn lncRNA was still confidently called as show-
ing paternal expression.

In summary, using Allelome.PRO to analyze RNA-seq
data we confirmed previously reported imprinted genes in
MEFs and detected additional genes, most of which were
previously reported to show imprinted expression in an-
other tissue. We also detected strain biased genes, including
X-linked genes confirming a known X-chromosome inac-
tivation bias, as well as classifying biallelic expressed and
non-informative genes, thus defining for the first time the
entire allelome of a tissue.

Validation of allele specific expression by H3K4me3 ChIP-
seq

Previously most RNA-seq studies investigating imprinted
expression validated their results using methods that assay
allelic expression using a single SNP in cDNA, for exam-
ple, by pyrosequencing (32), Sanger sequencing (29), or Se-
quenom assays (31,53). Here, we validated our RNA-seq re-
sults using differential enrichment of the active H3K4me3
mark over promoters detected by Allelome.PRO using mul-
tiple SNPs from ChIP-seq data. Differential enrichment or
H3K4me3, H3K27ac or H3K36me3 was used before as a
proxy for imprinted expression of some imprinted genes,
but not as a general validation of imprinted or allelic ex-
pression (30,55). Here we used 4kb windows surrounding
the TSS of RefSeq genes as an annotation file for Allel-
lome.PRO to analyze ChIP-seq data for H3K4me3 marks in
MEFs. If a gene had multiple isoforms with different start
sites, SNPs from all sites were combined, as each gene was
treated as a single locus in this analysis. Using this approach
our results were broadly similar to the RNA-seq results. We
found 31 parental specific promoter marks, 5 maternal and
26 paternal (Figure 5A and B). The details of the informa-
tive SNPs for these genes are shown in Supplementary Ta-
ble S1. 382 CAST specific promoter marks (272 on chro-
mosome X) and 183 FVB specific promoter marks (1 on
chromosome X) were found, confirming the X-inactivation
bias seen by RNA-seq (Figure 5A). 13061 promoter regions
were classified as showing biallelic marks and 8654 regions
were non-informative, while 892 regions were not assessed
because they contained no SNP (Figure 5A). A table includ-
ing SNP details for all informative promoters is available
from GEO (accession number GSE69168).

A high level of agreement was seen between imprinted
genes detected in MEFs by RNA-seq and H3K4me3 ChIP-
seq using Allelome.PRO. In total 43 genes were detected as
showing parental specific expression and/or parental spe-
cific histone marks (Table 2). A comparison between the
RNA-seq and ChIP-seq results showed that 28 out of 40
genes called as showing imprinted expression by RNA-seq
also had differential enrichment of H3K4me3 over their
promoter. Five of 12 genes not confirmed by ChIP-seq were
found to show imprinted expression in MEFs by RNA-seq
in an independent study, indicating that they do show im-
printed expression in this tissue (Tables 1 and 2) (53). One
showed a CAST bias in H3K4me3 enrichment (Asb4), while

4 others had non-informative H3K4me3 data (D7Ertd715e,
Cdkn1c, Rian and Mirg). Seven of 12 genes not confirmed
by ChIP-seq were also not found in a previous study of
MEFs (Tables 1 and 2) (53). Two of these genes were proba-
ble artefacts caused by sense and anti-sense transcriptional
overlap by other imprinted genes as mentioned previously
(Kcnq1 and Trappc9), demonstrating the value of differ-
ential H3K4me3 enrichment assays to resolve such issues.
Peg3os also shows an antisense overlap with the highly ex-
pressed paternal imprinted gene Peg3, and was not con-
firmed by ChIP-seq, so it cannot be excluded that it is also
not a false positive. Two other genes were the only novel
candidate imprinted genes that we detected by the RNA-seq
analysis (Batf and Dnah1). As mentioned previously, these
genes were the only 2 of 40 imprinted expression candidates
detected by RNA-seq that were not detected with the higher
allelic ratio cutoff of 0.85, and this together with the lack
of validation by H3K4me3 differential enrichment indicates
that they are false positives. The remaining two genes not
detected in the previous study of MEFs had high allelic ra-
tios in our RNA-seq, but had non-informative ChIP-seq re-
sults (A230057D06Rik) or no SNP in the assayed region
(Ipw). The three genes detected by ChIP-seq, but not by
RNA-seq in our study were all known imprinted genes with
high allelic ratios, and either had no SNP in the gene body
(Mcts2), or had a non-informative RNA-seq result (Magel2
and Mkrn3). In the previous study of MEFs, Mcts2, a 795bp
single exon gene, was also reported to have no SNP, while
Magel2 and Mkrn3 were described as not being expressed
(53). We found Magel2 to be lowly expressed, resulting in a
non-informative result by RNA-seq. However, in our data
Mkrn3 was highly expressed, but three of four SNPs were
excluded due to overlap with pseudogenes leading to the
non-informative RNA-seq call. In summary, 33 out of 43
RefSeq genes that we detected as showing imprinted ex-
pression were found either by RNA-seq and ChIP-seq, or
by RNA-seq and a previous study of MEFs, or in all three
datasets, making these high confidence imprinted genes in
MEFs. Additionally, six genes were found to be imprinted
in either RNA-seq or ChIP-seq data, but not in the comple-
mentary dataset due to lack of SNPs (two genes) or a non-
informative result (3 genes). The remaining five genes were
excluded as probable false positives. Thus, 38 RefSeq genes
were identified as showing imprinted expression in MEFs.

To examine the results generated by Allelome.PRO in de-
tail, we used the well-characterized Igf2r imprinted gene
cluster (Figure 5C). The RNA-seq and ChIP-seq results
confirmed that Igf2r was only expressed from the maternal
allele, whereas the macro lncRNA Airn was only expressed
from the paternal allele. The extra-embryonic-lineage spe-
cific imprinted genes Slc22a2 and Slc22a3 are not expressed
in MEFs and were therefore classified as non-informative in
both analyses, as were Mas1, Mrgprh, and Pnldc1. Tcp1 and
Mrpl18 showed biallelic expression and biallelic H3K4me3
marks. Overall, Allelome.PRO analysis for RNA-seq data
showed the expected pattern for the imprinted Igf2r cluster
that was confirmed by the Allelome.PRO H3K4me3 ChIP-
seq analysis. As mentioned above, one example where the
ChIP-seq and RNA-seq analyses disagreed was the mater-
nally expressed gene Asb4 (Figure 5D). The RefSeq an-
notation only contained the long isoform of Asb4, which
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Figure 5. Allelome validated using ChIP-seq H3K4me3. (A) Categorization of RefSeq promoter regions (±2 kb windows over RefSeq gene transcription
start sites) as produced by the Allelome.PRO for H3K4me3 ChIP sequencing data of MEFs. The CAST strain bias on chromosome X is seen as well as the
categorization of Xist as showing a FVB strain bias. (B) The maternal/paternal ratio is shown as red/blue bars for the imprinted genes from (A). Promoter
windows are named after their respective genes and sorted as in Figure 4C. (C) Allelic expression in the Igf2r cluster is validated by differential H3K4me3
enrichment in MEFs. UCSC genome browser screenshot showing the Igf2r imprinted gene cluster and adjacent genes together with the Allelome.PRO
output for RNA-seq and ChIP-seq. The tracks depict (from top to bottom): gametic and somatic differentially DNA methylated regions (gDMRs and
sDMRs), Allelome.PRO allelic expression categorization, strand-specific RNA-seq, Allelome.PRO H3K4me3 allelic enrichment categorization, H3K4me3
ChIP-seq, and total SNPs in black. (D) Sliding windows detect differential H3K4me3 peaks outside annotated transcription start sites. Allelome.PRO
detected maternal expression of Asb4 from RNA-seq data using the RefSeq annotation, but a CAST strain bias was detected by Allelome.PRO analysis
of H3K4me3 ChIP-seq data using the RefSeq promoter annotation. However, analysing the ChIP-seq data instead with a 2 kb sliding window annotation
revealed maternal H3K4me3 enrichment over the promoter of a shorter isoform of Asb4 that was annotated by UCSC and appeared from RNA-seq data to
be the predominant isoform in MEFs. UCSC genome browser screenshot showing (from top to bottom) the UCSC gene annotation, Allelome.PRO allelic
expression categorization from RefSeq, strand specific RNA-seq, Allelome.PRO H3K4me3 allelic enrichment categorization using RefSeq annotation,
H3K4me3 ChIP-seq, and Allelome,PRO H3K4me3 allelic enrichment categorization using a 2 kb sliding window annotation.
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showed a strain specific H3K4me3 peak at its transcription
start site. However, Allelome.PRO run using a sliding win-
dow annotation for the same ChIP-seq data revealed the
presence of a maternal peak at the start site of an UCSC-
annotated shorter isoform of Asb4, confirming maternal ex-
pression in the RNA-seq results. Overall, ChIP-seq results
showed agreement with RNA-seq results in 18180 (84%) of
21649 cases where at least one SNP was present in both
analyses (Figure 6). Strain-biased expression showed the
lowest validation rate with only 257 (29%) of 879 cases val-
idated by ChIP-seq. Biallelic expression was confirmed for
10 922 (90%) of 12 058 candidates and 6973 genes were non-
informative in both analyses.

DISCUSSION

Since the development of high-throughput sequencing tech-
nologies a number of studies have sought to detect im-
printed expression from RNA-seq data from various tissues
using a variety of experimental and analysis approaches
(26,27,29,31,32,56,57). Additionally, detection of differen-
tial allelic expression has potential for the mapping of cis-
regulatory elements, so-called cis expression quantitative
loci or cis-eQTLs (40,58–61). Furthermore, differential al-
lelic expression analysis has been employed as a tool for
studying alternative mRNA processing (12). We developed
Allelome.PRO as a user-friendly and efficient tool to cap-
ture the genome wide state of differential allelic features,
thus providing a single tool to aid in these different applica-
tions.

Allelome.PRO provides a robust and sensitive tool to detect
allelic enrichment

Detection of imprinted expression requires biological repli-
cates and an empirical method to set the FDR from the data
in order to take account of the biological and technical vari-
ation in the system and minimize the chance of false posi-
tives (32). On the other hand the experimental setup and
analysis pipeline has to be sensitive enough to detect all im-
printed genes in a given tissue. Additionally, previous ana-
lytical pipelines require a high level of bioinformatic exper-
tise to implement. In contrast, Allelome.PRO is an efficient
package that can function with minimal computer resources
(tested on iMac 5.1, 3Gb RAM, Dual-core 2.16 GHz pro-
cessor), and that based on a limited number of user-set pa-
rameters will automatically process the aligned sequencing
data provided to set the FDR, categorize allelic enrichment
of all loci in an annotation file, and output the analyzed data
both as a table, as summary graphs and as a BED file that
can be uploaded and viewed on a genome browser (detailed
in the manual, Supplementary material).

Allelome.PRO was developed based on the approach
taken by Babak and colleagues to detect imprinted expres-
sion from RNA-seq data (32,33). Following this we used
tissue from F1 offspring from two reciprocal crosses (four
samples), combining allelic counts of multiple SNPs within
candidate loci, and calculated allelic scores based on the
binomial distribution. In contrast to previous approaches
(32,33), who calculated the allelic score based on the four
possible reciprocal comparisons between the samples, we

calculated the allelic score for each of the four samples sep-
arately and detected allelic bias as loci where the direc-
tion of the bias was the same in all four samples. This al-
lowed us to include all SNPs covered in at least one sam-
ple increasing the sensitivity of our method. Additionally,
this approach of calculating allelic scores for each sample
could be adapted to include more than four samples to
increase statistical confidence in situations where recipro-
cal crosses from inbred strains are not available but SNPs
are well-characterized, as is the case in humans. Outbred
species where SNPs have not been characterized could also
be examined if a SNP calling program such as SAMtools
or GATK is first used to call SNPs de novo (45,62). To max-
imize sensitivity to detect allelic expression, we performed
RNA-seq using rRNA depleted total RNA, which provided
increased coverage of SNP-rich intronic regions. In order
to count all reads covering a SNP we trimmed reads cover-
ing multiple SNPs so that only a single SNP was counted,
rather than excluding SNPs by their distance to other SNPs
as done previously (32,33). All of these steps together helped
increase the sensitivity of our approach.

In order to empirically calculate the FDR based on the
data, previous approaches used the two possible mock com-
parisons between F1 samples of the same genotype, a com-
parison that should lack allelic differences (32,33). In con-
trast, we did mock analysis by inverting the scores of two bi-
ological replicates and comparing the four samples, exactly
as for calculating the normal score, thereby using the vari-
ation in biallelic genes to calculate the FDR. Additionally,
in contrast to previous approaches that calculated the FDR
by comparing the imprinted score for reciprocal and mock
comparisons alone (32,33), we included both imprinted and
strain bias scores in our reciprocal to mock comparisons to
calculate a single allelic FDR cutoff. Basing an FDR cutoff
on imprinted genes alone does not allow a low cutoff to be
set due to the limited number of imprinted genes. For ex-
ample, with the 40 imprinted genes detected by RNA-seq
in this study our FDR cutoff of 1% would not be reached
until 0 genes are detected in the mock comparisons, making
an effective FDR cutoff of 0%. Therefore, by including the
several hundred strain bias genes (885 in our study) in the
FDR calculation we are able to set a lower FDR cutoff than
in previous studies (32,33), increasing the robustness of our
pipeline.

A key innovation in the Allelome.PRO pipeline compared
the approach taken by Babak et al. (32,33), is the introduc-
tion of an allelic ratio cutoff, in addition to the allelic score
FDR cutoff, to further reduce false positives. One of the
caveats of using the binomial distribution is that even small
deviations from a 0.5 ratio could result in a score over the
FDR if the amount of reads is high enough. As small dif-
ferences in the ratio are likely due to chance, and even if
true, are unlikely to cause a phenotype, we defined an al-
lelic ratio cutoff to separate true allelic biases from stochas-
tic variations. The introduction of an allelic ratio threshold
was also proposed by Wang and Clark (63), who suggested
a 0.65 ratio based on their experience that imprinted can-
didates below this ratio could rarely be validated. Other al-
lelic ratios thresholds used in previous studies range from
0.6 (64), to 0.8 (53). Based on the allelic ratio distribution
of known imprinted and strain-biased genes in our RNA-
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Figure 6. Allelome defined in MEFs. Allelome.PRO results are shown for all chromosomes on a circular representation. The tracks of the main plot in
the middle are (from outside to inside): Mono-allelically expressed genes (i.e. strain-biased and imprinted), Giemsa chromosome staining (47) and genes
showing allele specific H3K4me3 peaks in their promoter regions based on ChIP-seq. The two enlarged chromosomes were selected to demonstrate both the
large amount of imprinted genes on chromosome 7 as well as the strain-biased X inactivation. In addition to the two outmost tracks showing mono-allelic
genes also biallelic genes are shown in green for these two chromosomes (inner tracks).

seq data from MEFs, we chose 0.7 as an allelic ratio cutoff.
Above this allelic ratio cutoff, 95% of imprinted gene can-
didates were known imprinted genes, and 85% of X-linked
genes that showed a strain bias over the FDR cutoff were in-
cluded. The introduction of an allelic ratio cutoff allows im-
printed and strain bias loci to be distinguished from biallelic
loci. In order to classify all annotated loci in an annotation
file we defined non-informative genes as those with less SNP
coverage than theoretically necessary to overcome the allelic
ratio cutoff. This enabled Allelome.PRO to classify all loci
as either parental biased (imprinted), strain biased, biallelic,
non-informative or lacking SNPs. Therefore, in contrast to
previous approaches that sought to detect imprinted expres-
sion from RNA-seq data, we provide a tool to categorize the
entire allelic expression of all annotated loci in a given tis-
sue, allowing other allelic expression types to be identified
and investigated. Moreover, Allelome.PRO is flexible in that
it will function with any annotation and sequencing data
provided, as demonstrated in this study where both RNA-
seq and H3K4me3 ChIP-seq were analyzed and showed a
high correlation with each other.

To further test the robustness of the Allelome.PRO
pipeline we simulated different rates of sequencing error in
our MEF RNA-seq data in the region surrounding the Igf2r
imprinted gene cluster, and assessed the effect on the Al-
lelome.PRO results (Supplementary Figure S1). We found
that Airn and Igf2r were correctly called imprinted even
at error rates of 10 and 15% when the number of aligned
reads was greatly reduced. The biallelic gene Mrpl18 also

remained biallelic at a 10% error rate before becoming non-
informative at a 15% error rate. However, at these higher
error rates the biallelic gene Tcp1 gene became FVB strain
biased, perhaps because FVB has less SNPs with the refer-
ence genome compared to CAST, and therefore more FVB
reads may align, indicating that strain biased calls may be
affected by high rates of sequencing errors (Supplemen-
tary Figure S1). To test the impact of experimental error in
our method on the Allelome.PRO results we mixed in silico
reads from FVB and CAST adult heart to create four pools
that mimicked two forward and reverse crosses required
for Allelome.PRO (detailed in methods). The allelic ratios
showed the expected Gaussian distribution centered around
0.5, with deviations from the mean likely due to strain bi-
ased genes (Supplementary Figure S2A). As no imprinted
genes are expected in such a mixing experiment, we defined
the FDR as the percentage of informative genes called im-
printed. The FDR was low (0.15%) and could be further
decreased by increasing the allelic ratio cutoff or minread
parameter (Supplementary Figure S2B), although increas-
ing the minread parameter also decreased the number of in-
formative genes, thus reducing sensitivity (Supplementary
Figure S2C). At the 0.7 allelic ratio cutoff and minread 1
settings used in this manuscript, the FDR was reduced to
0.01%. In summary, analysis of the effects of sequencing er-
rors and general experimental errors show the robustness of
the Allelome.PRO pipeline in defining allelic expression.
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Allelome.PRO defines the MEF Allelome using RNA-seq and
ChIP-seq

We detected allele specific expression in MEFs using Al-
lelome.PRO to analyze RNA-seq data, and then vali-
dated the results using Allelome.PRO analysis of H3K4me3
ChIP-seq data and by comparison to a previous study of
imprinted expression in MEFs (53). We detected 40 genes
showing imprinted expression from RNA-seq data using
the RefSeq annotation, and 31 genes from ChIP-seq data
using 2 kb ± RefSeq TSS, giving 43 genes that were de-
tected by one or both methods. Twenty eight of the 40 genes
that were detected by RNA-seq were validated by differen-
tial H3K4me3 enrichment over their promoters (70%), and
a further five by detection in a previous study of MEFs (53).
Another six genes were detected only by RNA-seq or ChIP-
seq, but all were known imprinted genes and had high allelic
ratios (0.03 or less), making it likely that they also show im-
printed expression in MEFs. In addition to these 38 genes,
we were able to detect three of five additional imprinted
genes reported by a previous study of MEFs (53) using a
sliding window annotation to assay our RNA-seq data. We
did not initially detect these genes because they are not in
the RefSeq annotation or were excluded because of small
size. This indicates that we may detect a limited number of
additional imprinted genes if we use other annotations in
addition to RefSeq. More imprinted genes were detected by
RNA-seq than ChIP-seq indicating it was more sensitive,
although 5 of 40 genes appeared to be false positives. In
contrast, there was no indication that any of the 31 genes
detected by ChIP-seq were falsely called.

Some cases where ChIP-seq did not confirm RNA-seq
may be due to incomplete annotation by RefSeq. This can
arise if neighbouring imprinted lncRNAs are in fact con-
tinuous transcripts. If this is not annotated then multiple
genes would be called by RNA-seq, and only 1 by ChIP-seq,
due to the single promoter. For example, the neighbouring
Riken transcripts A330076H08Rik and A230057D06Rik
showed this pattern, with both being called imprinted
by RNA-seq and being expressed at a similar low level,
but only A330076H08Rik was also detected by ChIP-seq.
Genes can have alterative start sites that may not be an-
notated by RefSeq, which would affect our ChIP-seq anal-
ysis based on windows around the RefSeq TSS. This was
demonstrated by the example of Asb4, which was detected
as imprinted in the RNA-seq analysis, but not validated
by ChIP-seq analysis using a RefSeq promoter annota-
tion. However, using a sliding window annotation we could
validate imprinted expression of Asb4, finding differential
H3K4me3 enrichment at an alternative promoter annotated
in the UCSC gene track (47). Therefore, the validation rate
of RNA-seq results by H3K4me3 ChIP-seq could be in-
creased by using a more extensive annotation than RefSeq,
such as UCSC genes, using peak calling programs, or by us-
ing the unbiased sliding windows approach.

Of the five genes considered false positive, three over-
lapped known imprinted genes: Kcnq1 and Peg3os were
called because of incomplete strand-specificity leading to
bleed-through from the antisense overlapping Kcnq1ot1 and
Peg3 respectively, while Trappc9 was called because of sense
overlap with Peg3. All 3 of these genes were lowly ex-

pressed compared with the overlapping imprinted genes
(RPKM <5% the overlapping gene, Table 1), and were not
confirmed by H3K4me3 ChIP-seq analysis. We generated
strand-specificity using a method based on dUTP incor-
poration into second strand cDNA synthesis and subse-
quent uracil-N-glycosylase degradation (35), where bleed-
through may occur due to incomplete degradation of the
second strand or spurious second strand synthesis by re-
verse transcriptase (65). The remaining two genes (Batf and
Dnah) were novel imprinted candidates, and were consid-
ered false positives because they had lower allelic ratios than
the other imprinted genes detected by RNA-seq, and they
were not validated by ChIP-seq or by being previously de-
tected in other studies. These two genes were relatively lowly
expressed and could be excluded if we adjusted the minread
parameter in the Allelome.PRO pipeline. By increasing this
parameter to only include SNPs covered by at least three
reads (instead of 1 read) we observed that Batf and Dnah
were then called non-informative. Additionally, Kcnq1 was
also then categorized as non-informative, indicating that in-
creasing this parameter also made the pipeline more resis-
tant to false calls due to bleed-through from the opposite
strand. Therefore, we suggest that increasing the minreads
parameter should be used to decrease the number of false-
positives due to low coverage where no additional valida-
tion method, such as ChIP-seq, is available.

Allelome.PRO categorizes the allelic enrichment status of
all loci in an annotation in a given tissue, enabling other
categories in addition to imprinted genes to be investigated.
In MEFs by analysis of RNA-seq data we found 885 genes
showing strain bias expression, 34% were CAST biased X-
linked genes due to a known bias in X-inactivation (14).
The detection of 583 autosomal strain bias genes was a sim-
ilar number to other studies that employed RNA-seq to
investigate eQTLs in mouse adipose tissue (66) and adult
liver (28). The number of strain bias genes detected in our
study was over 20-fold higher than the number of imprinted
genes, illustrating the importance of reciprocal crosses to
detect true imprinted expression, and identifying genes that
may explain the differences in the phenotype between the
CAST and FVB strains. However, only 29% of strain biased
genes were validated by the H3K4me3 ChIP-seq analysis,
in contrast to the high validation rate of imprinted genes
mentioned above, and a 90% validation rate for biallelic
genes. Around 46% of genes categorized as strain-biased in
RNA-seq showed biallelic H3K4me3 marks. Therefore, it is
possible that in some cases the strain-biased levels of these
transcripts arose not from allele specific transcription, but
rather from allele specific post-transcriptional processing,
for example, alternative splicing or alternative UTR gen-
eration, or due to strain-biased effects on miRNA-binding
and RNA stability (10–12). Besides defining a set of genes
that can be used as controls for studies of imprinted and
strain biased genes, the identification of biallelically ex-
pressed genes can also be of interest in itself. For exam-
ple, in our study we identified 120 biallelic genes on the
X-chromosome despite the bias in X-inactivation. Of these
genes 48 were validated by ChIP-seq as showing biallelic
expression, including five of nine known X-inactivation es-
caper genes in our annotation (67). If the allelic cutoff
for RNA-seq and ChIP-seq was reduced to 0.6 then seven
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biallelic genes were detected including four known esca-
pers, making the remaining three genes strong novel X-
inactivation escaper candidates.

In summary, using Allelome.PRO we were able to define
the entire allelic expression status of all RefSeq genes from
RNA-seq data. Validation of this allelome by differential
H3K4me3 enrichment detected from ChIP-seq data created
a high confidence set for each category of allelic expression.
We also demonstrated that a high confidence allelome could
be generated from RNA-seq data alone by changing the
user-set minreads parameter in Allelome.PRO, resulting in
lowly expressed genes from all categories being classified as
non-informative.

Applications of the Allelome.PRO pipeline

Most imprinted genes show tissue-specific imprinted ex-
pression, the pattern of which has only been relatively com-
prehensively characterized for a small number (25,68). Al-
lelome.PRO in conjunction with RNA-seq, and validation
by H3K4me3 ChIP-seq, provides a robust and sensitive
method to assay a wide range of tissues and developmen-
tal time points, thus providing a complete picture of tissue-
specific imprinted expression. In addition to known im-
printed genes, novel tissue-specific imprinted genes may
be uncovered in tissues that have not been thoroughly ex-
amined for imprinted expression previously. Such an ap-
proach would also classify strain biased genes into those
that are found in multiple tissues, and those that show
tissue-specificity and are therefore candidates to explain
strain difference phenotypes in a particular organ or tissue.

Expression quantitative trait loci (eQTL) are defined
as genomic loci that regulate gene expression and can be
identified by combining whole genome association stud-
ies (GWAS) with differential expression analysis (10). Dif-
ferentially expressed genes can be identified by differen-
tial expression analysis between two genotypes, or by al-
lelic expression analysis from RNA-seq data (28,66). Map-
ping of cis-regulatory regions that may explain differences
in expression then requires several generations of breeding
from inbred strains in order to generate haplotypes that can
then be subject to linkage analysis (10). In this study we
demonstrated that Allelome.PRO could detect differential
enrichment of H3K4me3 over promoters, indicating that it
could also be used to detect differential enrichment in the
genome of other histone modifications or chromatin bind-
ing proteins from ChIP-seq data. Allelic enrichment of en-
hancer marks, such as H3K27ac or H3K4me1, could iden-
tify eQTLs or enhancers that may regulate nearby strain
bias genes detected by RNA-seq. This approach has the ad-
vantage over conventional eQTL analysis in that analysis
is focused on enhancers rather than on all genetic variation
between strains. Additionally, analysis can be conducted on
the F1 generation, avoiding the extra breeding required for
linkage analysis.

In summary, Allelome.PRO is a novel user-friendly
pipeline to investigate allele specific features in high-
throughput data using any compatible annotation and SNP
file. In this study we showed the use of Allelome.PRO on
expression and histone mark data, but allele specific differ-
ences of other features like DNA methylation or transcrip-

tion factor binding could be investigated as well. Further-
more this pipeline is not limited to just one organism but
instead it could be used in reciprocal crosses of strains from
any given organism as long as a database of SNPs is avail-
able to distinguish the two alleles. By integrating analysis
of different genomic features, such as expression and his-
tone modifications, Allelome.PRO could be used as part of
a toolset to investigate allele specific gene regulation.

ACCESSION NUMBERS

RNA-seq and ChIP-seq data are deposited in the Gene
Expression Omnibus (GEO) with the accession number
GSE69168. Analyzed data can be viewed on the UCSC
genome browser at the following link: https://opendata.
cemm.at/barlowlab/. The Allelome.PRO program can be
downloaded from the following link: https://sourceforge.
net/projects/allelomepro/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank Florian Breitwieser for advice during the early
stages of this project. High-throughput sequencing was con-
ducted by the Biomedical Sequencing Facility (BSF) at
CeMM in Vienna.

FUNDING

Austrian Science Fund [FWF P25185-B22, FWF F4302-
B09, FWFW1207-B09]. Funding for open access charge:
Austrian Science Fund.
Conflict of interest statement. None declared.

REFERENCES
1. White,J.K., Gerdin,A.K., Karp,N.A., Ryder,E., Buljan,M.,

Bussell,J.N., Salisbury,J., Clare,S., Ingham,N.J., Podrini,C. et al.
(2013) Genome-wide generation and systematic phenotyping of
knockout mice reveals new roles for many genes. Cell, 154, 452–464.

2. Mostoslavsky,R., Alt,F.W. and Rajewsky,K. (2004) The lingering
enigma of the allelic exclusion mechanism. Cell, 118, 539–544.

3. Rodriguez,I. (2013) Singular expression of olfactory receptor genes.
Cell, 155, 274–277.

4. Chen,W.V. and Maniatis,T. (2013) Clustered protocadherins.
Development, 140, 3297–3302.

5. Gendrel,A.V. and Heard,E. (2014) Noncoding RNAs and Epigenetic
Mechanisms During X-Chromosome Inactivation. Annu. Rev. Cell
Dev. Biol., 30, 561–580.

6. Dupont,C. and Gribnau,J. (2013) Different flavors of X-chromosome
inactivation in mammals. Curr. Opin. Cell Biol., 25, 314–321.

7. Gimelbrant,A., Hutchinson,J.N., Thompson,B.R. and Chess,A.
(2007) Widespread monoallelic expression on human autosomes.
Science, 318, 1136–1140.

8. Zwemer,L.M., Zak,A., Thompson,B.R., Kirby,A., Daly,M.J.,
Chess,A. and Gimelbrant,A.A. (2012) Autosomal monoallelic
expression in the mouse. Genome Biol., 13, R10.

9. Deng,Q., Ramskold,D., Reinius,B. and Sandberg,R. (2014)
Single-cell RNA-seq reveals dynamic, random monoallelic gene
expression in mammalian cells. Science, 343, 193–196.

10. Gilad,Y., Rifkin,S.A. and Pritchard,J.K. (2008) Revealing the
architecture of gene regulation: the promise of eQTL studies. Trends
Genet., 24, 408–415.

https://opendata.cemm.at/barlowlab/
https://sourceforge.net/projects/allelomepro/
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv727/-/DC1


e146 Nucleic Acids Research, 2015, Vol. 43, No. 21 PAGE 18 OF 19

11. Majewski,J. and Pastinen,T. (2011) The study of eQTL variations by
RNA-seq: from SNPs to phenotypes. Trends Genet., 27, 72–79.

12. Li,G., Bahn,J.H., Lee,J.H., Peng,G., Chen,Z., Nelson,S.F. and
Xiao,X. (2012) Identification of allele-specific alternative mRNA
processing via transcriptome sequencing. Nucleic Acids Res., 40, e104.

13. Chadwick,L.H., Pertz,L.M., Broman,K.W., Bartolomei,M.S. and
Willard,H.F. (2006) Genetic control of X chromosome inactivation in
mice: definition of the Xce candidate interval. Genetics, 173,
2103–2110.

14. Calaway,J.D., Lenarcic,A.B., Didion,J.P., Wang,J.R., Searle,J.B.,
McMillan,L., Valdar,W. and Pardo-Manuel de Villena,F. (2013)
Genetic architecture of skewed X inactivation in the laboratory
mouse. PLoS Genet., 9, e1003853.

15. Barlow,D.P. and Bartolomei,M.S. (2014) Genomic imprinting in
mammals. Cold Spring Harbor Perspect. Biol., 6, a018382.

16. Koerner,M.V., Pauler,F.M., Huang,R. and Barlow,D.P. (2009) The
function of non-coding RNAs in genomic imprinting. Development,
136, 1771–1783.

17. Bonasio,R. and Shiekhattar,R. (2014) Regulation of transcription by
long noncoding RNAs. Annu. Rev. Genet., 48, 433–455.

18. Kornienko,A.E., Guenzl,P.M., Barlow,D.P. and Pauler,F.M. (2013)
Gene regulation by the act of long non-coding RNA transcription.
BMC Biol., 11, 59.

19. Hudson,Q.J., Seidl,C.I., Kulinski,T.M., Huang,R., Warczok,K.E.,
Bittner,R., Bartolomei,M.S. and Barlow,D.P. (2011)
Extra-embryonic-specific imprinted expression is restricted to defined
lineages in the post-implantation embryo. Dev. Biol., 353, 420–431.

20. Okae,H., Hiura,H., Nishida,Y., Funayama,R., Tanaka,S., Chiba,H.,
Yaegashi,N., Nakayama,K., Sasaki,H. and Arima,T. (2012)
Re-investigation and RNA sequencing-based identification of genes
with placenta-specific imprinted expression. Hum. Mol. Genet., 21,
548–558.

21. Proudhon,C. and Bourc’his,D. (2010) Identification and resolution of
artifacts in the interpretation of imprinted gene expression. Brief.
Funct. Genomics, 9, 374–384.

22. Varmuza,S. and Miri,K. (2015) What does genetics tell us about
imprinting and the placenta connection? Cell Mol. Life Sci., 72,
51–72.

23. Stringer,J.M., Pask,A.J., Shaw,G. and Renfree,M.B. (2014) Post-natal
imprinting: evidence from marsupials. Heredity, 113, 145–155.

24. Patten,M.M., Ross,L., Curley,J.P., Queller,D.C., Bonduriansky,R.
and Wolf,J.B. (2014) The evolution of genomic imprinting: theories,
predictions and empirical tests. Heredity, 113, 119–128.

25. Prickett,A.R. and Oakey,R.J. (2012) A survey of tissue-specific
genomic imprinting in mammals. Mol. Genet. Genomics, 287,
621–630.

26. Wang,X., Sun,Q., McGrath,S.D., Mardis,E.R., Soloway,P.D. and
Clark,A.G. (2008) Transcriptome-wide identification of novel
imprinted genes in neonatal mouse brain. PLoS One, 3, e3839.

27. Wang,X., Soloway,P.D. and Clark,A.G. (2011) A survey for novel
imprinted genes in the mouse placenta by mRNA-seq. Genetics, 189,
109–122.

28. Lagarrigue,S., Martin,L., Hormozdiari,F., Roux,P.F., Pan,C., van
Nas,A., Demeure,O., Cantor,R., Ghazalpour,A., Eskin,E. et al.
(2013) Analysis of allele-specific expression in mouse liver by
RNA-Seq: a comparison with Cis-eQTL identified using genetic
linkage. Genetics, 195, 1157–1166.

29. Babak,T., Deveale,B., Armour,C., Raymond,C., Cleary,M.A., van
der Kooy,D., Johnson,J.M. and Lim,L.P. (2008) Global survey of
genomic imprinting by transcriptome sequencing. Curr. Biol.: CB, 18,
1735–1741.

30. Xie,W., Barr,C.L., Kim,A., Yue,F., Lee,A.Y., Eubanks,J.,
Dempster,E.L. and Ren,B. (2012) Base-resolution analyses of
sequence and parent-of-origin dependent DNA methylation in the
mouse genome. Cell, 148, 816–831.

31. Gregg,C., Zhang,J., Weissbourd,B., Luo,S., Schroth,G.P., Haig,D.
and Dulac,C. (2010) High-resolution analysis of parent-of-origin
allelic expression in the mouse brain. Science, 329, 643–648.

32. DeVeale,B., van der Kooy,D. and Babak,T. (2012) Critical evaluation
of imprinted gene expression by RNA-Seq: a new perspective. PLoS
Genet., 8, e1002600.

33. Babak,T. (2012) Identification of imprinted loci by transcriptome
sequencing. Methods Mol. Biol., 925, 79–88.

34. Capel,B., Albrecht,K.H., Washburn,L.L. and Eicher,E.M. (1999)
Migration of mesonephric cells into the mammalian gonad depends
on Sry. Mech. Dev., 84, 127–131.

35. Sultan,M., Dokel,S., Amstislavskiy,V., Wuttig,D., Sultmann,H.,
Lehrach,H. and Yaspo,M.L. (2012) A simple strand-specific
RNA-Seq library preparation protocol combining the Illumina
TruSeq RNA and the dUTP methods. Biochem. Biophys. Res.
Commun., 422, 643–646.

36. Regha,K., Sloane,M.A., Huang,R., Pauler,F.M., Warczok,K.E.,
Melikant,B., Radolf,M., Martens,J.H., Schotta,G., Jenuwein,T. et al.
(2007) Active and repressive chromatin are interspersed without
spreading in an imprinted gene cluster in the mammalian genome.
Mol. Cell, 27, 353–366.

37. Dobin,A., Davis,C.A., Schlesinger,F., Drenkow,J., Zaleski,C., Jha,S.,
Batut,P., Chaisson,M. and Gingeras,T.R. (2013) STAR: ultrafast
universal RNA-seq aligner. Bioinformatics, 29, 15–21.

38. Wu,T.D. and Nacu,S. (2010) Fast and SNP-tolerant detection of
complex variants and splicing in short reads. Bioinformatics, 26,
873–881.

39. Kim,D., Pertea,G., Trapnell,C., Pimentel,H., Kelley,R. and
Salzberg,S.L. (2013) TopHat2: accurate alignment of transcriptomes
in the presence of insertions, deletions and gene fusions. Genome
Biol., 14, R36.

40. Keane,T.M., Goodstadt,L., Danecek,P., White,M.A., Wong,K.,
Yalcin,B., Heger,A., Agam,A., Slater,G., Goodson,M. et al. (2011)
Mouse genomic variation and its effect on phenotypes and gene
regulation. Nature, 477, 289–294.

41. Morison,I.M., Paton,C.J. and Cleverley,S.D. (2001) The imprinted
gene and parent-of-origin effect database. Nucleic Acids Res., 29,
275–276.

42. Morison,I.M., Ramsay,J.P. and Spencer,H.G. (2005) A census of
mammalian imprinting. Trends Genet., 21, 457–465.

43. Williamson,C.M., Blake,A., Thomas,S., Beechey,C.V., Hancock,J.,
Cattanach,B.M. and Peters,J. (2013) World Wide Web Site - Mouse
Imprinting Data and References.

44. R Core Team. (2014) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

45. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G., Durbin,R. and Genome Project Data
Processing, S. (2009) The sequence alignment/map format and
SAMtools. Bioinformatics, 25, 2078–2079.

46. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26, 841–842.

47. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H.,
Zahler,A.M. and Haussler,D. (2002) The human genome browser at
UCSC. Genome Res., 12, 996–1006.

48. Smith,R.J., Dean,W., Konfortova,G. and Kelsey,G. (2003)
Identification of novel imprinted genes in a genome-wide screen for
maternal methylation. Genome Res., 13, 558–569.

49. Choi,J.D., Underkoffler,L.A., Wood,A.J., Collins,J.N., Williams,P.T.,
Golden,J.A., Schuster,E.F. Jr, Loomes,K.M. and Oakey,R.J. (2005)
A novel variant of Inpp5f is imprinted in brain, and its expression is
correlated with differential methylation of an internal CpG island.
Mol. Cell. Biol., 25, 5514–5522.

50. Wood,A.J., Roberts,R.G., Monk,D., Moore,G.E., Schulz,R. and
Oakey,R.J. (2007) A screen for retrotransposed imprinted genes
reveals an association between X chromosome homology and
maternal germ-line methylation. PLoS Genet., 3, e20.

51. Peters,J. and Williamson,C.M. (2008) Control of imprinting at the
Gnas cluster. Adv. Exp. Med. Biol., 626, 16–26.

52. Shiura,H., Nakamura,K., Hikichi,T., Hino,T., Oda,K.,
Suzuki-Migishima,R., Kohda,T., Kaneko-ishino,T. and Ishino,F.
(2009) Paternal deletion of Meg1/Grb10 DMR causes
maternalization of the Meg1/Grb10 cluster in mouse proximal
Chromosome 11 leading to severe pre- and postnatal growth
retardation. Hum. Mol. Genet., 18, 1424–1438.

53. Tran,D.A., Bai,A.Y., Singh,P., Wu,X. and Szabo,P.E. (2014)
Characterization of the imprinting signature of mouse embryo
fibroblasts by RNA deep sequencing. Nucleic Acids Res., 42,
1772–1783.

54. Schulz,R., McCole,R.B., Woodfine,K., Wood,A.J., Chahal,M.,
Monk,D., Moore,G.E. and Oakey,R.J. (2009) Transcript- and
tissue-specific imprinting of a tumour suppressor gene. Hum. Mol.
Genet., 18, 118–127.



PAGE 19 OF 19 Nucleic Acids Research, 2015, Vol. 43, No. 21 e146

55. Mikkelsen,T.S., Ku,M., Jaffe,D.B., Issac,B., Lieberman,E.,
Giannoukos,G., Alvarez,P., Brockman,W., Kim,T.K., Koche,R.P.
et al. (2007) Genome-wide maps of chromatin state in pluripotent
and lineage-committed cells. Nature, 448, 553–560.

56. Babak,T., DeVeale,B., Tsang,E.K., Zhou,Y., Li,X., Smith,K.S.,
Kukurba,K.R., Zhang,R., Li,J.B., van der Kooy,D. et al. (2015)
Genetic conflict reflected in tissue-specific maps of genomic
imprinting in human and mouse. Nat. Genet., 47, 544–549.

57. Crowley,J.J., Zhabotynsky,V., Sun,W., Huang,S., Pakatci,I.K.,
Kim,Y., Wang,J.R., Morgan,A.P., Calaway,J.D., Aylor,D.L. et al.
(2015) Analyses of allele-specific gene expression in highly divergent
mouse crosses identifies pervasive allelic imbalance. Nat. Genet., 47,
353–360.

58. Serre,D., Gurd,S., Ge,B., Sladek,R., Sinnett,D., Harmsen,E.,
Bibikova,M., Chudin,E., Barker,D.L., Dickinson,T. et al. (2008)
Differential allelic expression in the human genome: a robust
approach to identify genetic and epigenetic cis-acting mechanisms
regulating gene expression. PLoS Genet., 4, e1000006.

59. Xu,X., Wang,H., Zhu,M., Sun,Y., Tao,Y., He,Q., Wang,J., Chen,L.
and Saffen,D. (2011) Next-generation DNA sequencing-based assay
for measuring allelic expression imbalance (AEI) of candidate
neuropsychiatric disorder genes in human brain. BMC Genomics, 12,
518.

60. Lee,R.D., Song,M.Y. and Lee,J.K. (2013) Large-scale profiling and
identification of potential regulatory mechanisms for allelic gene
expression in colorectal cancer cells. Gene, 512, 16–22.

61. Gee,F., Clubbs,C.F., Raine,E.V., Reynard,L.N. and Loughlin,J.
(2014) Allelic expression analysis of the osteoarthritis susceptibility

locus that maps to chromosome 3p21 reveals cis-acting eQTLs at
GNL3 and SPCS1. BMC Med. Genet., 15, 53.

62. McKenna,A., Hanna,M., Banks,E., Sivachenko,A., Cibulskis,K.,
Kernytsky,A., Garimella,K., Altshuler,D., Gabriel,S., Daly,M. et al.
(2010) The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res., 20,
1297–1303.

63. Wang,X. and Clark,A.G. (2014) Using next-generation RNA
sequencing to identify imprinted genes. Heredity, 113, 156–166.

64. Smith,R.M., Webb,A., Papp,A.C., Newman,L.C., Handelman,S.K.,
Suhy,A., Mascarenhas,R., Oberdick,J. and Sadee,W. (2013) Whole
transcriptome RNA-Seq allelic expression in human brain. BMC
Genomics, 14, 571.

65. Parkhomchuk,D., Borodina,T., Amstislavskiy,V., Banaru,M.,
Hallen,L., Krobitsch,S., Lehrach,H. and Soldatov,A. (2009)
Transcriptome analysis by strand-specific sequencing of
complementary DNA. Nucleic Acids Res, 37, e123.

66. Hasin-Brumshtein,Y., Hormozdiari,F., Martin,L., van Nas,A.,
Eskin,E., Lusis,A.J. and Drake,T.A. (2014) Allele-specific expression
and eQTL analysis in mouse adipose tissue. BMC Genomics, 15, 471.

67. Yang,F., Babak,T., Shendure,J. and Disteche,C.M. (2010) Global
survey of escape from X inactivation by RNA-sequencing in mouse.
Genome Res., 20, 614–622.

68. Kulinski,T.M., Barlow,D.P. and Hudson,Q.J. (2013) Imprinted
silencing is extended over broad chromosomal domains in mouse
extra-embryonic lineages. Curr. Opin. Cell Biol., 25, 297–304.


