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Abstract

Automatic optic disc (OD) localization and segmentation is not a simple process as the OD

appearance and size may significantly vary from person to person. This paper presents a

novel approach for OD localization and segmentation which is fast as well as robust. In the

proposed method, the image is first enhanced by de-hazing and then cropped around the

OD region. The cropped image is converted to HSV domain and then V channel is used for

OD detection. The vessels are extracted from the Green channel in the cropped region by

multi-scale line detector and then removed by the Laplace Transform. Local adaptive

thresholding and region growing are applied for binarization. Furthermore, two region prop-

erties, eccentricity, and area are then used to detect the true OD region. Finally, ellipse fitting

is used to fill the region. Several datasets are used for testing the proposed method. Test

results show that the accuracy and sensitivity of the proposed method are much higher than

the existing state-of-the-art methods.

1 Introduction

Recently, some eye diseases such as diabetic retinopathy (DR) require an automatic system to

screen a large number of patients at regular intervals. Image processing techniques are found

suitable for the analysis of fundus images (i.e. digital eye images). Fundus image analysis is a

challenging task as fundus images contain variable colors. Additionally, the morphology of ret-

inal structures and specific features in various patients may lead to incorrect diagnosis. Several

research efforts have been made in the past that deal with detecting retinal parts like an optic

disc (OD), blood vessels, field of view (FOV) and retinal lesions containing exudates, microa-

neurysms, and hemorrhages [[1]–[2]].

Retinal vasculature can be damaged due to eye-related diseases such as DR which is a com-

mon diabetic disease and a leading cause of blindness. The retina of the eye is badly affected

when tiny blood vessels are damaged due to hypertension and high sugar level resulting in

vision loss problems. The World Health Organization (WHO) predicts that over the next 25

years the number of people with diabetes will increase from 130 million to 350 million [3]. As

stated by the National Eye Institute database of the United States, diabetes is a significant

source of blindness among the 20 to 74 years old individuals. Diabetes is a fast-growing disease
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in developed as well as underdeveloped countries. It has been estimated that 75 percent of peo-

ple with DR are living in developing countries, due to insufficient treatment and improper

healthcare management. It is worth mentioning that the identification of disease pattern in an

early stage is imperative to provide better treatment options.

Numerous ophthalmic pathologies like Glaucoma can be detected by the change in OD

shape or color [4, 5]. Localization of optic disc is essential for identification and segmentation

of the pathological and anatomical structures in retinal images. It helps to prevent false positive

detection of exudates incurred by DR since both form a bright region in fundus images [6].

The center of the OD or optic nerve head can be used as a starting point for vessel detection

techniques [5].

OD localization is a challenging task due to the variation of OD’s color and shape. Different

algorithms are used to localize OD by finding high-intensity value pixels. Abramoff et. al. [7]

and Patton et. al. [8] gave a detailed review of different methods for OD segmentation.

Mathematical morphology and watershed transformation combination were applied for

OD detection by Walter et. al. [9]. In this scheme, the contrast of hard exudates is decreased

and the slow variations of the background are eliminated using a shade correction technique.

Neighboring pixels’ local gray-level intensity variance was applied to the shade corrected

image for OD locus estimation. OD boundaries are located using watershed transformation.

Welfer et. al. [10] used adaptive morphological approach for the segmentation of the OD

region. Morales et. al. [6] used principal component analysis (PCA) for gray conversion for

obtaining a gray image. Watershed regions are extracted by applying stochastic watershed on

the gray image. Pixels which belong to the OD region are extracted using region discrimina-

tion based on the average intensity of the region.

Joshi et. al. localized OD using a hybrid approach based on intensity and vessel structure

[11]. First, curvature information is used to derive the locations of candidate optic disc that

encodes intensity features. Accordingly, the location of a candidate having the maximum

value was recognized as an OD. Osareh et. al. [12] suggested localization of OD based on the

template. Color normalization of retinal images is used in this method followed by template

matching. Ying et. al. [13] used a two-step strategy for OD localization. Firstly, all the bright

regions in a local surrounding were determined to choose the candidates for the OD region.

Secondly, a scheme offered by Zhang et. al. [14] is used to obtain binary blood vessels skeleton

map. In this method, the candidate OD region with the maximum fractal dimension was nom-

inated as OD. The algorithms proposed by [15], [16] and [17] failed to localize the optic disc in

case of large bright lesions present in fundus images. Suitable results were obtained from these

methods only in typical fundus images having bright and visible OD region. Osareh et. al. [12]

assumed that the OD is nearly circular and contains bright pixels. This algorithm was unsuc-

cessful where the OD in the retinal image is not the largest and the brightest area.

In this paper, a novel approach has been proposed that is fast and more accurate than the

existing state-of-the-art unsupervised OD detection methods. First, the image is enhanced by

de-hazing then it is cropped using morphological operations. The V channel of the cropped

image is selected and vessels are removed using Laplace transform. The vessels free channel is

first thresholded using local adaptive thresholding and then by region growing. Finally, the

true OD region is extracted using two region properties i.e area and eccentricity by finding the

most eccentric region in the defined range of area from the output of both thresholded images.

The main contributions of this paper are:

1. The idea of haze lines is effectively exploited for haze removal and contrast enhancement of

OD images, which may include haze or poor contrast due to various leakages occurring

from DR.
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2. Selection of V channels performed much better than other channels.

3. The Laplace transformation is adapted for effective vessel inpainting and removal.

4. An efficient adaptive local thresholding and region growing-based thresholding method is

used for isolating the OD region.

The paper is organised as follows. Section 2 explains the implementation of the proposed

method. Section 3 presents the results and experimental outcomes. Section 4 presents the dis-

cussion and conclusion.

2 Proposed optic disc segmentation algorithm

Detection of OD is a challenging task due to variation in color and shape of an OD. Segmenta-

tion of OD is problematic as some disc boundary parts are not properly defined. Therefore,

detection of the disc boundary is aimed for correct OD segmentation by identifying the

boundary between the nerve head and retina. Fig 1 shows the block diagram of the proposed

method.

2.1 OD localization

The intensity variations inside the optic and outside the disc cause non-uniform illumination.

The region with varied contrast can be modeled as haze with less visibility. For greater clarity

of the OD region, a de-hazing algorithm is used for improving the visibility of images captured

in outdoor scenarios [18]. This is a non-local method that removes haze from an image. Our

objective here is to restore the true color of the OD in the presence of noise, e.g. white lesions,

strongly visible choroidal vessels and light artifacts. A hazy image is a complex combination of

a true scene, vessels and OD in our case, and global error (non-uniform illumination). This

phenomenon fits well into the haze model. It has been observed that a haze-free image in the

RGB domain can be represented well with few-hundred distinct colors, that form spherical

clusters in RGB space. The presence of haze in images modifies the clusters into a straight-line

shape, referred to as haze-lines. Using the haze-lines, a regularized inverse algorithm is pre-

sented to make the image haze-free. We adopted this inverse process for its contrast-

Fig 1. Block diagram of the proposed OD segmentation method.

https://doi.org/10.1371/journal.pone.0227566.g001
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improvement behavior and efficient computational structure nature that is linear in size to the

image. Fig 2 shows the impact of de-hazing on color fundus images.

After de-hazing, the green channel is selected, since vessels are more prominent in this

channel [19, 20]. The effect of vessels is first minimized using morphological dilation opera-

tion. A line type structure element of length 12 is applied. As the vessels direction varies in a

retinal image therefore, the application of angular dilation filters is found to be more effective.

Fig 2. Impact of De-hazing on the retinal image: First column (a, e, i, m) shows four samples of retinal images. In the second column (b, f, j, n)

the green channels of first column are shown. In the third column (c, g, k, o) the output of De-hazing is shown. In the fourth column (d, h, l, p) the

green channels of third column are shown.

https://doi.org/10.1371/journal.pone.0227566.g002
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A total of 15 dilation filters are applied and their max response is obtained. The aim of remov-

ing vessels is to minimize the effect of vessels in the OD region. To get rid of other undesirable

features (light artifacts or diseases e.g. exudates, white lesions, etc.), two morphological opera-

tions, erosion followed by dilation are used. As the shape of OD is almost like a disc, therefore

the structuring element of type disc is applied on the de-hazed image. The size of the disc is set

empirically as 15 for erosion and 20 for dilation. This formation is found to be effective for

removing undesirable features. After morphological operations, the image is thresholded

using Otsu’s [21] thresholding. After thresholding, the centroids and eccentricities of the

remaining region are computed. The centroid of the region having minimum eccentric value

is picked for cropping. A 300 × 300 sub-image which includes OD is cropped based on the

detected point. From this cropped image a circular region of radius (R = Ra + 0.3Ra) is created,

where Ra is the average Radius of OD region of a particular dataset. The resultant image is

used for the subsequent operations.

2.2 Line detector for vessel extraction

If we divide a retinal image into uniform and non-uniform illumination areas then OD falls

in the non-uniform area, so if we can extract only the non-uniform illumination from an

image then the process of extracting an OD will be much easier than extracting it from the

original image. To do this task effectively, the image is transferred to the HSV domain from

the RGB domain. Unlike RGB, HSV separates the image intensity from the color informa-

tion. Although using both Green and S channels, we can get in the OD region but the

perfect reconstruction of the disc in Green channel is hard that may require complex image

processing techniques. While in V channel a simple thresholding technique can give a per-

fect disc. This reduces the computation time. Therefore, for further processing V channel is

selected.

In this subsection, the process of extraction of vessels from the Green channel is explained.

If we observe the V-channel, we can see some vessels are still present in it. Removing these ves-

sels will further make the process of OD extraction easy. To remove these vessels the best way

is to first truly locate these vessels. The best image that possesses most of the vessels is the

Green channel [22]. Therefore, for vessels extraction, a multi-scale line detector is applied on

the Green channel. The algorithm is proposed by Nguyen et.al. [23] in which the length of the

aligned lines is varied to simplify the basic line detector.

2.3 Vessels filling by laplace interpolation

Vessels filling is an essential task to correctly estimate the true size of the OD. This filling pro-

cess of a certain region is often called “inpainting”. A fast and simple method to estimate the

missing values of the vessel region is the Laplace transform. It uses a neighbor indexing tech-

nique for estimating missing pixels. For estimating missing pixels we can write:

Ê0 ¼
1

4
En þ Es þ Ee þ Ewð Þ; ð1Þ

where Ê0 denotes the shading estimate of any particular missing pixel. The subscripts n, s, e
and w denote the four adjacent pixels.

Filling region with Laplace process can effectively be interpreted as a differential mean, as

the missing values are modeled as an average of the adjacent pixel values. The same procedure

is applied on S-channel for vessels filling.
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2.4 Adaptive thresholding

Gaussian filter which is also called Gaussian blur or Gaussian smoothing is used to estimate

the local background. Selection of σ depends on the size of the OD. It should be much smaller

than the OD radius that is usually from 30-50 pixels. Therefore, Gaussian function with the

value of σ = 7 is used. This filter results in blending the prominent structure with the back-

ground that produces a blurred image comprising of a slowly-varying illumination pattern.

The difference DI between the image I and the mean image IB is calculated for every pixel:

DIðx; yÞ ¼ Iðx; yÞ � IBðx; yÞ: ð2Þ

The resultant is a high-pass filter that passes the structure of interest which has a uniform

background. If we threshold this background subtracted image at 0, the resultant image is a

sign image.

2.4.1 Morphological operation (erosion and dilation). The high-pass filtered image pos-

ses the OD region and some noise around the OD. This can be easily removed using morpho-

logical operations. To do this, two morphological operators, erosion and dilation, are used. As

the OD is a circular region, a circular structuring element is used. First, an erosion operation is

applied using a circular disc of diameter 13 pixels as the structuring element. This is followed

by dilation using a circular disc of diameter 12 pixels. The selection of diameters for erosion

and dilation is not as critical as the noise around the OD is consistent.

2.4.2 Region growing. The basic concept of region growing is that the region is iteratively

grown by comparing all unallocated neighboring pixels to the region. The difference between

a pixel’s intensity value and the regions mean or initial seed value is used as a measure of simi-

larity. The initial seed is assigned by finding the centroid of the localized OD. The pixel with

the smallest difference measured this way is allocated to the region. This process stops when

the intensity difference between the region and a new pixel becomes larger than the threshold

value of 0.05.

2.5 OD selection based on area and eccentricity

A unique label is assigned to each connected region of both outputs (region growing adaptive

thresholding) so that different objects can be distinguished. After that, the object features are

extracted based on the label. Eccentricity E of each component can be calculated by:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

j � M2
n

M2
j

s

: ð3Þ

Mj and Mn are major and minor axis lengths. A region in the selected area with smallest E val-

ues is selected as OD region. The range of area is defined as A = Aa�0.35Aa, where Aa is the

average area of OD region of a particular database.

2.6 Ellipse fitting

Once the OD region is extracted, due to noise and the processes of vessel removing, its bound-

ary can be of irregular shape. Using this image for analysis can result in lower values for the

measuring parameters. To mitigate these effects and estimate the true OD region, ellipse fitting

[24] is computed as the OD boundary. In ellipse fitting, a Least-Squares criterion is used to

estimate the best fit to an ellipse from a given set of points. This process of ellipse fitting mini-

mizes the noise effects introduced by vessels especially inside or outside of the OD region.
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3 Databases

To verify the effectiveness of the proposed method and compare its results with the existing

state-of-the-art methods six databases are used namely: DRIONS, MESSIDOR, ONHSD, DIA-

RETDB1, DRISHTI and RIM-ONE.

3.1 DRIONS database

DRIONS database comprises of 110 OD segmented digital color fundus images by two differ-

ent experts. The images were obtained by a color analogical fundus camera and digitized using

an HP-Photo Smart-S20 high-resolution scanner. It has 600 × 400 resolution and 8 bits per

pixel. This database contains Caucasian patients with an average age of 53 years and a female

and male ratio of 53.8% and 46.2%, respectively. 23.1% patients had prolonged modest glau-

coma and 76.9% eye hypertension. A portion of 110 images contain visual attributes identified

with potential issues that may mutilate the OD contour identification procedure [25]. Table 1

shows Visual characteristics of DRIONS database.

3.2 MESSIDOR database

The MESSIDOR database consists of 1200 color images. Three ophthalmologic departments

were involved in acquiring these images. A color video 3CCD (Charge Coupled Device) cam-

era is used on a Topcon TRC NW6 non-mydriatic retinograph with 45-degree field of view.

The images were captured with three different resolutions at 1140 × 1960, 2240 × 1488 or

2304 × 1536 pixels using 8 bits per color plane. Out of 1200 images, 800 images were acquired

with pupil dilation and 400 without dilation [26, 27]. The ground truth of OD boundaries of

these 1200 images have been segmented and are currently available online [28].

3.3 ONHSD database

The ONHSD database comprises 99 fundus images having 640 × 480 resolution acquired from

50 patients sampled randomly from a DR screening programme. 90 images are designated for

assessing segmentation algorithm and 96 images have visible optic nerve head (ONH). These

images were taken by a Canon CR6 45MNf fundus camera, having the field angle lens of 45

degrees. There is a significant dissimilarity in the images, with many characteristics that can

disturb the algorithm. They are summarized in Table 2. In this database, the center of ONH

has been marked up by a doctor, and four doctors marked the ONH edge that intersects with

radial bars (at 15-degree angles) radiating from the selected center. The mean of the edges

marked by the four specialists has been used to produce the best standard.

3.4 DIARETDB1 database

The DIARETDB1 is a public database which is used to benchmark the diabetic retinopathy

detection method. It consists of 89 color fundus images. Out of 89 images, 5 images are normal

Table 1. DRIONS database visual characteristics.

Characteristics Number of images

Light Artifact 3

Rim Blurred or Missing 5

Moderate Parapapillary Atrophy 16

Concentric Parapapillary Atrophy 20

Strong Pallor Distractor 6

https://doi.org/10.1371/journal.pone.0227566.t001
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and 84 contain at least mild non-proliferative signs (Microaneurysms) of the diabetic retinopa-

thy. A 50-degree field-of-view digital fundus camera is used to acquire these images.

3.5 DRISHTI database

The DRISHTI dataset has 101 images of which 31 are normal and 70 are abnormal. These

images are produced with 30˚ degree field of view and have a resolution of 2896 × 1944. The

OD is correctly marked by four glaucoma experts for each image.

3.6 RIM-ONE database

RIM-ONE is a publicly available dataset of retinal images. It consists of 455 high-resolution

images of which 255 images are normal and 200 images are abnormal (belong to patients with

glaucoma).

4 Quantitative performance measures

This paper presents an algorithm for OD localization and OD detection which has been veri-

fied using six databases: DIARETDB1, MESSIDOR, DRIONS, DRISHTI, RIM-ONE and

ONHSD. To assess the performance of the proposed method different quantitative metrics are

used. These quantities are shown in Fig 3.

The process of OD detection and segmentation enables to classify the pixels belonging to

the OD region or non-OD region. For pixel classification, there are four possibilities, as illus-

trated in Table 3: True Negative (TN), True Positive (TP), False Negative (FN) and False Posi-

tive (FP). The first two indicate the mutual agreement between predicted values and actual

values while the last two indicate a wrong prediction. When the system predicts that the pixel

belongs to the OD and is actually an OD pixel then this is the case of TP. When the system pre-

dicts that the pixel belongs to the non-OD and is actually a non-OD pixel then this is the case

of TN. FP is the case when a pixel actually belongs to the non-OD region while the system pre-

dicts the pixel as an OD pixel. Finally, in the FN case the system predicts a pixel as a non-OD

pixel when it actually is an OD pixel. Table 4 describes the metrics used to evaluate the quanti-

tative performance of the proposed methodology. In the proposed method, four measures are

used namely: Sensitivity (SN), Specificity (SP), Accuracy (Acc) and area overlap (AOL). The

Table 2. ONHSD database visual characteristics.

Characteristics Number of images

Light Artifact 7

Rim Blurred or Missing 27

Moderate Parapapillary Atrophy 29

No detectable optic nerve head 4

Severe Cataract 8

Moderate Cararact 2

Exudates or laser scars 7

Easily visible choroidal vessels 20

Severe peripapillary atrophy 6

Concentric Parapapillary Atrophy 23

Strong Pallor Distractor 13

https://doi.org/10.1371/journal.pone.0227566.t002
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overlap metric is defined in Eq 4.

AOL ¼
TP

ðFPþ TP þ FNÞ
: ð4Þ

Fig 3. Final extracted image, blue lines represents OD of ground truth and green represents extracted OD of the

proposed method.

https://doi.org/10.1371/journal.pone.0227566.g003

Table 3. Confusion matrix.

OD Available OD Not Available

Classify correctly TP FP

Classify wrongly FN TN

https://doi.org/10.1371/journal.pone.0227566.t003

Table 4. Performance metric for OD segmentation.

Measure Description

SN TP/(TP + FN)

SP TN/(TN + FP)

Acc (TP + TN)/(TP + FP+ TN + FN)

AOL TP/(TP + FP + FN)

https://doi.org/10.1371/journal.pone.0227566.t004
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5 Experimental results

The pixel-wise quantitative performance metrics, as described in Table 4, are calculated for

OD segmentation. The methodology is quantitatively evaluated by using these performance

metrics.

5.1 Localization result

Most of the existing methods, including [25, 29] and [5] used localization. In this paper, we

have proposed a fast and robust technique that gives promising results. Table 5 compares the

result of the proposed method with [5]. It can be observed that the accuracy of the proposed

method on MESSIER and DRIONS databases which is 99% and 100% respectively, is better

than [5].

5.2 Comparison of performance measures with other algorithms

The comparison of the proposed method has been made with other available methods on the

basis of average sensitivity, specificity, accuracy, and AOL. Six retinal images datasets namely

DROINS, DIARETDB1, MESSIDOR, DRISHTI, RIM-ONE and ONHSD are used.

Different approaches have been selected for comparison including both supervised and

unsupervised. The results of these datasets are shown in Table 6. It must be noted that the pro-

posed method’s performance in terms of accuracy is much better than all existing state-of-the-

art methods. Fig 4 shows the results of the proposed method on sample images of MESSIDOR

database. Fig 5 shows the results of the proposed method on sample images of DRIONS-DB

database. The sensitivity of the proposed method is higher than all existing state-of-the-art

methods on all datasets. If we compare the computational time of OD segmentation of the pro-

posed method with other state-of-the-art than the proposed method is much faster than all

other existing methods. Fig 6 shows the results of the proposed method on sample images of

DIARETDB1 database. Fig 7 shows the results of the proposed method on sample images of

ONHSD database. The AOL of the proposed method is comparable to the state-of-art methods

on all given datasets.

5.3 Limitations

In the proposed OD segmentation method, two morphological operations namely erosion and

dilation have been used to remove noise. The diameter selection of disc does have same effect

on the OD segmentation either when the outer region of OD is affected by disease or the inner

region has varied contrast. Although the selection V channels overcomes these effects, but due

to the uncalibrated nature of the original color input image, in some cases, we found that the

proposed method either segments partial OD or segments some outer regions with OD, as

shown in Fig 8.

6 Discussion and conclusion

In this paper, a novel method for OD localization and segmentation is proposed. The method

presented a robust approach for OD localization. For localization of OD, the image is first de-

Table 5. Localization percentage of OD using green channel of fundus image.

Localization MESSIDOR DRIONS DB ONHSD

[5] 97% 98% 99%

Proposed 99% 100% 99%

https://doi.org/10.1371/journal.pone.0227566.t005
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Table 6. OD segmentation performance measures comparison with other methods.

Performance measures Sensitivity Specificity Accuracy AOL Average time per image (in sec)

Methods

DIARETDB1

[30] 0.8808 0.9878 0.334 120.5

[31] 0.8498 0.9964 0.34 59.72

[32] 0.7347 0.9944 0.546

[33] 0.6341 0.9983 0.391

[34] 0.851 0.9984 0.9772 0.851 40

Proposed method 0.9337 0.9965 0.9950 0.8359 1

MESSIDOR

[6] 0.93 0.9949 0.8228

[25] 0.9212 0.977 0.8636

[34] 0.8954 0.995 0.9989 0.8793 71.3

Proposed method 0.9291 0.9953 0.9921 0.8357 1

DRIONS-DB

[25] 0.8957 0.976 0.8473

[34] 0.8508 0.9995 0.9989 0.851 43.2

Proposed method 0.9441 0.9956 0.9931 0.8589 1

Drishti-DB

Proposed method 0.9649 0.9975 0.9960 0.9179 1

RIM-ONE-DB

Proposed method 0.9611 0.9932 0.9909 0.8568 1

ONHSD

[25] 0.9077 0.9895 0.8346

[6] 0.931 0.9941 0.8045

Proposed method 0.9341 0.991 0.9899 0.8112 1

https://doi.org/10.1371/journal.pone.0227566.t006

Fig 4. Results of the proposed method on MESSIDOR dataset. (a)-(h) shows the performance of the proposed method on eight selected images.

Green color shows the proposed method’s detected OD while blue color is of ground truth.

https://doi.org/10.1371/journal.pone.0227566.g004
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Fig 5. Results of the proposed method on DRION dataset. (a)-(h) shows the performance of the proposed method on eight selected images. Green

color shows the proposed method’s detected OD while blue color is of ground truth.

https://doi.org/10.1371/journal.pone.0227566.g005

Fig 6. Results of the proposed method on DIARETDB1 dataset. (a)-(h) shows the performance of the proposed method on eight selected images.

Green color shows the proposed method’s detected OD while blue color is of ground truth.

https://doi.org/10.1371/journal.pone.0227566.g006
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Fig 7. Results of the proposed method on ONHSD dataset. Fig (a)-(h) show the performance of the proposed method on eight selected images.

Green color shows the proposed method’s detected OD while blue color is of ground truth.

https://doi.org/10.1371/journal.pone.0227566.g007

Fig 8. Fig (a)-(h) show the performance of the proposed method on eight difficult selected images. Green color shows the proposed method’s

detected OD while blue color is of ground truth.

https://doi.org/10.1371/journal.pone.0227566.g008
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hazed and then using morphological operation a most eccentric region is found. For OD seg-

mentation, a hybrid approach is used in which both S and V-channel are processed in parallel.

Finally, the OD is segmented using eccentricity and area properties. The method is evaluated

on four retinal image datasets. Experimental evaluation shows that this method is computa-

tionally fast, robust to the variations in image contrast and illumination, works well in patho-

logical retinal images and is comparable with state of the art methodologies in terms of

quantitative performance metrics. The proposed method achieved about 99% accuracy on

four datasets.

The results of OD segmentation illustrate the ability of the proposed algorithm for localiza-

tion when the images are affected by light artifacts such as when the OD boundary is impacted

with lesions of retinopathy that may lead towards the false positive prediction. The robustness

of the proposed method is also evaluated using these light artifact images. The visual and quan-

titative analysis shows the success of our proposed method. Furthermore, the method success-

fully segments the OD with these pathological structures.

In the future, we aim to develop an automated method for glaucoma screening. Even

though related published works can be used, our work shows low computational time, high

accuracy, tolerance for different varieties of low contrast images and can be easily integrated

with glaucoma and other radiography lesion systems.
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