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Abstract

In December 2019, the outbreak of a new coronavirus-caused pneumonia (COVID-19) in

Wuhan attracted close attention in China and the world. The Chinese government took

strong national intervention measures on January 23 to control the spread of the epidemic.

We are trying to show the impact of these controls on the spread of the epidemic. We pro-

posed an SEIR(Susceptible-Exposed-Infectious-Removed) model to analyze the epidemic

trend in Wuhan and use the AI model to analyze the epidemic trend in non-Wuhan areas.

We found that if the closure was lifted, the outbreak in non-Wuhan areas of mainland China

would double in size. Our SEIR and AI model was effective in predicting the COVID-19 epi-

demic peaks and sizes. The epidemic control measures taken by the Chinese government,

especially the city closure measures, reduced the scale of the COVID-19 epidemic.

1. Introduction

Since the end of the 20th century, new respiratory infections [1] have emerged in many parts

of the world [2]. Among them, the genus β-coronavirus of the coronavirus [3] family poses a

continuing threat to human health due to its high transmission efficiency, severe infection

consequences, and unpredictable timing of epidemics [4]. Over the past few decades, humans

have faced many challenges with viral respiratory infections, including SARS-COV in China

in 2002 [5,6], H1N1 [7] in Mexico in 2009 [8] and MERS-COV in Saudi Arabia in 2012 [9,10].

In December 2019, the first case of a 2019 coronavirus patient was found in Wuhan, Hubei

Province [11]. On January 23,2020, Chinese government closes off Wuhan [12]. The pathogen

was named severe acute respiratory syndrome coronavirus 2 (SARS-cov-2) by the interna-

tional committee for the classification of viruses on February 11, 2020 [13,14]. The name of

the disease caused by SARS-cov-2 is COVID-19. Within two months, COVID-19 had spread

[15,16] rapidly from Wuhan to all parts of the country. According to China’s national health

commission, by March 6, the total number of confirmed cases was 80,653.

Scholars from various countries have attempted to study and analyze the epidemic situation

of COVID-19 by various means [17–19]. On January 24, British scholars Read [20] et al. used

the SEIR(Susceptible-Exposed-Infectious-Removed) model to predict the trend of the
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epidemic. They predicted that the number of infections in Wuhan would reach 190,000 by

February 4. This estimate clearly overestimated the trend of the outbreak. On January 27, Biao

Tang [21] et al. used epidemic data from January 10 to January 22 to predict the epidemic

regeneration coefficient of 6.47 (95% confidence interval 5.71–7.23) by the SEIR(Susceptible-

Exposed-Infectious-Removed) model and statistical calculation method. Their model esti-

mated that the number of infections would peak on approximately March 10. In early Febru-

ary, Norden E. Huang [22] et al. proposed a simple data-driven model based on natural

growth, predicting that the number of infections would peak on approximately February 5,

with a cumulative number of confirmed cases between 37,000 and 44,000. On February 24,

2020, Huwen Wang et al. [23] used SEIR(Susceptible-Exposed-Infectious-Removed) model

and proposed that the infection coefficient R0 decreased from 2.5 to 0.5 with virus variation

and government policy, which had an impact on the prediction. On 19 March 2020, Joseph T.

Wu et al. [24] used SEIR(Susceptible-Exposed-Infectious-Removed) model and they study the

influence of infection rate, removal rate in different age groups and migration data on predic-

tion model. On March 25, 2020, Moritz U.G.Kraemer et al. [25] used GLM (generalized linear

models) model to consider the impact of population migration and age on the number of

infected people.

Many scholars began to pay attention to the impact of population migration on the epi-

demic, trying to find ways to mitigate the spread of the epidemic. On February 28, Zhong Nan-

shan et al. [26] used the SEIR model and LSTM model of population migration in Wuhan to

predict the trend of the epidemic. The model focused on the impact of population migration

in Wuhan on epidemic trends. On April 29, Jayson S.jia et al. [27] used a gravity model to

prove that the population migration in Wuhan was closely related to epidemic trends in non-

Wuhan regions. On May 4, Shengjie Lai et al. [28] used the SEIR model to predict the trend

of the epidemic. their findings suggest that the COVID-19 cases would likely have shown a

67-fold increase (interquartile range 44–94) by February 29 without NPIs (non-pharmaceuti-

cal interventions). On June 28, Solomon Hsiang et al. [29] used the SIR model and linear

regression model to predict the trend of the epidemic. Their models suggest that if the Chinese

government had not taken effective measures, the number of infected people in China would

have increased 465 times by March 22.

In the early stage of the epidemic, due to the lack of sufficient data, it was difficult for schol-

ars to accurately predict the trend of the epidemic [20–23]. Additionally, a number of recent

studies have shown that the development of the epidemic is closely related to population

movement [24–26]. Therefore, it is still necessary to study the epidemic trend of COVID-19 at

the current stage, which is of practical significance for the analysis, prevention and control of

the epidemic [30]. According to the characteristics of the Wuhan and non-Wuhan regions, the

SEIR model and deep learning model were established, respectively, considering the popula-

tion flow. By using the actual data and referring to the existing literature and reports, the

parameters of the new model were fitted. Finally, the model was used to estimate and analyze

the epidemic trend.

2. Materials and methods

2.1. Data sources

The epidemic data used in this paper were from the latest epidemiological data of COVID-19

reported by the Ding Xiang Yuan [31]. The urban migration index was derived from the Baidu

migration project [32], which is based on the users of Baidu and related products to count and

calculate the daily number of pedestrian movements in and out of cities by railway, air and

highway. The population density, per capita GDP and other urban data of all provinces in
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China were obtained from the official website of the National Bureau of Statistics [33]. In this

paper, the distance from each province to Wuhan was obtained from the Ovi interactive map

[34]. The average temperature of each province in 2019 was from the China Meteorological

Administration [35].

2.2. SEIR model

In this section, we briefly discuss the properties of the basic Susceptible-Exposed-Infected-

Removed (SEIR) model. The model divided people into four categories: Susceptible (S): indi-

viduals not yet infected; Exposed (E): individuals experiencing incubation duration; Infectious

(I): confirmed cases; Removed (R): recovered and dead individuals.

Fig 1 shows how individuals move through each compartment in the mode.

The parameters within this model are as follows:

1. Contact rate β controls the rate of spread, which represents the probability of transmitting

disease between a susceptible and an infectious individual.

2. Incubation rate σ is the rate of latent individuals becoming infectious.

3. Recovery rate γ is the rate of infected individuals becoming recovered.

The transmission of the virus is then described by the following system of nonlinear ordi-

nary differential equations:

dS
dt
¼ �

bSI
N

ð1-1Þ

dE
dt
¼
bSI
N
� sE ð1-2Þ

dI
dt
¼ sE � gI ð1-3Þ

dR
dt
¼ gI ð1-4Þ

2.3. DNN model

Deep neural networks (DNN) is composed of many parallel and highly correlated computing

and processing units, which are similar to the neurons of biological nervous system. Although

the structure of a single neuron is simple, the behavior of the neuron system composed of a

large number of interconnected neurons is very rich. The neural network has the ability of par-

allel computing and adaptive learning. Compared with the traditional prediction methods, the

Fig 1. SEIR model with 4 states.

https://doi.org/10.1371/journal.pone.0245101.g001
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prediction accuracy of neural network is better. This is mainly due to the characteristics of

neural network. Neural network is good at describing the characteristics of complex system

with strong nonlinearity and difficult to be expressed by precise mathematical model, and has

adaptive ability.

In this section, we briefly discuss the properties of the DNN model. The DNN model first

trained a large quantity of data to reduce the loss function and then calculated and updated the

parameters in the network to achieve the prediction of new data.

The following equations describe the linear relationship between input and output:

Y ¼
Xm

i¼1
wixiþ b ð2Þ

In the equations, xi represents the input data, wi represents the weight parameter, and b repre-

sents the bias.

The DNN model in this study consists of a 9-node input layer, a 32-node hidden layer and

a 1-node output layer. Tanh was used as the activation function to increase the fitting degree

of the model to the nonlinear model. Additionally, dropout was used in this study to alleviate

the overfitting phenomenon of the model. The formula of the Tanh activation function is as

follows:

f xð Þ ¼
1 � e� 2x

1þ e2x
ð3Þ

The DNN model architecture used in this study is shown in Fig 2.

The loss function can quantitatively determine the quality of the model to select the optimal

model. In this study, the mean square error loss function was used. The formula is as follows:

SE y ; yð Þ ¼
Pn

i¼1
ðy � y Þ2

n
ð4Þ

According to the current state for the loss function, we need to update the weight in the

direction of the minimum loss to obtain the optimal model. This study uses the Adam (Adap-

tive Moment Estimation) optimizer to update the weight. Adam is an adaptive learning rate

optimization algorithm. By computing the first-moment estimate and the second raw moment

estimate of a gradient, an independent adaptive learning rate is designed for different parame-

ters. The calculation formula is as follows:

Update biased first-moment estimate

mt;i ¼ b1 �mt� 1;i þ ð1 � b1Þ � gt;i ð5Þ

Update biased second raw moment estimate

Vt;i ¼ b2 � Vt� 1;i þ ð1 � b2Þ � g
2

t;i ð6Þ

Update parameters

wtþ1 ¼ wt � Zt ¼ wt � lr �
mt;i

1 � b1

t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt;i

1 � b2

t

s

ð7Þ

2.4. RNN model

Recurrent neural network (RNN) is a kind of neural network for modeling sequence data. It is

like a recurrent dynamic system. In this structure, the current output will flow into the next
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input and contribute to the next output. Compared with other neural networks, RNN has

some advantages. Fixed input and output is a limitation of general neural networks. The RNN

performs well in this aspect, and the sequence can be the input and output of the structure.

In this section, we discuss the use of the RNN is used to predict the number of COVID-19

infections. RNN computes the feature extraction of time-series-based samples by recursion of

input sequence data in the direction of sequence evolution.

The RNN consists of input layers, hidden layers, and output layers. The RNN model is

shown in Fig 3, and the expansion of Fig 3 is shown in Fig 4.

The calculation formula is as follows:

Ot ¼ gðv � StÞ ð8Þ

St ¼ f ðU � Xt þW � St� 1Þ ð9Þ

f and g are activation functions.

In this study, two layers of the RNN were built to extract the deep features of data, and one

layer of the DNN was used to output the results. In both RNN layers, the tanh activation func-

tion and dropout were used to increase the fitting degree of the nonlinear model to the data

and work for the model overfitting. The complete architecture of our RNN prediction research

model is shown in Fig 5:

Fig 2. DNN model architecture. The model consists of a 9-node input layer, a 32-node hidden layer and a 1-node output layer.

https://doi.org/10.1371/journal.pone.0245101.g002
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3. Results

3.1. Prediction of Wuhan infection trend based on the SEIR model

According to the national health commission, by the end of March 6, the total number of con-

firmed cases was 80,653 [31]. Among them, 49,871 cases were confirmed in Wuhan, account-

ing for 60% of the total confirmed cases. The Chinese joint investigation report on novel

coronavirus pneumonia (COVID—19) [36] shows that the spread of the epidemic in China

has distinct characteristics in the Wuhan and non-Wuhan areas of China. The newly infected

Fig 3. RNN model architecture. The RNN consists of an input layer, a hidden layer, and an output layer.

https://doi.org/10.1371/journal.pone.0245101.g003

Fig 4. Expansion of the RNN. t − 1, t, and t + 1 are time series. The input units are {x0, x1,. . ., xt, xt+1,. . .}, and the

output units are {o0, o1,. . ., ot, ot+1,. . .}. The hidden units are {s0, s1,. . ., st, st+1,. . .} There is a unidirectional flow of

information from the input units to the hidden units and another unidirectional flow of information from the hidden

units to the output units. W is the weight of the input, U is the weight of the input units at the moment, and V is the

weight of the output units.

https://doi.org/10.1371/journal.pone.0245101.g004

PLOS ONE Prediction of the COVID-19 epidemic trends based on SEIR and AI models

PLOS ONE | https://doi.org/10.1371/journal.pone.0245101 January 8, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0245101.g003
https://doi.org/10.1371/journal.pone.0245101.g004
https://doi.org/10.1371/journal.pone.0245101


cases in Wuhan were mainly original cases in Wuhan. As Wuhan is the traffic center of China

and the epidemic spread rapidly during the Spring Festival travel rush, the newly infected

cases in non-Wuhan areas were mainly imported from Wuhan. Since the newly added cases in

Wuhan were mainly infected by original cases, the SEIR model was used to predict the epi-

demic trends in Wuhan.

To use the SEIR model, the contact rate β, incubation rate σ, recovery rate γ and other

parameters needed to be estimated. The initial value of the susceptible population in Wuhan

city was similar to that of the permanent resident population in Wuhan city. Because the incu-

bation period of COVID-19 has been reported to be between 2 and 14 days, we chose the mid-

point of 7 days. We used a recovery rate of 3% [37]. In the early stage of the outbreak, the

number of infected people was small. The susceptible population S in the first 10 days in

Wuhan was approximately the same as the population N on the same day in Wuhan. There-

fore, S�N. We obtain the new formula:

dI
dt
¼ b

IS
N
� gI � b � gð ÞI ð10Þ

Finally, it is simplified to:

IðtÞ ¼ eðb� gÞI ð11Þ

Based on the actual number of people infected in the first 10 days in Wuhan, this study esti-

mated the initial β value to be 0.17.

Starting on February 12, the Hubei government changed the way it counted new confirmed

cases. The number of new official diagnoses rose sharply as clinically diagnosed cases were

included in new cases. Considering the change in the statistical method, this study corrected

the initial parameters of the model appropriately to reduce the prediction error.

Based on these estimated parameters and the epidemiological data of Wuhan, the model

parameters were fitted and optimized. The number of predicted results is shown in Fig 6, and

the results are consistent with the actual situation. In the statistical results, the SEIR model well

predicted the infection value of the epidemic situation, but the prediction of the deleted value

of the epidemic situation was delayed. This may have something to do with inadequate funeral

facilities in the country at the beginning of the epidemic.

Fig 5. The architecture of the RNN. The number of hidden units weight in the first RNN layer was 100, the number

of hidden units weight in the second RNN layer was 50 and the number of node in the DNN layer was 1.

https://doi.org/10.1371/journal.pone.0245101.g005
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3.2. Prediction of the non-Wuhan infection trend based on the DNN/RNN

model

Since the new infection cases in non Wuhan area are affected by so many factors, and Neural

network is good at describing the characteristics of complex system with strong nonlinearity

and difficult to be expressed by precise mathematical model, and has adaptive ability. Neural

network models were used to predict the epidemic trends in non-Wuhan. The number of new

infections in non-Wuhan areas has a distinct character. The number of newly infected individ-

uals in different provinces is shown in Fig 7:

The number of newly infected people in different provinces shows two main characteristics

of the epidemic in non-Wuhan areas:

1. Wuhan is the first place in China to discover COVID-19 early, and is the capital of Hubei

province. The neighboring provinces of Hubei, including Hunan, Sichuan and Anhui, were

seriously infected. On January 23, there were 24 new cases in Hunan, 15 new cases in Sich-

uan and 15 new cases in Anhui.

2. China’s supercities were the main focus of the epidemic: by February 2, in addition to the

surrounding areas of Hubei, the newly infected cities in Beijing, Shanghai and Guangzhou

were also serious. There were 21 new cases in Beijing, 21 new cases in Shanghai and 15

cases in Guangzhou. By February 26, as companies returned to work and provincial work-

ers returned to central cities, new cases were reported in Beijing and Shanghai. There were

10 new cases in Beijing and 1 new cases in Shanghai.

Because of the first point, Wuhan was the radioactive center of the epidemic, and its neigh-

boring provinces are severely infected. Therefore, this paper examined the distance from the

target city to Wuhan, the number of existing cases in Wuhan, and the number of newly diag-

nosed Wuhan as factors. The second point is that since the epidemic situation in supercities

were serious, this paper used GDP and population density in target city to characterize

whether it was a supercity. In addition, in view of studies have shown that climate can affect

the spread of sars-cov-2 [39], so this paper took the average temperature and rainfall

Fig 6. The SEIR model predicted the cumulative number of infections in Wuhan. Data from January 23 to March 3

were used to predict the cumulative number of infections in Wuhan over the next seven days.

https://doi.org/10.1371/journal.pone.0245101.g006
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mentioned in the paper as factors. Besides, the current situation of the epidemic has a great

influence on the future development in the near future. So this paper used the total number of

confirmed cases and the number of newly confirmed cases as consideration factors.

Because compared with traditional prediction methods, neural networks have higher pre-

diction accuracy. So, this paper used the DNN and RNN model to predict the number of

infected people in non-Wuhan areas of China.

DNN model needs training the weight parameter w and the bias parameter br, the model used

following data as input: the total number of confirmed cases in the previous day, the average

number of newly confirmed cases in the past 3 days, the number of existing cases in Wuhan, local

population density, per capital GDP, distance to Wuhan, average annual temperature, and aver-

age annual rainfall the average of the migration population in Wuhan in the past 5 days.

The RNN model used the values of these nine datasets over three consecutive days. Specific

data are shown in Table 1:

First, we normalize the data by Min-Max Normalization except the number of epidemic

cases. In (12), where Xmax is the maximum value of the sample data, and Xmin is the minimum

value of the sample data. In additional, we set an appropriate scale to scale the number of cases

to match the range of 0 to 1.

X ¼
X � Xmin

Xmax � Xmin
ð12Þ

Fig 7. This figure shows the number of new infections in each province [38]: (a) The number of new infections in each province on January 23; (b)

The number of new infections in each province on February 2; (c) The number of new infections in each province on February 26.

https://doi.org/10.1371/journal.pone.0245101.g007

Table 1. Data used by model DNN/RNN.

epidemic data city data migration data

confirmed

cases

past 3 days

cases

local population

density

per capital

GDP

distance to

Wuhan

average annual

temperature

average annual

rainfall

migration population in

Wuhan

https://doi.org/10.1371/journal.pone.0245101.t001
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And then the normalized number of epidemic cases X were sent to the model for training,

and the loss was calculated by (4). And update the parameters w and b. After 10000 epochs

training, loss tends to be stable.

After training, we got the output. The output of the network is the new cases that were

scaled down locally on that day. We restored the number of cases by scaling the previous cases.

Then we got the result.

Starting February 12, our model continuously predicted new infections in each province

over the next three days. On March 6, we summarized the previous data and selected Beijing

and Henan provinces with strong representation. The prediction effect of this DNN/RNN

model is shown in Fig 8. It can be seen that the AI model with the population migration data

can well predict the epidemic situation in non-Wuhan areas.

4. Discussion

Due to the outbreak, the Hubei provincial government launched a level-1 response to the pub-

lic health emergency on January 23, 2020. The city’s buses, subways, ferries, coaches, airports

and train stations were suspended. At the same time, all parts of the country also closed the

city. we used our model to predict the impact of closure of Wuhan on the the epidemic trends

of COVID-19 in China.

To explore the influence of Wuhan sealing on epidemic trends, this study attempted to

simulate and predict the epidemic trends of open cities in all provinces. We used the data of

Wuhan migration in 2019 to replace the data of Wuhan migration in 2020 to predict the num-

ber of people infected in non-Wuhan areas. We selected Beijing and Henan provinces with

strong representativeness, and the prediction effect of the DNN model is shown in Fig 9.

Based on the model in this study, it is estimated that if Wuhan did not adopt city closure

measures, for the vast majority of provinces such as Beijing, Chongqing and Guangdong, the

cumulative number of increased infections in each province would have increased to about 1.5

times within 4 weeks. This shows that the closure of the city had a great effect on inhibiting the

further spread of the disease.

Many scholars have come to similar conclusions. Shengjie Lai et al. [28] used the SEIR

model to predict the trend of the epidemic. their findings suggest that the COVID-19 cases

would likely have shown a 67-fold increase (interquartile range 44–94) by February 29 without

NPIs (non-pharmaceutical interventions). Without NPIs, the cumulative number of increased

infections would have increased to 18 times within 3 weeks. In their model prediction, NPI

contains more than just city closure measures, which make their predictions bigger than ours.

Solomon Hsiang et al. [29] used the SIR model and linear regression model to predict the

trend of the epidemic. Their models suggest that if the Chinese government had not taken

effective measures, the number of infected people in China would have increased 465 times by

March 22. To be specific, if China had not implemented policies, the number of infected peo-

ple would have increased exponentially. The early infection rate in China was 0.31. After

China used three policies (1. Emergency declaration 2. Travel ban 3. home isolation), the rate

of infection decreased by 0.252. Among them, the travel ban reduced the infection rate by

0.05, the cumulative number of increased infections would have increased to 2.26 times within

3 weeks. Their conclusions are nearly consistent with ours.

Additionally, we can see that the cumulative increase in the number of infections in differ-

ent provinces did not occur in the early stages of the epidemic. Most provinces experienced

a dramatic increase in the number of people infected within 3–7 days without closure. We

believe this is due to the incubation period lasting for 2–14 days and the population migration

in Wuhan was closely related to epidemic trends in non-Wuhan regions. If the city did not
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take measures to close the city, the new sources of infection in the city were mainly due to the

latent period of the Wuhan migration population, and the outbreak was delayed by 3–7 days.

Jayson S.jia et al. [27] also proved our point. They used a gravity model to prove that the popu-

lation migration in Wuhan was closely related to epidemic trends in non-Wuhan regions. The

Fig 8. The number of newly confirmed cases predicted by the RNN/DNN model in each province: (a) results in

Beijing; (b) results in Henan.

https://doi.org/10.1371/journal.pone.0245101.g008

PLOS ONE Prediction of the COVID-19 epidemic trends based on SEIR and AI models

PLOS ONE | https://doi.org/10.1371/journal.pone.0245101 January 8, 2021 11 / 15

https://doi.org/10.1371/journal.pone.0245101.g008
https://doi.org/10.1371/journal.pone.0245101


correlation coefficient between the cumulative number of increased infections and the popula-

tion migration in Wuhan increased from 0.522 on January 1 to 0.919 on January 24.

However, Henan Province and some other provinces with a smaller population did not

conform to the above rule. In this study, it is believed that before Wuhan’s closure on January

Fig 9. The DNN model was used to predict the total number of confirmed cases in provinces under the condition

of city quarantine or not quarantine: (a) results in Beijing; (b) results in Henan.

https://doi.org/10.1371/journal.pone.0245101.g009
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23, Henan Province isolated the migrant population from Wuhan in a timely manner, so the

impact of the Wuhan migrant population on the cumulative number of confirmed patients in

Henan Province was small.

Our study has some limitations. Firstly, we built the model according to the conventional

infection model, without considering the parameter fluctuation caused by the possible

super disseminator and virus variation in the SEIR model. At the same time, our model

does not account for differences in infection rates between the recovered and the general

population.

Secondly, we use multiple data including epidemic data, urban data, migration data to pre-

dict the epidemic trends of COVID-19 in other parts of China, without considering the poten-

tial impact of other factors on COVID-19 in the DNN and RNN model.

Thirdly, in our models, our original parameters are based on previous studies and experi-

ence from SARS control. Besides, the data we using is based on the data before March 3, 2020.

With the progression of COVID-19, the model parameters will change greatly because of more

and more data.

5. Conclusions

In summary, this paper collected the COVID-19 data including the number of confirmed,

cured and deaths from January 23 to March 6, 2020, combined with Baidu population migra-

tion data and relevant city data of the National Bureau of Statistics, to predict the number of

infections in China. The SEIR model could well predict the epidemic situation in Wuhan,

which was dominated by primary cases, and the AI model which added population migration

data could well predict the epidemic situation in non-Wuhan areas in China with a large num-

ber of input infections. Additionally, this study estimated the influence of Wuhan closure on

the epidemic trend. The results showed that the closure of Wuhan was an important measure

to effectively inhibit the spread of COVID-19 in a large area, and it greatly reduced the number

of infections in every part of China.

Supporting information

S1 File. City data.

(XLSX)

S2 File. Confirmed cases.

(XLSX)

S3 File. Migration algebra in Wuhan.

(XLSX)

S4 File. Migration population in Wuhan.

(XLSX)

Author Contributions

Conceptualization: Zhongke Feng.

Data curation: Zebang Feng, Chen Ling, Zhongke Feng.

Formal analysis: Zebang Feng, Chen Ling, Zhongke Feng.

Investigation: Shuo Feng, Zebang Feng, Chen Chang.

Methodology: Shuo Feng, Zebang Feng, Chen Chang, Zhongke Feng.

PLOS ONE Prediction of the COVID-19 epidemic trends based on SEIR and AI models

PLOS ONE | https://doi.org/10.1371/journal.pone.0245101 January 8, 2021 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245101.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245101.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245101.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0245101.s004
https://doi.org/10.1371/journal.pone.0245101


Project administration: Shuo Feng.

Software: Shuo Feng, Chen Ling.

Supervision: Zhongke Feng.

Validation: Chen Ling.

Visualization: Chen Chang.

Writing – original draft: Shuo Feng, Zebang Feng.

Writing – review & editing: Zhongke Feng.

References
1. Braciale T., Sun J. & Kim T. Regulating the adaptive immune response to respiratory virus infection. Nat

Rev Immunol 12, 295–305 (2012). https://doi.org/10.1038/nri3166 PMID: 22402670

2. Weiss R., McMichael A. Social and environmental risk factors in the emergence of infectious diseases.

Nat Med 10, S70–S76 (2004). https://doi.org/10.1038/nm1150 PMID: 15577934

3. Falzarano D., de Wit E., Martellaro C. et al. Inhibition of novel β coronavirus replication by a combination

of interferon-α2b and ribavirin. Sci Rep 3, 1686 (2013). https://doi.org/10.1038/srep01686 PMID:

23594967

4. Xiong C., Jiang L., Jiang Q. Prevalence and control of human diseases caused by beta coronavirus (β-

CoVs). Shanghai Journal of Preventive Medicine 32, 58–66(2020).

5. Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable

bat origin. Nature 579, 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-7 PMID: 32015507

6. Ou X., Liu Y., Lei X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its

immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620 (2020). https://doi.org/10.1038/

s41467-020-15562-9 PMID: 32221306

7. Tapia R., Torremorell M., Culhane M. et al. Antigenic characterization of novel H1 influenza A viruses in

swine. Sci Rep 10, 4510 (2020). https://doi.org/10.1038/s41598-020-61315-5 PMID: 32161289

8. Liu S., Jiao X., Wang S. et al. Susceptibility of influenza A(H1N1)/pdm2009, seasonal A(H3N2) and B

viruses to Oseltamivir in Guangdong, China between 2009 and 2014. Sci Rep 7, 8488 (2017). https://

doi.org/10.1038/s41598-017-08282-6 PMID: 28814737

9. Park Y., Walls A.C., Wang Z. et al. Structures of MERS-CoV spike glycoprotein in complex with sialo-

side attachment receptors. Nat Struct Mol Biol 26, 1151–1157 (2019). https://doi.org/10.1038/s41594-

019-0334-7 PMID: 31792450

10. Yang C.H., Jung H. Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact net-

works. Sci Rep 10, 4327 (2020). https://doi.org/10.1038/s41598-020-61133-9 PMID: 32152361

11. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China.

Nature 579, 265–269 (2020). https://doi.org/10.1038/s41586-020-2008-3 PMID: 32015508

12. Coronavirus: the first three months as it happened. https://www.nature.com/articles/d41586-020-

00154-w (2020).

13. Gorbalenya A.E., Baker S.C., Baric R.S. et al. The species Severe acute respiratory syndrome-related

coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5, 536–544 (2020).

https://doi.org/10.1038/s41564-020-0695-z PMID: 32123347

14. Peng X., Xu X., Li Y. et al. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral

Sci 12, 9 (2020). https://doi.org/10.1038/s41368-020-0075-9 PMID: 32127517

15. Yang P., Wang X. COVID-19: a new challenge for human beings. Cell Mol Immunol (2020). https://doi.

org/10.1038/s41423-020-0407-x PMID: 32235915

16. Danese S., Cecconi M. & Spinelli A. Management of IBD during the COVID-19 outbreak: resetting clini-

cal priorities. Nat Rev Gastroenterol Hepatol (2020).

17. Gog J.R. How you can help with COVID-19 modelling. Nat Rev Phys (2020).

18. Prevent and predict. Nat Ecol Evol 4, 283 (2020). https://doi.org/10.1038/s41559-020-1150-5 PMID:

32080369

19. Wu J., Leung K., & Leung G., Nowcasting and forecasting the potential domestic and international

spread of the 2019-ncov outbreak originating in Wuhan, China: a modelling study. The Lancet

395,10225(2020). https://doi.org/10.1016/S0140-6736(20)30260-9 PMID: 32014114

PLOS ONE Prediction of the COVID-19 epidemic trends based on SEIR and AI models

PLOS ONE | https://doi.org/10.1371/journal.pone.0245101 January 8, 2021 14 / 15

https://doi.org/10.1038/nri3166
http://www.ncbi.nlm.nih.gov/pubmed/22402670
https://doi.org/10.1038/nm1150
http://www.ncbi.nlm.nih.gov/pubmed/15577934
https://doi.org/10.1038/srep01686
http://www.ncbi.nlm.nih.gov/pubmed/23594967
https://doi.org/10.1038/s41586-020-2012-7
http://www.ncbi.nlm.nih.gov/pubmed/32015507
https://doi.org/10.1038/s41467-020-15562-9
https://doi.org/10.1038/s41467-020-15562-9
http://www.ncbi.nlm.nih.gov/pubmed/32221306
https://doi.org/10.1038/s41598-020-61315-5
http://www.ncbi.nlm.nih.gov/pubmed/32161289
https://doi.org/10.1038/s41598-017-08282-6
https://doi.org/10.1038/s41598-017-08282-6
http://www.ncbi.nlm.nih.gov/pubmed/28814737
https://doi.org/10.1038/s41594-019-0334-7
https://doi.org/10.1038/s41594-019-0334-7
http://www.ncbi.nlm.nih.gov/pubmed/31792450
https://doi.org/10.1038/s41598-020-61133-9
http://www.ncbi.nlm.nih.gov/pubmed/32152361
https://doi.org/10.1038/s41586-020-2008-3
http://www.ncbi.nlm.nih.gov/pubmed/32015508
https://www.nature.com/articles/d41586-020-00154-w
https://www.nature.com/articles/d41586-020-00154-w
https://doi.org/10.1038/s41564-020-0695-z
http://www.ncbi.nlm.nih.gov/pubmed/32123347
https://doi.org/10.1038/s41368-020-0075-9
http://www.ncbi.nlm.nih.gov/pubmed/32127517
https://doi.org/10.1038/s41423-020-0407-x
https://doi.org/10.1038/s41423-020-0407-x
http://www.ncbi.nlm.nih.gov/pubmed/32235915
https://doi.org/10.1038/s41559-020-1150-5
http://www.ncbi.nlm.nih.gov/pubmed/32080369
https://doi.org/10.1016/S0140-6736%2820%2930260-9
http://www.ncbi.nlm.nih.gov/pubmed/32014114
https://doi.org/10.1371/journal.pone.0245101


20. Read J. et al. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epi-

demic predictions. Preprint at https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2

(2020).

21. Tang B. et al. Estimation of the transmission risk of 2019-nCov and its implication for public health inter-

ventions. J Clin Med 9, 462 (2020). https://doi.org/10.3390/jcm9020462 PMID: 32046137

22. Huang N., Qiao F. A data driven time- dependent transmission rate for tracking an epidemic: A case

study of 2019-nCoV. Sci Bull (Beijing) 65, 425–427 (2020). https://doi.org/10.1016/j.scib.2020.02.005

PMID: 32288968

23. Wang H., Wang Z., Dong Y. et al. Phase-adjusted estimation of the number of Coronavirus Disease

2019 cases in Wuhan, China. Cell Discov 6, 10 (2020). https://doi.org/10.1038/s41421-020-0148-0

PMID: 32133152

24. Wu J.T., Leung K., Bushman M. et al. Estimating clinical severity of COVID-19 from the transmission

dynamics in Wuhan, China. Nat Med 26, 506–510 (2020). https://doi.org/10.1038/s41591-020-0822-7

PMID: 32284616

25. Kraemer M., Yang C. et al. The effect of human mobility and control measures on the COVID-19 epi-

demic in China. Science 368, 493–497 (2020). https://doi.org/10.1126/science.abb4218 PMID:

32213647

26. Yang Z. et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public

health interventions. J Thorac Dis 12, 165–174 (2020). https://doi.org/10.21037/jtd.2020.02.64 PMID:

32274081

27. Jia J.S., Lu X., Yuan Y. et al. Population flow drives spatio-temporal distribution of COVID-19 in China.

Nature 582, 389–394 (2020). https://doi.org/10.1038/s41586-020-2284-y PMID: 32349120

28. Lai S., Ruktanonchai N.W., Zhou L. et al. Effect of non-pharmaceutical interventions to contain COVID-

19 in China. Nature (2020). https://doi.org/10.1038/s41586-020-2293-x PMID: 32365354

29. Hsiang S., Allen D., Annan-Phan S. et al. The effect of large-scale anti-contagion policies on the

COVID-19 pandemic. Nature (2020).

30. Cuong L., et al. The first Vietnamese case of COVID-19 acquired from China. Lancet Infect Dis 20,

408–409 (2020). https://doi.org/10.1016/S1473-3099(20)30111-0 PMID: 32085849

31. Ding Xiang Yuan (in Chinese). http://www.dxy.cn (2020).

32. Baidu qianxi (in Chinese) https://qianxi.baidu.com (2020).

33. National Bureau of Statistics of China. http://data.stats.gov.cn (2019).

34. Ovi interactive map. http://www.gpsov.com/cn/main.php (2020).

35. China Meteorological Administration. http://www.cma.gov.cn/(2019).

36. China—WHO novel coronavirus pneumonia (COVID-19) joint investigation report. http://www.nhc.gov.

cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml (2020).

37. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-

nCoV) in Wuhan, China. J Med Virol 92, 441–7(2020). https://doi.org/10.1002/jmv.25689 PMID:

31994742

38. ArcGIS Desktop Arcmap 10.7. https://www.esri.com/zh-cn/home.

39. Sobral M., Duarte G. et al. Association between climate variables and global transmission oF SARS-

CoV-2. Science of The Total Environment 729, 0048–9697 (2020).

PLOS ONE Prediction of the COVID-19 epidemic trends based on SEIR and AI models

PLOS ONE | https://doi.org/10.1371/journal.pone.0245101 January 8, 2021 15 / 15

https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2
https://doi.org/10.3390/jcm9020462
http://www.ncbi.nlm.nih.gov/pubmed/32046137
https://doi.org/10.1016/j.scib.2020.02.005
http://www.ncbi.nlm.nih.gov/pubmed/32288968
https://doi.org/10.1038/s41421-020-0148-0
http://www.ncbi.nlm.nih.gov/pubmed/32133152
https://doi.org/10.1038/s41591-020-0822-7
http://www.ncbi.nlm.nih.gov/pubmed/32284616
https://doi.org/10.1126/science.abb4218
http://www.ncbi.nlm.nih.gov/pubmed/32213647
https://doi.org/10.21037/jtd.2020.02.64
http://www.ncbi.nlm.nih.gov/pubmed/32274081
https://doi.org/10.1038/s41586-020-2284-y
http://www.ncbi.nlm.nih.gov/pubmed/32349120
https://doi.org/10.1038/s41586-020-2293-x
http://www.ncbi.nlm.nih.gov/pubmed/32365354
https://doi.org/10.1016/S1473-3099%2820%2930111-0
http://www.ncbi.nlm.nih.gov/pubmed/32085849
http://www.dxy.cn
https://qianxi.baidu.com
http://data.stats.gov.cn
http://www.gpsov.com/cn/main.php
http://www.cma.gov.cn/
http://www.nhc.gov.cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml
http://www.nhc.gov.cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml
https://doi.org/10.1002/jmv.25689
http://www.ncbi.nlm.nih.gov/pubmed/31994742
https://www.esri.com/zh-cn/home
https://doi.org/10.1371/journal.pone.0245101

