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A B S T R A C T   

The SARS coronavirus 2 (SARS CoV-2) causes Coronavirus Disease (COVID-19), is an emerging viral infection. 
SARS CoV-2 infects target cells by attaching to Angiotensin-Converting Enzyme (ACE2). SARS CoV-2 could cause 
cardiac damage in patients with severe COVID-19, as ACE2 is expressed in cardiac cells, including car-
diomyocytes, pericytes, and fibroblasts, and coronavirus could directly infect these cells. Cardiovascular disor-
ders are the most frequent comorbidity found in COVID-19 patients. Immune cells such as monocytes, 
macrophages, and T cells may produce inflammatory cytokines and chemokines that contribute to COVID-19 
pathogenesis if their functions are uncontrolled. This causes a cytokine storm in COVID-19 patients, which 
has been associated with cardiac damage. Tregs are a subset of immune cells that regulate immune and in-
flammatory responses. Tregs suppress inflammation and improve cardiovascular function through a variety of 
mechanisms. This is an exciting research area to explore the cellular, molecular, and immunological mechanisms 
related to reducing risks of cardiovascular complications in severe COVID-19. This review evaluated whether 
Tregs can affect COVID-19-related cardiovascular complications, as well as the mechanisms through which Tregs 
act.   

1. Introduction 

The SARS coronavirus 2 (SARS CoV-2) infects target cells by 
attaching to the angiotensin-converting enzyme-2 (ACE2). Coronavirus 
disease (COVID-19) is caused by the SARS coronavirus 2 (SARS CoV-2) 
[1]. This viral disease, which has a mortality rate of 2.2%, causes various 
symptoms such as nausea, cough, acute respiratory distress syndrome 
(ARDS), severe pneumonia, cardiovascular complications, and organ 
dysfunction [1,2]. 

COVID-19 has so far appeared in four waves [3]. The latest one has 
been caused by the new Omicron variant [4]. Previous waves were 
related to the Ancestral, Beta, and Delta variants [4]. In comparison to 
previous variants, the Omicron variant had a lower rate of hospital ad-
missions and a lower severity of COVID-19 [5,6]. The mortality rate of 
Omicron variant has been reduced significantly from the original 2.2 
[7,8]. The high levels of previous infection and vaccination coverage are 
likely responsible for the changing clinical presentation of SARS-CoV-2 
Omicron infection [9]. However, due to ability of COVID-19 to produce 
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repeat infection, a critical concern has been whether humans will 
experience reinfections with this pathogen, which might enable COVID- 
19 to become endemic [10]. 

Tregs, which comprise 5–15% of the CD4+ T cells in the peripheral 
blood [11], play a significant role in maintaining self-tolerance and 
suppressing autoimmunity [11–14]. Tregs express several cell surface 
molecules, including CD25, CD45RA, CD45RO, CD62L, CD127, CD103, 
cytotoxic T-lymphocyte antigen-4 (CTLA-4, or CD152), CCR6, HLA-DR, 
CD39, CD95, ICOS, CD147, glucocorticoid-induced TNF receptor family- 
related gene (GITR), and programmed cell death 1 (PD-1) that enable 
them to be isolated and characterized [15]. Furthermore, FOXP3 is a 
Treg-specific transcription factor that plays a significant role in Treg 
differentiation, development, and function [16]. In addition, IL-2 as a T- 
cell growth factor has contributed to developing and promoting natural 
Treg activity [17]. 

Tregs are divided into two major groups: those originating from the 
thymus (nTregs) and those induced in the periphery (iTregs). Immature 
CD4+ T cells with a high self-antigen affinity differentiate into natural 
Tregs during the T cell growth process (nTreg) in the thymus [18]. 
nTregs are recognized by the expression of CD4, CD25, and FOXP3 
markers [18]. 

Inducible Tregs (iTregs) are Tregs derived from virgin CD4+ T cells 
in the presence of TGF-β in the peripheral tissues that respond to 
exogenous or self-antigens [19–21]. iTregs and nTregs are different 
regarding their epigenetic status and stability [22]. In addition, iTregs 
are characterized by their cytokine profile [19]. In humans, a variety of 
iTreg subsets have been recognized, including CD8+ Treg, Th3, Tr1, and 
natural killer Treg (NK Treg) [22]. These iTreg subsets suppressed im-
mune responses, while they differ in cell surface markers and formation 
sites [22]. 

Through direct cell interaction and the release of anti-inflammatory 
cytokines, both natural and iTregs regulated the proliferation and ac-
tivities of innate immune cells (dendritic cells and macrophages). They 
also suppressed self-reactive lymphocytes, including Th1, Th2, Th17, 
and B cells [23]. IL-10 and TGF-β are multifunctional cytokines secreted 
by different immune cells, including Tregs (primarily Th1 and Th3) and 
Th2 cells [24]. IL-10 producing nTregs contributes to eliminating 
pathogens in viral, fungal and, bacterial infections [25,26]. TGF-β has 
been implicated in maintaining natural Tregs in the thymus and 
inducing iTregs differentiation [27]. TGF-β was found to play a role in 
Th17 cells differentiation [28–30]. Tregs release IL-35, which inhibits T- 
cell proliferation by binding to the IL-12R2 receptor [31]. 

Aside from nTregs FOXP3-positive T cells could be polarized from 
FOXP3-negative T cells in the presence of TGF-β [32]. It was also shown 
that activation of Tregs producing high amounts of TGF-β with the 
addition of IL-6 induces CD4+CD25+Foxp3− T cells to differentiate into 
IL-17-producing cells in the absence of other cells [33]. Hence, activated 
Tregs themselves differentiate into IL-17-producing cells in the presence 
of a source of IL-6. However, cytokines may enhance the proliferative 
response and potentiate their FOXP3 expression and suppressive activ-
ities. One of these cytokines is interferon β (IFNβ) used for multiple 
sclerosis therapy [34,35]. One of the mechanisms of cytokine actions is 
induction of the proliferation of CD4+CD25+Foxp3− regulatory T cells 
through up-regulation of GITRL on dendritic cells [35]. From the view of 
this point, CD4+CD25+Foxp3− T cells have dual effects on the course of 
an immune response that includes the immune status in COVID-19 
infection [32,33]. 

Recent research suggests that Tregs phenotype and function may be 
unstable in an inflammatory environment, with unanticipated plasticity 
toward Th1 and Th17 cells in autoimmune diseases and viral infections 
[20,36]. Tregs may lose their regulatory function and even show a pro- 
inflammatory activity [20]. Explanations for Treg plasticity include 
epigenetic and posttranslational modifications [36]. It was found that 
Tregs converted into Th1-like cells producing IFN-γ, co-expressing 
FOXP3 and Tbet (the main transcription factor of Th1 cells) with the 
upregulation of CXCR3 other classical Th1 markers in vivo [20]. The 

presence of IFN-γ producing cells was also observed in FOXP3 expressing 
cells after PMA/Ionomycin stimulation or after prolonged in vitro 
expansion of FOXP3+ Tregs [20]. Th1-like Tregs are associated with 
several autoimmune diseases in humans, including T1D (type-1 dia-
betes) and multiple sclerosis (MS) [20]. Additionally, it was demon-
strated that Treg-Th17 conversion occurred in the presence of IL-1β and 
on epigenetic modifications resulting in the up-regulation of ROR-γ (the 
specific transcription factor of Th17 cells) expression [20,37,38]. Th17- 
like conversion in vivo was recently proposed for tumor-infiltrating Tregs 
isolated from human ovarian tumors [39]. Interestingly, according to 
the findings, Tregs produced in the presence of vitamin C + RA estab-
lished a more stable population when exposed to an inflammatory 
environment in vitro or in vivo [36], suggesting a possible strategy for 
reducing Treg plasticity in inflammatory conditions like in COVID-19 
infection. 

According to our knowledge, very little research has been done to 
investigate or hypothesize the effects of Tregs on cardiovascular com-
plications in severe COVID-19 infection. Therefore, this review aimed to 
seek whether the cardiovascular complications caused by COVID-19 
infection could be affected by Tregs as well as the mechanisms by 
which Tregs act. 

2. COVID-19 

COVID-19 is a respiratory viral infection generated by the SARS 
coronavirus (SARS CoV-2), first found in Wuhan, China, in December 
2019 [40]. The World Health Organization (WHO) announced the new 
coronavirus is a worldwide outbreak on March 11, 2020 [41]. 

SARS CoV-2 is a coronaviridae virus with a single-stranded RNA 
genome [42]. This virus has a genome that is about 30,000 nucleotides 
(27–32 kb) and encodes structural and accessory proteins [42]. SARS- 
CoV preserves 79% and 50% of its genetic sequence with MERS and 
SARS-CoV-1, two other coronaviridae viruses, respectively, and attaches 
to ACE2 as the receptor for cell infection [43]. According to a large body 
of evidence, COVID-19 infection causes multi-organ dysfunction in the 
lung, heart, brain, large intestine, kidneys, and spleen compared to other 
coronaviruses that are only concerned with respiratory infections ex-
press the ACE2 receptor [43–48]. 

In the normal viral clearance process, COVID-19 recruits and acti-
vates T-helper 1 cells (Th1 CD4+ cells) at the site of inflammation, 
which can eliminate infected cells and prevent the virus from spreading 
and replicating [48]. Neutralizing antibodies could then block viral at-
tachments to cells, and macrophages would then phagocytize the 
neutralized viruses as well as apoptotic cells [48]. The viral load rises 
during the first week of infection and gradually decreases over the next 
few days. SARS CoV-2 antibodies start to rise 10 days after infection, and 
most patients become seroconverted within the first twenty days [49]. 

3. Immunopathology of COVID-19 

It has been shown that alternations in the proportions of immune 
cells have been associated with progression, severity, and death in most 
severe COVID-19 patients [50–53]. The total neutrophils are increased 
while total lymphocytes are reduced, increasing the neutrophil- 
lymphocyte ratio (NLR) in these patients [50,51]. Patients with severe 
COVID-19 also tend to have a lower frequency of basophils, monocytes, 
and eosinophils [54]. Moreover, increased neutrophils and decreased 
lymphocytes have been shown to correlate with the severity of COVID- 
19 infection [55]. 

Lymphopenia in COVID-19 patients has been found in several studies 
[56–60]. In severe COVID-19 patients, lymphocytes were less than 5% 
within two weeks of disease onset [56–60]. Despite the decrease in T cell 
numbers, their functions were normal [61] or even hyper-activated, as 
evidenced by the high proportion of HLA-DR (a marker of TCD4+ cell 
activation) and CD38 (a marker of TCD8+ cell activation) double- 
positive populations [62,63]. 
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It was found that B and T lymphocytes and NK cells were signifi-
cantly diminished in severe COVID-19 patients [64–66]. However, T-cell 
frequency (both T CD4+ and TCD8+ cells) are more impaired than other 
immune cells [61], SARS-CoV-2 affects the proportion of T helper CD4+

subpopulations including, Th1, Th17, Th2 cells, and Tregs, in COVID-19 
patients in a different manner [67,68]. 

During COVID-19 infection, both anti-inflammatory (Th2) and pro- 
inflammatory (Th1) responses are activated, resulting in an increase in 
several cytokines (IFN-γ, IL-6, IL-1, TNF-α, IL-12, IL-10, and IL-2) in 
severe COVID-19 infection [67,69]. SARS CoV and MERS CoV usually 
caused Th1 immunity, contributing to excess secretion of inflammatory 
cytokines (IFN-γ, IL-12, TNF-α, and IL-1), related to significant pulmo-
nary complications a high death rate [70,71]. 

In patients experiencing severe COVID-19, the percentage of Tregs 
decreased dramatically while the percentage of Th17 cells (as the in-
flammatory cells) increased [61,72], resulting in a decline in the Treg/ 
Th17 cell ratio [62,73]. The reduced Treg/Th17 ratio is associated with 
the unregulated systemic inflammation in acute lung damage, like acute 
respiratory distress syndrome [74,75]. Reduced Treg numbers in severe 
COVID-19 cases reflect inadequate modulation of pro-inflammatory 
immune reactions, which could exacerbate inflammatory reactions 
and tissue damage [76]. 

Inflammation has already been identified as the main contributor to 
the pathogenesis of severe COVID-19 [77]. Excess pro-inflammatory 
cytokine production has been shown in COVID-19 cases due to 
elevated Th17 cell activity [62,68]. IL-17A and CXCLs chemokines 
attract myeloid cells like neutrophils to the infection site and activate 
matrix metalloproteinase. This leads to the recruitment of more in-
flammatory cells like Th1 and Th17 cells and the excessive secretion of 
inflammatory cytokines, which intensifies uncontrolled systemic 
inflammation [68]. This is known as a “cytokine storm,” resulting in 
tissue damage and viral sepsis, both of which have fatal consequences 
[68]. Other symptoms of severe COVID-19 include acute respiratory 
distress syndrome and respiratory and cardiac failure [68]. 

Indeed, augmented levels of circulating TNF-α, IL-6, and IL-1 (the 

major pro-inflammatory cytokines) cause naive CD4+ T cells to differ-
entiate into Th17 cells while inhibiting Tregs, resulting in a Treg/Th17 
ratio imbalance [22]. Inducing tissue factor expression on mononuclear 
cells could lead to coagulation activation and thrombin production, 
resulting in disseminated intravascular coagulation (DIC) and, eventu-
ally, pulmonary embolism [22]. In addition, it may have a role in the 
rapid decline in pulmonary oxygen exchange shown in COVID-19 pa-
tients [22]. TNF-α and IL-6 levels in the blood have been proposed as 
determinants of disease severity [22]. 

4. Cardiac damage in COVID-19 

Cardiovascular diseases are the most frequent comorbidity detected 
in COVID-19 patients [78–80]. The mortality risk in COVID-19 patients 
with cardiovascular diseases is more significant than in COVID-19 pa-
tients with other disorders such as diabetes mellitus and chronic pul-
monary disease [74,75]. In COVID-19 patients, increased levels of 
several cardiac injury biomarkers were found, including cardiac sensi-
tivity troponin I (hs-TnI), N-terminal pro-B-type natriuretic peptide (NT- 
proBNP), and C-reactive protein (CRP) [12,15]. COVID-19-induced 
heart inflammation resulted in various clinical outcomes, including 
right ventricle and cardiac amyloidosis, concentric left ventricular hy-
pertrophy with a dilated left ventricle, and severe hypokinetic ar-
rhythmias (ranging from tachycardia and bradycardia to asystole) [12]. 

SARS CoV-2 can affect cardiac tissue either directly or indirectly [22] 
(Fig. 1). The expression of ACE2 by cardiac cells such as pericytes, 
cardiomyocytes, vascular smooth muscle cells, and fibroblasts could 
enable SARS CoV-2 to infect these cells directly [22,81]. Inflammatory 
cytokines and chemokines including IL-2, IL-6, TNF-α, IL-1, monocyte 
chemoattractant protein 1 (MCP-1), and macrophage inflammatory 
protein 1- (MIP-1), which are the main contributors of cytokine storm, 
are implicated in the cardiac injury indirectly. 
[11,13,14,16,18,19,22,82–85]. This indicates that the immune system 
plays a part in cardiovascular complications in COVID-19 patients as 
infiltration of monocytes and T cells observed in autopsies 

Fig. 1. Proposed mechanisms of cardiac injury. 
Cardiac tissue may be influenced by SARSCov2 infection (or Covid19) directly or indirectly. ACE2 expression by cardiac cells could directly infect these cells by a 
coronavirus. Indirectly, inflammatory cytokines that are the leading cause of cytokine storms are implicated in cardiac damage. 
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[11,13,14,16,18,19,22,62,82–86]. Mononuclear infiltrates are associ-
ated with areas of cardiomyocyte necrosis, which determines myocar-
ditis in COVID-19 patients according to the Dallas criteria [87,88]. 
Elevated levels of inflammatory cytokines and chemokines may lead to 
myocarditis, heart failure, hypertension, coronary arterial diseases 
(CAD), myocardial infarction (MI), and cardiac arrhythmias [24–26]. In 
addition, hypoxemia, metabolic disturbances, systemic inflammation, or 
myocarditis may all cause arrhythmias in patients whit COVID-19 
[89–91]. These patients can experience acute coronary syndromes due 
to the elevated thrombotic proclivity, as shown by increased D-dimer 
levels, although the incidence of such cases is unclear [89–91]. Heart 
failure is another risk associated with coagulation defects in COVID-19 
patients [27]. 

5. Tregs impairment in COVID-19 

According to current evidence, the frequency of peripheral Tregs is 
significantly reduced in patients with severe COVID-19 infection 
compared to patients with moderate disease [61,72,92]. It is important 
to note that Treg depletion in mice infected with murine coronavirus 
resulted in a rise in acute encephalitis mortality, demonstrating the 
protective role of Tregs during acute COVID-19 infection [93]. Obesity is 
also a risk factor for COVID-19. Evidence from obese subjects and 
relevant animal models showed that the percentage of Tregs in the blood 
and visceral adipose tissues is low, indicating a higher state of inflam-
mation in obese individuals [94]. 

The following are possible explanations for the reduction of Tregs in 
severe COVID-19: 

IL-2 serves as a growth factor for Tregs by increasing the expression 
of FOXP3 (the master transcription factor of Tregs) [95]. As observed in 
the bronchoalveolar lavage of patients with severe COVID-19, decreased 
IL-2 levels may lead to Tregs apoptosis and decreased FOXP3 gene 
expression [95]. Furthermore, inflammatory conditions in severe 
COVID-19 patients probably improve proteolytic cleavage of cell surface 
CD25 (IL-2R), resulting in increased levels of soluble CD25 [61,72]. 
Soluble CD25 may potentially interact with IL-2 signaling and 
bioavailability, contributing to rising Treg apoptosis (Fig. 1) [61,72]. 

One of the reasons for the decrease in the percentage of Tregs in 
peripheral blood is the possibility of Tregs migrating to the lungs to 
regulate adverse inflammatory responses in patients with COVID-19 
[96]. As noted, Tregs can suppress inflammation [23], leading to the 
regulation of the activity of macrophage, Th1, and Th17 cells that are 
contributed to cytokine storm occurrence during viral infection [23]. As 
previously mentioned (Section 3), the cause of cytokine storm could be 
due to uncontrolled inflammation and inappropriate immune responses 
leading to severe lung damage which is the leading cause of morbidity 
and mortality in COVID-19 [97]. In this light, it has been proposed that 
Treg therapy may be one option for treating patients with severe COVID- 
19 [97,98]. However, the dosage of Tregs and complementary therapies 
for SARS-CoV-2 infection must be approached [98]. A study demon-
strated that three transfusions of allogeneic cord blood Tregs substan-
tially reduced the levels of the major cytokines that contributed to the 
cytokine storm, including IL-12, IL-6, TNF-α and, IFN-γ [98]. In addition, 
after transfusion of Tregs, the levels of IL-8 and MC-1 (two well-known 
chemokines in lung injury) also drastically were diminished [98]. 

6. The role of Tregs in cardiac homeostasis and various 
cardiovascular complications 

Tregs are contributed to cardiac, immune tolerance, and the break-
down of immune tolerance to self-antigens in the heart may cause car-
diac inflammation [99]. According to recent research, Tregs are 
essential for vascular and cardiovascular function [100]. PDL-1 
expression in the heart cells as a ligand of PD-1 (one of the functional 
surface markers of Tregs) may support that point [99]. Tregs in the heart 
have higher proliferative rates than Tregs in blood and lymphoid tissue, 

suggesting that local renewal is particularly important for Tregs 
expansion in the heart, even in the absence of cardiac injury [101]. In 
addition, tolerogenic DCs were detected in the heart tissue that primed 
antigen for Treg cell activation [102]. The development of an inflam-
matory network, which involves inflammatory cell aggregation and the 
production of inflammatory cytokines, can affect the progression of 
cardiovascular diseases [103]. As a result, suppressing inflammatory 
responses is a potential candidate for preventing and treating myocar-
dial infarction, atherosclerosis, myocarditis, heart failure, and hyper-
tension [103]. Clinical trials indicated that the frequency and function of 
circulating Tregs were lower in patients with chronic heart disease 
relative to healthy individuals [104,105]. Tregs can suppress the pro- 
inflammatory cells and the production of pro-inflammatory cytokines, 
both of which are associated with cardiovascular complications [103]. 
Tregs dysfunction may lead to uncontrolled inflammatory responses of 
Th1 and Th17 cells and, consequently, myocardial infarction and heart 
failure [106]. 

Myocarditis is an inflammatory cardiac disease caused by various 
infectious agents and autoimmune diseases [107–109]. Viral infections 
could trigger myocarditis by inducing immediate cytotoxic reactions, 
post-viral inappropriate immune responses, and autoimmunity [103]. 
Tregs protected against myocarditis in animal models infected with 
Coxsackievirus B3 (CVB3), hepatitis C, and herpes simplex virus by 
minimizing viral-induced immunopathology and suppressing tissue 
injury due to viral-induced immunological responses [110]. 

Infiltration of different inflammatory cells including, neutrophils, 
monocytes, and lymphocytes (particularly Th1 and Th17 cells) in the 
myocardium, increased the severity of myocarditis [103]. Tregs have 
been reported to regulate inflammatory cells activation, which limits the 
anti-viral immune response and prevents myocarditis progression 
[103,111]. It was discovered that adoptive transfer of Tregs reduced 
viral load and immune cell infiltration in the heart, in the pancreas and, 
in the spleen, which was associated to decrease expression of the 
coxsackie-adenovirus receptor (CAR), less activation of p38 MAP kinase, 
and increased Akt activation [112,113]. These alternations were caused 
by TGF-β, which triggered a paracrine positive feedback loop and con-
verted naive CD4+ T cells into regulatory CD4+ T cells [111]. So, inhi-
bition of p38 MAP kinase is an effective strategy in treating viral diseases 
[114]. The P38 Mitogen-Activated Protein (MAP) Kinase is one of the 
kinases involved in the inflammatory response [115,116]. The phos-
phoinositide 3 kinases (PI3K)-Akt axis improves to differentiate helper 
T-cell subsets [117]. The phosphorylation of a variety of downstream 
effector molecules by AKT is involved in cell growth, metabolism, and 
survival [117]. AKT enhanced FOXP3 gene expression in Tregs, resulting 
in Tregs with a stable phenotype and functions [117]. 

Both Th1 and Th17 cells have been found to play a role in the 
initiation and progression of myocarditis [118–120]. Tregs produce IL- 
10, which reduces the severity of CVB3-induced viral myocarditis by 
suppressing the release of Th17-related cytokines (IL-17A and IL-6) 
[119]. In addition, IL-10 inhibited the immune response by lowering 
MHC II complexes and B7 family co-stimulatory molecules on antigen- 
presenting cell surface, including dendritic cells and macrophages 
[111,119]. 

Treg impairments were detected in CAD patients due to the decrease 
in Treg frequency and downregulation of FOXP3, IL-10, and TGF-β gene 
expressions and higher IFN-γ and hsCRP levels [121]. Increased 
apoptosis induced by inflammation and oxidative stress was also a cause 
of Treg impairment [121]. In the angiotensin-II-induced hypertension 
model, Treg deficiency was attributed to increased pro-inflammatory 
factors like IFN-γ and IL-17A [122]. These cytokines play a part in the 
synthesis and degradation of vasoconstrictors and vasodilators and the 
expression of Angiotensin-II, which contributed to artery inflammation 
and high blood pressure [123]. It was shown that the transfusion of 
Tregs reduced heart hypertrophy, fibrosis, and arrhythmia in the 
angiotensin-II-induced hypertension model [124–126]. 

Myocardial infarction (MI) happens when blood flow to a part of the 
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heart is inhibited or interrupted, resulting in injury to the cardiac muscle 
[127]. A decreased percentage of circulating Tregs has been associated 
with a higher risk of heart failure hospitalization, inversely correlated to 
IL-6 levels [127]. Transfusion of Tregs improved infarct size and left 
ventricular dilation in a mouse model of myocardial infarction [128]. 
Inflammatory myeloid cells such as neutrophils, monocytes, and T cells 
increased in the infracted myocardium in this model [128]. It was found 
that Tregs may affect myeloid cell infiltration by modulating the 
expression of chemokines, which is involved in homing of inflammatory 
cells [129]. TNF-α and IFN-γ secretion by infiltrated cells has been 
indicated to induce M1 macrophage polarization [130,131]. M1 
macrophage potentially has adverse effects on inflamed myocardium by 
releasing pro-inflammatory cytokines (IL-1, IL-6, IL-12, and TNF-α), 
chemokines (MCP-1, CXCL1-3, CXCL5, and CXCL8-10), high levels of 
inducible nitric oxide synthase (iNOS), and reactive oxygen species 
(ROS) which all attribute to enhance the inflammatory responses in 
inflamed myocardium [130,131]. Interestingly, Tregs improved M2-like 
monocyte differentiation post-MI by producing IL-10, TGFβ, and IL-13 
in-vivo and in-vitro [132]. As a result, cardiac healing after MI was 
improved [133,134]. Activated M2-like macrophages released anti- 
inflammatory cytokines such as IL-10, IL-13, and TGF-β that are essen-
tial in wound healing, tissue remodeling, and angiogenesis [135,136]. 
Monocytic cells released osteopontin in response to TGF-β and IL-10 
[132]. In the healing myocardium, osteopontin significantly impacts 
collagen production and matrix assembly [137]. 

7. The potential of Treg therapy in reducing cardiovascular 
complications in COVID19 patients 

7.1. The probable role of Tregs in alleviating cardiovascular complications 
in COVID-19 

At a glance at previous sections, however, a variety of immune re-
sponses have been identified in COVID-19 infection [138], the immu-
nological alternations primarily trending to an anti-inflammatory state 
(Th2 and Tregs) neutralized COVID-19 inflammatory reactions (cyto-
kine storm) [134]. Current studies showed that the frequency of pe-
ripheral Tregs fundamentally diminished in patients with severe COVID- 
19 infection [61,72,92]. Tregs impairment can lead to cytokine storm 
since Tregs regulate inflammatory responses [61,72,92]. Cardiovascular 
complications in COVID19 patients are caused by a hyper-inflammation 
state in the cytokine storm, which causes elevated myocardial oxygen 
consumption, endothelial dysfunction, and suppressed cardiac activity 
[140,141]. Additionally, the autopsy revealed increased mononuclear 
cell infiltration through the myocardium in COVID-19 patients with 
cardiovascular complications, indicating the increased inflammatory 
responses in the heart tissue [62]. 

Here, we propose that Tregs may decrease the severity of cardio-
vascular complications in COVID-19 patients. Tregs, control immune 
responses especially inflammatory responses of Th17 and Th1 cells 
[142,143]. This could be due to the interaction of surface markers of 
Tregs including, PD-L1, CD25, and CTLA-4, with the ligands on the 
target cells or/and the secretion of TGF-β and IL-10 (as the tolerogenic 
cytokines) that stimulate apoptosis and inhibit the cytotoxicity of Th1 
and Th17 cells [144–146] (Fig. 2). As noted, Th1 and Th17 cells could 
exacerbate inflammatory conditions in cardiovascular diseases through 
secreting inflammatory cytokines, including IFN-γ, IL-17A, and IL-6, 
which may play a role in cytokine storm and the pathogenesis of se-
vere COVID-19. Furthermore, these cytokines regulated the synthesis 
and destruction of vasoconstrictors and vasodilators, leading to 
increased blood pressure [123]. Therefore, Tregs may control inflam-
matory reactions and blood pressure, reducing the severity of cardio-
vascular complications associated with COVID-19 infection. 

In another aspect, Tregs are critical in controlling endothelium- 
dependent relaxation in coronary arterioles and arterial blood pres-
sure [100]. Endothelial cells regulate vascular tone and aortic stiffness 

(one reason for high blood pressure) by releasing relaxing factors like 
prostacyclin and nitric oxide [131,147]. Of note, SARS-CoV-2 can infect 
vascular endothelial cells [148,149]. Emerging evidence indicates that 
endothelial dysfunction and arterial hypertension are the critical char-
acteristics of COVID-19 infection [150–152]. This includes the 
involvement of vascular endothelium in leukocyte attraction, which 
leads to cytokine secretion and tissue damage, both of which are key 
elements in ARDS, and cardiovascular complications [150–152]. 

It was discovered that transferring Tregs into hypertensive mice 
lowered arterial blood pressure and boosted endothelium-dependent 
relaxation in coronary arterioles by minimizing inflammatory cyto-
kines and macrophage infiltration [151,152]. Mechanistically, it may 
result from releasing IL-10, TGF-β, and IL-35 in a paracrine-dependent 
manner [153]. In addition, these cytokines may reduce oxidative 
stress by inactivating NOX, which controls endothelium-dependent 
relaxation [152]. As a result, it is reasonable to hypothesize that Tregs 
could reduce the severity of COVID-19 infection by increasing endo-
thelial function and lowering high blood pressure, both of which are 
induced by COVID-19 infection. 

Tregs have been found to reduce viral load, limit antiviral immune 
responses, and prevent myocarditis by regulating inflammatory re-
sponses [103,111]. Tregs also have been shown to modulate Th1 and 
Th17 cells by releasing IL-10, suggesting that Tregs may be able to 
prevent myocarditis in COVID-19 patients [118–120]. Mechanistically, 
Tregs suppressed p38 MAP kinase activation and increased Akt activa-
tion (Fig. 2) by secreting TGF-β [112,113]. As a result, it's not unex-
pected that TGF-β is involved in neutralizing adverse immunological 
responses; Akt activation, p38 inhibition, and immune control by Tregs 
would all be anticipated. This likely resulted in a reduced viral load and 
immune infiltration in the case of COVID-19 infection. 

In COVID-19 patients, myocardial infarction has been associated 
with heart failure [154]. Tregs may enhance wound healing in COVID- 
19 patients with myocardial infarction by influencing macrophage dif-
ferentiation. Tregs may promote M2-like monocyte differentiation after 
myocardial infraction by secreting TGF-β, IL-13, and IL-10 in fractioned 
myocardium in vivo and in vitro [132–134]. TGF- also promoted collagen 
deposition by myofibroblasts and accelerated the formation of scar tis-
sue [155]. In addition, TGF-β, and IL-10, as previously discussed, can 
cause monocytes and macrophages to produce osteopontin [132]. 

Osteopontin is a glycoprotein with various activities, including cell 
adhesion and migration, and it contributes to matrix assembly and 
wound healing following myocardial infarction [137,142]. Therefore, 
it's intriguing to suggest that Tregs may have a role in accelerating 
extracellular matrix deposition and cardiac healing in patients with se-
vere COVID-19 by increasing collagen and osteopontin levels. 

7.2. Therapeutic opportunities for Tregs in cardiovascular complications 
associated with severe COVID-19 

Tregs, as noted previously, may reduce the severity of cardiovascular 
complications in COVID-19 patients. Therapeutic interventions for 
enhancing tolerance based on the adoptive transfer of Tregs are an 
effective strategy to treat Treg-mediated diseases, including autoim-
munity, spontaneous abortion and, tissue transplantation [156,157]. 
This includes isolating in vivo differentiated Tregs, expanding Tregs ex 
vivo, or generating iTreg cells in vitro and subsequent transfer into the 
body [156,157]. This strategy could be used to treat cardiovascular 
complications caused by severe COVID-19 infection. To utilize Treg 
immunotherapy, meticulously designed clinical trials and precise Tregs 
expansion planning need to be employed, using the newest scientific 
technologies in Treg biology in COVID-19 treatment. In addition, 
probable adverse effects of artificially reinforcing Tregs, including 
diminished immune surveillance against tumors, need to be considered. 
Another issue that needs attention is the appropriate dose and subsets of 
Tregs [157]. The critical challenges for utilizing Treg therapy in treating 
cardiovascular complications in severe COVID-19 are the diagnosis of 
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Treg cell deficiency and determining the appropriate time of adoptive 
transfer of Tregs. To our knowledge, the investigation of Treg cell 
deficiency in patients with severe COVID-19 was not the primary 
endpoint of any of the studies. The establishment of a standardized 
concept of minimum necessary Treg markers will be a good step. 

8. Concluding remarks and future directions 

Tregs are the key regulators of immune responses. Multiple pathways 
for controlling immune reactions have been proposed, emphasizing the 
anti-inflammatory properties of Tregs. Uncontrolled inflammation has 
been demonstrated in the pathogenesis of COVID-19, which may be 
related to a reduction in the frequency of Tregs and functions in severe 
COVID-19 infection. As a result, COVID-19 patients suffer from severe 
lung injury and cardiovascular complications, the leading causes of 
morbidity and mortality. 

Tregs cell therapy is widely used to treat various autoimmune and 
inflammatory diseases in animal models, and some clinical trials are 
going on. Rigorously designed clinical trials and detailed Tregs 
manufacturing planning should be considered for evaluation in clinical 
trials to evaluate their effectiveness in improving clinical outcomes and 
reducing cardiovascular compilations of patients with severe COVID-19. 
In this light, we propose that the adoptive transfer of autologous Tregs 
may be one option for treating patients with severe COVID-19 with 
cardiovascular compilations. However, the dosage of Tregs and com-
plementary therapies for SARS-CoV-2 infection must be approached. 
Furthermore, the probable adverse effects of artificially reinforcing 
Tregs, including diminished immune surveillance against tumors, need 
to be taken into account. As we proposed in previous research, adoptive 
transfer of Tregs could be an important clinical approach for disorders 
with inflammatory roots, such as spontaneous abortion. According to 
the current evidence, we suggest that controlling inflammatory re-
sponses and improving endothelial and atrial function, lowering high 
blood pressure, lowering the viral load and limiting adverse antiviral 
immune responses, as well as improving cardiac healing are the possible 
beneficial effects of adoptive transfer of Tregs in alleviating cardiovas-
cular complications including, myocarditis, CAD, hypertension, 
myocardial infarction and cardiac failure in COVID-19 patients. Ac-
cording to the new findings, we also propose for adoptive transfer of 
Tregs, expansion of autologous Tregs in the presence of vitamin C + RA 
established a population that was more stable when exposed to an in-
flammatory, suggesting a possible strategy for reducing Treg plasticity in 
inflammatory conditions like in COVID-19 infection. 

Mechanisms of actions of transferred Tregs may be mediated at the 
molecular and cellular levels. Tregs regulate the function of pro- 
inflammatory cells such as Th17 and Th1 cells and mononuclear cell 
infiltration through molecular interactions (PD-L1, CD25, and CTLA-4 
with ligands on target cells), and the secretion of TGF-β and IL-10 (as 
the tolerogenic cytokines). Adoptive transfer of Tregs may enhance 
cardiac wound healing via activating M2-like, reducing p38 MAP kinase, 
and increasing Akt activation. Additionally, by enhancing collagen 
deposition and inducing osteopontin release from monocytes and mac-
rophages, IL-10 and TGF-β may accelerate extracellular matrix deposi-
tion and cardiac healing. 

Nutrients with immune-modulatory properties that boost Tregs dif-
ferentiation, proliferation, and functions like vitamin D, vitamin A, 
niacin and, short-chain fatty could be the natural solution in this sce-
nario. As we indicated, VitD3 could enhance the frequency and functions 
of Tregs (FOXP3 and GITR) [143,158–160]. Statin drugs, which are 

known to have immunomodulatory activities and induce Tregs 
[161,162], have also been shown to be associated with reduced COVID- 
19 outcomes including mortality [163–165]. Furthermore, in future 
studies, the role of antiviral drugs such as valproic acid, which has been 
shown to have beneficial effects on Tregs, can be investigated in 
reducing cardiovascular risks in COVID-19. 

In conclusion, the physiological advantages of Tregs and Treg 
adoptive transfer are exciting research and clinical fields to investigate 
the cellular, molecular, and immunological mechanisms that contribute 
to the treatment of cardiovascular complications in severe COVID-19. 
Therefore, potential clinical trials that could pave the way in reducing 
cardiovascular complications in patients with severe COVID-19 are 
recommended. 
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