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Abstract: State-of-the-art of flow-through catalytic reactors based on metal nanoparticles immobilized
within the pores of nano-, micro- and macrosized polymeric gels and in the surface or hollow
of polymeric membranes is discussed in this mini-review. The unique advantages of continuous
flow-through nanocatalysis over the traditional batch-type analog are high activity, selectivity,
productivity, recyclability, continuous operation, and purity of reaction products etc. The methods
of fabrication of polymeric carriers and immobilization technique for metal nanoparticles on the
surface of porous or hollow structures are considered. Several catalytic model reactions comprising
of hydrolysis, decomposition, hydrogenation, oxidation, Suzuki coupling and enzymatic reactions
in the flow system are exemplified. Realization of “on-off” switching mechanism for regulation of
the rate of catalytic process through controlling the mass transfers of reactants in liquid media with
the help of stimuli-responsive polymers is demonstrated. Comparative analysis of the efficiency of
different flow-through catalytic reactors for various reactions is also surveyed.

Keywords: flow-through catalytic reactor; nano-, micro- and macrosized porous polymeric gels;
polymeric membranes; metal nanoparticles; catalytic reactions

1. Introduction

Catalysis by functional polymers themselves [1], polymer-metal complexes [2], polymer-
immobilized clasters and metal nanoparticles [3,4] as well as polymer-protected and gel-immobilized
metal nanoparticles [5–7] is intensively developed subject at the interface between such disciplines
as macromolecular chemistry, catalysis, and nanotechnology [8,9]. However the polymer-based
flow-through catalytic systems were intensively developed only in the past decade. The flow-through
catalytic reactor is defined as a catalytic system enabling continuously passing the reactants into one
end and obtaining the products from the other end [10,11]. There are several types of flow-through
catalytic reactors derived from nano-, micro- and macroporous inorganic and polymeric materials, in
particular hydrogels and cryogels [12], thin membranes and layer-by-layer (LbL) films [13], hollow
fibers [14] or tubular construction [15]. An artificial catalytic flow reactor constructed from the porous
inorganic and polymeric materials containing metal nanoparticles can mimic the function of a living
system where the chemical synthesis proceeds through capillaries and cells [16]. In our mind, the
concept of “green chemistry” in the context of catalytic chemistry means reaction behavior in mild
conditions, e.g. preferentially in aqueous solution, at atmospheric pressure and room temperature
including the easy separation of products from catalysts. These requirements can successfully be
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realized in case of flow-through catalytic reactors made of porous polymeric materials within which
metal nanoparticles or enzymes are immobilized. From practical point of view the flow-through
catalytic reactors based on porous gel- and membrane-immobilized metal nanoparticles provide a
new platform for production of fine chemicals, industrial products and treatment of wastewater from
organic pollutants.

2. Flow-Through Catalytic Reactors Fabricated from Porous Hydrogels and Metal Nanoparticles

Monolithic porous hydrogels (MPGs) with interconnected capillaries were prepared by
copolymerization of N-isopropylacrylamide (NIPAm) and N-(3-dimethylaminopropyl)methacrylamide
(DMAPM) in the presence of N,N-methylenebisacrylamide (MBAAm) as a crosslinker and loaded
with Pd(0) nanoparticles (PdNPs) [16]. Three types of PdNPs/MPGs abbreviated as PdNPs/MPG-1,
PdNPs/MPG-2 and PdNPs/MPG-3 at different crosslinking degrees 5, 10 and 30 mol.% MBAA were
tested as flow reactors for Suzuki coupling reaction as a model system (Figure 1).
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Figure 1. Immobilization of PdNPs into the gel pores of MPGs. (Reprinted from [16]).

The advantages of PdNPs/MPGs were compared with PdNPs-immobilized porous glass membrane,
silica and carbon particles. The influence of the gel structure on molecular transport of substrates
was also studied. The pore sizes of PdNPs/MPGs varied from several hundred nanometers to several
micrometers while the average size of immobilized PdNPs was equal to 2.0–2.4 nm for all PdNPs/MPGs
samples. The temperature dependent volume-phase transition of MPGs caused by NIPAAm was
suppressed by increasing the MBAA content. The turnover numbers (TONs) of PdNPs-loaded supports
at constant flow rate (at t = 0.5 h) and turnover frequencies (TOFs) (at t = 0.1 h) were estimated along
with permeation of the substrate during 30 days together with Pd leaching (Table 1).

Table 1. Comparison of TONs and TOFs between PdNPs/MPGs, PdNPs/porous glass membrane,
PdNPs/silica particles and PdNPs/C and Pd leaching.

Nanocatalyst PdNPs/MPG-1 PdNPs/MPG-2 PdNPs/MPG-3 PdNPs/Porous
Glass Membrane

PdNPs/Silica
Particles PdNPs/C

TON 2631 2290 1333 65 144 26
TOF, h−1 (t = 0.1 h) 27.4 16.1 7.8 - - -

Pd leaching, % 0 0 0 5.0 2.9 1.6

The kinetic studies of Suzuki reaction are shown in Figure 2. It is seen that the conversion of
Suzuki coupling reaction increases in the order PdNPs/MPG-1 > PdNPs/MPG-2 > PdNPs/MPG-3. In
spite of the fact that the surface areas of capillaries in PdNPs/MPGs increase with increasing MBAAm
content, the molecular transport of reagents is not retarded by surface capillaries. Thus PdNPs/MPGs
flow reactor is a new strategy for chemical synthesis and has a significant impact to expand our
fundamental understanding of catalytic reactions.
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Figure 2. Conversion of Suzuki coupling reaction (a) in the flow reactor PdNPs/MPGs (b). (Reprinted 
from [16]). 
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terpolymeric nanogel particles composed of NIPAm, N-3-dimethylaminopropylmethacrylamide 
(DMAPM) and N-(3-aminopropyl)methacrylamide hydrochloride (APM) crosslinked by MBAAm 
[17]. Nanogel particles containing PdNPs were deposited to a filter paper consisting of activated by 
amine groups SiO2 and used as a combination of 4 sheets membrane reactor for the Suzuki coupling 
reaction between phenylboronic acid and 4-iodobenzoic acid at 60 °C. The feed solution was passed 
through the membrane reactor at a flow rate of 1.0 mL⋅h−1 (t = 2.2 h) until the conversion degree of 
final product – 4-phenylbenzoic acid reached a steady state. The rate constants kobs in the batch and 
continuous-flow systems were equal to 1.6 and 0.46 h-1 respectively. As it is seen from Figure 3 the 
relative activity of the membrane-loaded PdNPs catalyst in the continuios-flow system is much 
higher than in the batch system. Moreover the long-term stability of PdNPs-loaded membrane reactor 
TON reached up to 1200 during 6 days without considerable leaching of PdNPs (less than 1%) and 
maintaining the fibrous structure of the used membrane. However at initial time period the 
conversion time into 4-phenylbenzoic acid in batch system is proved higher than continuous-flow 
membrane catalyst. This is attributed to lower density of PdNPs in nanogel-based membrane reactor. 
But after 8–10 h, the conversion percentage of 4-phenylbenzoic acid becomes flattened for both 
system and is approximated to 100%.  
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Figure 2. Conversion of Suzuki coupling reaction (a) in the flow reactor PdNPs/MPGs (b). (Reprinted
from [16]).

Continuous-flow Suzuki coupling reaction was carried out with the help of PdNPs-loaded
terpolymeric nanogel particles composed of NIPAm, N-3-dimethylaminopropylmethacrylamide
(DMAPM) and N-(3-aminopropyl)methacrylamide hydrochloride (APM) crosslinked by MBAAm [17].
Nanogel particles containing PdNPs were deposited to a filter paper consisting of activated by
amine groups SiO2 and used as a combination of 4 sheets membrane reactor for the Suzuki coupling
reaction between phenylboronic acid and 4-iodobenzoic acid at 60 ◦C. The feed solution was passed
through the membrane reactor at a flow rate of 1.0 mL·h−1 (t = 2.2 h) until the conversion degree
of final product – 4-phenylbenzoic acid reached a steady state. The rate constants kobs in the batch
and continuous-flow systems were equal to 1.6 and 0.46 h−1 respectively. As it is seen from Figure 3
the relative activity of the membrane-loaded PdNPs catalyst in the continuios-flow system is much
higher than in the batch system. Moreover the long-term stability of PdNPs-loaded membrane reactor
TON reached up to 1200 during 6 days without considerable leaching of PdNPs (less than 1%) and
maintaining the fibrous structure of the used membrane. However at initial time period the conversion
time into 4-phenylbenzoic acid in batch system is proved higher than continuous-flow membrane
catalyst. This is attributed to lower density of PdNPs in nanogel-based membrane reactor. But after
8–10 h, the conversion percentage of 4-phenylbenzoic acid becomes flattened for both system and is
approximated to 100%.
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Figure 3. Storage stability of PdNPs-loaded membrane in continuous-flow (•) and batch (o) system for
Suzuki coupling reaction. (Reprinted from Ref.17).

Remarkable experiments were carried out by Gancheva and Virgilio [18,19] on the synthesis
and characterization of thermo-responsive macroporous PNIPAm hydrogel monoliths with precisely
controlled pore size, surface area, pore volume, within which PdNPs, gold (AuNPs) and silver (AgNPs)
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nanoparticles were embedded to catalyze the reduction of 4-nitrophenol (4-NP) to 4-aminophenol
(4-AP) in flow-through reactor conditions. Distribution, size and morphology of AgNPs and AuNPs in
the pores of PNIPAm show that the nanoparticles are mostly spherical and well-dispersed with an
average diameter of 1.6 ± 0.5 nm (AuNPs) and 5.9 ± 2.4 nm (AgNPs) (Figure 4).
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histogram of AuNPs (c) and AgNPs (f) (calculated by measuring ≈ 200 AuNPs and AgNPs). (Reprinted
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The macroporous hydrogel-metal nanoparticles were tested for hydrogenation of 4-NP as a
flow-through catalytic reactors passing the 4-NP solution through the monolith at a flow rate of 20, 80,
120, 200 and 250 mL·h−1. Depending on the flow rate the conversion of 4-NP varied from 7 to 98%.
The following advantages of macroporous monolith hydrogels as continuous-mode microreactors are
outlined: (1) Easy preparation technique, (2) Regulation of microstructure and porosity; (3) Excellent
permeability with respect to reactants and products; (4) High stability of metal nanoparticles. The
main disadvantage is a weak mechanical characteristic of macroporous monolith hydrogels that
may be overcome by forming interpenetrating gel networks or by modifying them with porous
inorganic materials.

The use of thermo-responsive hydrogels in whole and poly(N-isopropylacrylamide) (PNIPAm)
in particular, in catalytic processes is well known [20,21]. Poly-N-vinylpyrrolidone-protected
palladium nanoparticles (PVP-PdNPs) immobilized within the thermo-responsive PNIPAm hydrogel
demonstrated “on-off” mechanism in the course of 2-propen-1-ol hydrogenation to propanol [21,22].
Due to porous structure and swelling-deswelling behavior of PNIPAM hydrogel at temperature interval
25–45 ◦C the outflow or inflow of PVP-PdNPs from or to hydrogel matrix takes place (Figure 5).

Periodic opening and closing of PNIPAM hydrogel pores act as a “nanogate” in flow-through
catalytic reactor and leads to periodic increase or decrease of the pore size (dt/d0) and hydrogenation
rate (W) of 2-propen-1-ol (Figure 6).
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Figure 6. Temperature dependent cyclic changes in size (a) and the rate of hydrogenation of
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3. Flow-Through Catalytic Reactors Based on Macroporous Cryogels and Metal Nanoparticles

As distinct from hydrogels, cryogels synthesized in cryogenic conditions can consist of
interconnected macroporous matrices with the pore size from ~ 0.1 to 10 µm and supermacroporous
matrices with the pore size in the range from several tens to several hundreds of micrometers [23–25].
Due to high surface/volume ratio and easy convection of liquids inside cryogel matrices, both
macroporous and supermacroporous cryogels are proved to be the most favorable materials to design
flow-through catalytic reactors [7,26,27] (Figure 7).
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Figure 7. Fabrication of macroporous amphoteric cryogel based on N,N-dimethylaminoethyl
metacrylate and methacrylic acid (DMAEM-co-MAA) with immobilized AuNPs (a) and schematic
representation of monolith flow-through catalytic reactor used for hydrogenation of 4-NP (b) and p-NBA
(c) over DMAEM-co-MAA/AuNPs catalysts. The violet colored sample corresponds to macroporous
cryogel DMAEM-co-MAA containing AuNPs (d) while the violet dots are schematic image of AuNPs
(e) in cryogel pores (Reprinted from [7,26]).
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Macroporous cryogels containing metal nanoparticles in pores can be used for catalytic reactions
as batch-type and continuous-flow-type reactors. In the first case, a certain amount of cryogel catalyst
is mixed with the substrate and reducing agent under stirring. In the latter case, the monolithic
macroporous cryogel sample is replaced inside a glass tube and the reaction mixture is fed as forced
feed or flows under gravity. Significant advantages of macroporous flow-through catalytic reactors over
the batch-type mode are the simplicity, process automation, convenient monitoring of liquid stream
(or speed control), easy regulation of the feed concentration and reaction temperature, fast analysis of
the product, permanent loading of metal nanoparticles within cryogel pores, stability, high productivity,
green reaction profile and safety [7,10,18–22,26].

The idea of the use of macroporous and supermacroporous cryogels as flow-through catalytic
reactors was for the first time suggested in [12] and experimentally realized in [7,26–30] for
hydrogenation of nitroaromatic compounds (Figure 7). Later on Sahiner et al. [31,32] using the
same principles and glass column reactor repeated reduction of 4-nitrophenol (4-NP) to corresponding
4-aminophenol (4-AP) with the help of superporous cryogels containing various metal nanoparticles
and were able to lower the activation energy (Ea) of catalytic reduction of 4-NP considerably in
comparison with similar studies reported in the literature.

Equimolar polyampholyte cryogel P(DMAEM-co-MAA) synthesized from acidic and basic
monomers, such as N,N-dimethylaminoethylmethacrylate (DMAEM) and methacrylic acid (MAA)
effectively reduces rhodium, palladium, gold and silver ions under heating conditions and forms
fine well-dispersed metal nanoparticles without the use of any other reducing agents [30]. Moreover
micron-sized cryogel matrix provides fast swelling during 0.5–2 min and high water flux [26].
Nonionic [33,34], anionic [35,36], and cationic [37] cryogel-immobilized metal nanoparticles were
successfully used for decomposition of NaBH4 and hydrogenation of nitrogroup containing substrates
in batch conditions.

Porous P(DMAEM-co-MAA) cryogel with immobilized AuNPs was used as a flow-through
catalytic reactor in reduction of 4-NP and oxidation of D,L-dithiotreitol (DTT) [38–40]. The final
hydrogenation product of 4-NP is 4-AP, while the final oxidation product of DTT is disulfide (DS).
The kinetic parameters, turnover number (TON), turnover frequency (TOF) and activation energy of
hydrogenation of 4-NP and oxidation of DTT were determined in these experiments (Table 2).

Table 2. Kinetic parameters of hydrogenation of nitroaromatic compounds and oxidation of DTT over
macroporous flow-through catalytic reactors.

Macroporous
Flow-Through Catalyst Substrate Ea, kJ·mol−1 TON TOF, h−1 Run Ref.

DMAEM-MAA/AuNPs
4-NP 7.52 38.17 21.56 50 [38,40]
DTT - 985.2 412.2 10 [40]

p-NBA 13.8 - - 5 [41]
DMAEM-MAA/PdNPs p-NBA 38.83 - - 10 [41]

P4VP/CoNPs p-NBA 18.9 ± 1.3 131.4 6 [31]
PVI/CoNPs 25.4 ± 1.8 82.2 8

The catalytic reduction of p-nitrobenzoic acid (p-NBA) was performed by palladium (PdNPs) and
gold nanoparticles (AuNPs) immobilized within P(DMAEM-co-MAA) cryogel matrix [41] (Figure 7).
It should be noted that in the absence of immobilized metal nanoparticles the mixture of p-NBA
and NaBH4 fluxed through the P(DMAEM-co-MAA) cryogel does not produce p-aminobenzoic acid
(p-ABA) [42].

Hydrogenation of p-NBA yields at least 3 main products: 1) p-ABA, 2) p,p’-azodibenzoate and 3)
sodium 4-(4-aminobenzamido)benzoate. In case of P(DMAEM-co-MAA)/PdNPs the formation of only
p-ABA with conversion degree 40% at [p-NBA]:[NaBH4] = 1:50 mol/mol and 100% at [p-NBA]:[NaBH4]
= 1:200 mol/mol is observed. According to the activation energy, TONs and TOFs values established in
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these experiments the efficiency of macroporous flow-through reactor (Table 2) is greater compared to
the macroporous batch-type reactor (Table 3).

Table 3. Kinetic parameters of NaBH4 hydrolysis and hydrogenation of aromatic nitrocompounds over
macroporous batch-type catalytic reactors.

Macroporous Batch-Type
Catalyst Substrate Ea, kJ·mol−1 TON Run Ref.

P(APTMACl)/[CuCl4]−2

NaBH4

61.9 - -
[43]P(APTMACl)/[CoCl4]−2 52.2 - 10

P(APTMACl)/[NiCl4]−2 30.9 - -
P(SBMA) microgel/NiNPs 4-NP 35.64 - 3 [44]

P4VP/NiNPs NaBH4
- 0.7 ± 0.2 - [37]

P4VP/CoNPs - 2.1 ± 0.4 -

Last years polymeric macroporous cryogel- or polymeric membrane-based enzymatic reactors
(or bioreactors) have received much attention due to the following advantages: (1) the simultaneous use
of two or more enzymes, (2) the possibility to carry out reactions in immiscible solvents (biphasic system),
(3) the conversion of high molecular weight substrates, (4) the operation in the condition of convection
and not diffusion, and (5) the simultaneous formation, separation and concentration of the product [45].
The activity of several enzymes immobilized within microporous of cryogels as flow-through catalytic
reactor is presented below.

Amyloglucosidase immobilized within poly(methyl methacrylate-glycidyl methacrylate)
P(MMA-co-GMA) cryogels was used as a flow-through catalytic reactor for continuous glucose syrup
production from starch [46]. Enzyme was attached to P(MMA-co-GMA) cryogels through covalent
bonding with participation of epoxy groups of GMA and primary amine groups of amyloglucosidase.

To perform enzymatic reaction 1 wt.% starch solution was passed through the amyloglucosidase-
immobilized cryogel column using a peristaltic pump with the flow rate of 1 mL·min−1. The
condensation reaction between epoxy groups of P(MMA-co-GMA) cryogels and primary amino groups
of amyloglucosidase leads to formation of covalent linkages. Immobilized amount of amyloglucosidase
within cryogel matrix was equal to 146 mg·g−1 and showed 68% activity after 20th reuse. Optimal pH
activity for both free and immobilized enzyme was found to be 5.0. Optimal temperature activity for
free enzyme corresponds to 55 ◦C and it shifts to 65 ◦C in case of immobilized enzyme. The maximum
reaction velocity Vmax and Michaelis-Menten constant Km of free and bound amyloglucosidase are
summarized in Table 4.

Table 4. Kinetic parameters of free and immobilized amyloglucosidase.

State of Enzyme Km, mg·mL−1 Vmax, µmol·min−1

Free 2.743 ± 0.075 2.020 ± 0.059
Immobilized 0.865 ± 0.067 0.496 ± 0.054

The decreased values of Km and Vmax of immobilized enzyme in comparison with free precursor
may be accounted for restricted accessibility of some active sites of enzyme to bulky substrate. Due to
interconnected and large porous structure and low pressure drop, such cryogel matrices can be used
for continuous syrup production in industrial scale as demonstrated by Milosavic and coworkers [47].
A packed bed reactor containing immobilized enzyme produced continuously 1300 kg of glucose
per 1 L of reactor volume during 4 weeks.

Peroxidase immobilized poly(acrylamide) cryogels were prepared and used for removal of phenol,
bisphenol A, guaiacol, pyrogallol, and catechol from aqueous solution [48]. Maximum peroxidase
loading onto poly(acrylamide) cryogel was found to be 127.3 mg·g−1. Kinetic parameters of free and
immobilized peroxidases were investigated along with the stability tests. Removal capacities of phenolic



Polymers 2020, 12, 572 8 of 19

compounds were equal to 96.3% (phenol), 75.8% (bisphenol A), 79.7% (guaiacol), 64.9% (pyrogallol)
and 71.0% (catechol). Thus, one can conclude that cryogel immobilized enzymes are effective system
for industrial production of glucose and purification of wastewaters from the phenolic contaminants.

4. Flow-Through Catalytic Reactors Designed by Modification of the Surface and Hollow of
Polymeric Membranes with Metal Nanoparticles

Comprehensive information on metal nanoparticles or nanosized metal oxides embedded in a
matrix of polymeric membranes has been reviewed in [49]. In particular, various types of polymeric
membranes impregnated with metal nanoparticles or metal oxides (Ag, Al, Fe, Mg, Si, Ti, Zr) that
impact on the mechanical strength, thermal stability, permeability, selectivity, conductivity, and antiviral
and antibacterial activity of membrane materials are outlined. Different categories of the membranes
with their respective description are given. Application aspects of surveyed polymeric membranes
incorporated with metal or metal oxides nanoparticles cover mostly liquid or gas separation, fuel cells,
production of drinking water etc. This remarkable review may serve as prerequisite for fabrication of
various types of effective catalysts based on metal nanoparticles-immobilized polymeric membranes
and open a perspective insight into new generation of polymeric membrane catalytic system.

Zhou et al. [50] fabricated nanoporous membranes supporting the block copolymers of
poly(2-dimethylaminoethyl methacrylate) (PDMAEM) and polystyrene (PS) (PDMAEM-b-PS) with
immobilized gold nanoparticles (AuNPs) on the surface of macroporous poly(vinylidene fluoride)
(PVDF) membranes (Figure 8).
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Figure 8. Selective swelling of PDMAEM-b-PS membrane (a), immobilization of gold nanoparticles
on the surface of DMAEM-b-PS membrane (b), protonation of PDMAEM and reduction of
[AuCl4]− counterions to AuNPs (c). (Reproduced by permission of the Royal Society of Chemistry
from [50]–Reproduced by permission of The Royal Society of Chemistry).

Selective swelling of PDMAEM in hot ethanol followed by rapid evaporation of the solvent
generated the interconnected nanopores with tunable pore size and geometry. Soaking of PDMAEM in
HAuCl4 solution protonates tertiary amino groups replaced on the surface and pore walls of membrane
while the [AuCl4]− become as counterions. Further reduction of PDMAEM-b-PS/[AuCl4]− by sodium
boronhydride produces AuNPs-immobilized PDMAEM-b-PS/AuNPs membrane. Depending on
HAuCl4 concentration the color of the membranes is varied from pink to dark purple due to the surface
plasmon resonance of AuNPs (Figure 9).

The flow-through catalytic reactor made of PDMAEM-b-PS/AuNPs membranes was tested
for hydrogenation of 4-nitrophenol (4-NP) and degradation of Rhodamine B and methyl orange
(MO). Conversion degree of 4-NP to 4-aminophenol (4-AP) reached up to 100% exhibiting excellent
recyclability. The catalytic degradation of Rhodamine B and MO reached up to 91% and 88% respectively.
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Silver nanoparticles (AgNPs) deposited on the surface of microporous polypropylene membranes
(MPPMs) exhibit high catalytic activity in reduction of methylene blue (MB) in flow-through
conditions [51] (Figure 10).
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In the flow-through membrane reactor, AgNPs-immobilized MPPM shows long-live catalytic
activity, stability, recoverability and reusability. The MB conversion was equal to 60% after 2.5–4 h.
Regeneration and activation of AgNPs-immobilized MPPM was performed by washing with ethanol.
These examples clearly show that the membrane-based flow-through catalytic reactors are effective
tool for decontamination of organic dyes from the wastewater.

Fabrication of polyethersulfone (PES) ultrafiltration membranes containing AgNPs and bearing
simultaneously the function of catalyst and separation of the product is demonstrated in Figure 11 [52].
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Polyphenol tannic acid (TA) in situ blended in the PES (PES/TA) played the role of both reducing agent
of silver ions and stabilizer of AgNPs.
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(a), PES, PES/TA and PES/TA-AgNPs membranes (b), cross-section of PES/TA-AgNPs membrane (c).
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Filtration performance of PES, PES/TA and PES/TA-AgNPs membranes with pore size in the range
of 14.2–15.8 nm and porosity 93.2–94.7% were tested with respect to water flux, retention of humic
acid (HA) and bovine serum albumin (BSA) while the catalytic activity of the same membranes was
studied in the reduction of 4-NP. The pure water flux for pristine PES (255.6 L·m−2

·h−1) increased for
PES/TA up to 374.6 L·m−2

·h−1 and decreased to 239.8 L·m−2
·h−1 for PES/TA-AgNPs. The BSA and

HA rejections were in the range of 84.3–96.1% and 62.3–87.3% respectively. Thus PES/TA-AgNPs
membrane effectively removes both BSA and HA from aqueous solution.

The hydrogenation of 4-NP in the presence of PES, PES/TA and PES/TA-AgNPs membranes
were compared in static (batch reactor) and dynamic (continuous reactor) regimes. PES and PES/TA
membranes were inactive themselves while the PES/TA-AgNPs membrane exhibited high activity in
the reduction of 4-NP. It should be stressed that the rate constant of PES/TA-AgNPs in the dynamic
catalytic condition was 103 times higher than the batch regime. Finally, the reduction of 4-NP and
rejection of HA was performed in PES/TA-AgNPs membrane that acted simultaneously as flow-through
catalytic reactor and separation filter. After 7 cyclic passing of aqueous solution of 4-NP and HA
through the PES/TA-AgNPs membrane, the conversion of 4-NP reached 98%, pure water flux recovery
ratio (FR) was at 85–87% and the rejection of HA was 89% implying the simultaneous reduction of
4-NP, water flux and removal of HA (Figure 12).

Elimination of N,N-diethyl-meta-toluamide (DEET) as a model pollutant was performed with iron
oxide catalyst supported on powdered activated carbon and consequently deposited to ozone-resistant
PVDF microfiltration and ultrafiltration membranes [53]. The hollow fiber reactor possessing large
surface area/volume ratio (7000 m−1) and equipped with membrane distributor, contractor and
separator is packed into a small volume making it cost-effective and attractive for industrial application.
The PVDF membranes provided several functions: (1) adsorption and ozonization of pollutants,
(2) concentrator of pollutants in the reactor, (3) producer of clean water and (4) gas distributor to
generate fine ozone bubbles. The compact membrane reactor unit outperformed a semi-batch ozone
reactor with 60% DEET conversion and 30% total organic carbon (TOC) reduction versus 20% DEET
and 5% TOC.
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Javaid et al. [15] developed tubular reactors with inner diameter less than 0.5 mm, the inner
surface of which was uniformly coated by thin (1–2 µm) Pd, Pt and Rh layers by an electroless plating
method (Figure 13). At first the bimetallic alloy Ag-Pd was deposited on the inner wall of tubular
flow-through reactor. Then the Ag was leached out by continuous passing of 4M HNO3 leaving the
porous Pd layer.
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Hydrogenation of 4-NP with formic acid in aqueous solution was carried out in tubular rector
coated with Pd, porous Pd, bimetallic Ag-Pd and PdO at 30–40 ◦C, at fixed flow rate of 0.8 mL·min−1.
The conversion of 4-NP increases in the following order: Ag-Pd>Pd> porous Pd>PdO> porous PdO.
Rather high (>99%) conversion exhibits a porous PdO surface compared to corresponding nonporous
precursors. The oxidized and porous PdO retain the catalytic activity without leaching of Pd and loss
of efficiency after 100 h continuous operation.

Chiral calcium phenoxide (Ca(OR2)-pyridinebisoxazoline Pybox) complex was applied to
asymmetric 1,4-addition reactions of 1,3-dicarbonyl compounds (1) with nitroalkenes (2) to obtain the
γ-nitro carbonyl compounds (3) with high enantioselectivities (ee) in a continuous flow system [54]. As
a result, a series of 1,4-addition products were obtained with high yields (ca. 92.4%), enantioselectivity
(ca. 92.8% ee) and TON (228) during 8.5 days continuous flow without loss of activity.

Aerobic oxidation of benzyl alcohol in flow conditions was performed with the help of continuous
ceramic membrane reactor inner part of which was impregnated with bimetallic Au-Pd catalyst [55].
The high catalytic activity (operation time is over 670 h), conversion degree (~25%) and selectivity
to benzaldehyde (~97%) is probably due to improved oxygen mass transfer to the catalytic sites in
contrast to a previously studied [56] packed-bed reactor with an Au-Pd/TiO2 catalyst. Further the
Au-Pd/TiO2 system was used [57] for integration of kinetic models of benzyl alcohol oxidation merging
(combining) the information obtained from batch glass stirred reactor (GSR) and continuous-flow
micro-packed bed reactor (MPRB) experiments for an exact quantitative description of the products
distribution. In fact, the kinetic models identified from GSR were used for the validation of MPRB.
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The results revealed a difficulty of estimation of kinetic parameters related to the disproportionation
reaction of two molecules of benzyl alcohol limiting the selectivity to benzaldehyde.

Supporting of AgNi bimetallic nanoparticles on the surface of core-shell structure consisting of
Fe3O4 and chitosan (Fe3O4@CS) leads to formulation of recoverable and reusable catalytic system for
rapid reduction of nitroaromatic compounds to corresponding nitroamines [58] (Figure 14).
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Due to synergistic effect, bimetallic AgNi catalyst is better than monometallic Ag or Ni. This
is attributed to the changes of geometric, electronic, and morphologic behavior of AgNPs caused
by NiNPs. The values of apparent rate constants kapp for Fe3O4@CS, Fe3O4@CS/Ni, Fe3O4@CS/Ag
and Fe3O4@CS/AgNi are equal to 0.02 min−1, 0.03 min−1, 0.42 min−1 and 0.56 min−1 respectively.
For the most substrates the conversion degree was equal to 100% excepting for nitroaniline (65%),
o-chloronitrobenzene (70%), nitrobenzene (77%) and 2,4-dinitrophenol (90%). Thus, AgNi bimetallic
nanoparticles deposited on core-shell structure of Fe3O4@CS representing a batch type catalyst
exhibiting high efficiency, reusability and recoverability in the reduction of nitroarene compounds.

Efficiency of membrane supported metal nanoparticles in reduction of different substrates is
summarized in Table 5.

Table 5. Catalytic activity of metal nanoparticles immobilized into different membrane surface with
respect to various substrates.

Membrane
Catalyst Substrate Conversion

Degree, %
Flow Rate,
mL·min−1*

Refs

PDMAEM-b-PS/
AuNPs/PVDF

4-NP 88–100 0.5
[49]Rhodamine B 91 0.5

Methyl orange 88 0.5
MPPM/AgNPs Methylene blue 60 [50]
PES/TA-AgNPs 4-NP 98 239.8 L·m−2

·h−1 [51]
Ceramic/ Au-Pd Benzaldehyde 25 - [54]

Fe3O4@CS/AgNi Nitroaromatic
compounds 100 0.56 [57]

*Excepting the flow rate of PES/TA-AgNPs

Layer-by-layer (LbL) deposition of metal nanoparticles within porous membranes provides a
simple protocol for preparation, easy control over the deposited number of nanoparticles, a rapid mass
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transport of reactants to catalytic centers, high conversion degree, and easy separation of products from
the feed etc. [13]. The surface of alumina membrane [59], hollow polysulfon (PS) and PES-based fiber
microfiltration membranes [60] were modified by adsorption of polyelectrolyte-metal nanoparticles via
LbL technique and afterwards used in the reduction of 4-NP with sodium boronhydride (Figure 15).
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Figure 15. Modification of hollow fiber membrane using LbL technique (a) and SEM images of pristine
PS (b) and coated (c) with a poly(styrene sulfonate)/poly(allylamine hydrochloride)/gold nanoparticles
(PSS/PAH/AuNPs) samples. (Reprinted from [60]).

The catalytic activity of PES- and PS-coated PSS/PAH/AuNPs results in 99% reduction of 4-NP
while control experiments carried out with PSS/PAH yields less than 1% conversion under similar
condition. Comparison of the efficiency of hollow fiber membranes modified by PSS/PAH/AuNPs
with respect to 4-NP reduction shows that PS-coated PSS/PAH/AuNPs exhibits better results due to
higher permeability. The morphology and catalytic activity of PES-PSS/PAH/AuNPs before and after
hydrogenation of 4-NP is compared in Figure 16. It is seen that after cyclic exploitation of hollow
membrane during 3 h the conversion of 4-NP decreases up to 60%, the initial structure of membrane
changes (probably due to fouling), the fine distributed gold nanoparticles probably aggregate and
by-products are deposited on the surface of membrane. Such phenomenon was also observed in the
case of cryogel catalyst [41]. As distinct from PES-PSS/PAH/AuNPs the PS-PSS/PAH/AuNPs holds the
activity at the level of 95–98% with minimal leaching of Au (<5 ppb) during the 4h of reaction.
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The hierarchical carbon nanotube membrane (HCNM) decorated with AuNPs was supported
on stainless steel mesh and used as flow-through catalytic reactor for hydrogenation of 4-NP [61]
(Figure 17). The AuNPs were attached to HCNM using layer-by-layer (LbL) method.
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Figure 17. TEM of pristine CNT (a), SEM of HCNM-supported AuNPs (b), TEM of AuNPs-decorated
CNT (c). (Reprinted from [61]).

In batch experiments, HCNM-supported AuNPs retained 78% of catalytic activity compared to
suspended AuNPs. In continuous flow-through conditions, HCNM-supported AuNPs showed 71%
of the maximum catalytic activity under the batch configuration. Table 6 compares the first-order
rate constants of 4-NP reduction obtained for HCNM-supported AuNPs and alumina membrane
supported AuNPs.

Table 6. Comparison of the first-order rate constants of 4-NP reduction catalyzed by suspended AuNPs
and HCNM-supported AuNPs.

Catalyst AuNPs Size, nm Rate Constant *, µm·s−1 Pore Size, nm Refs

AuNPs suspended in batch system

Alumina
membrane 12 140 ~2·102 [58]

HCNM 13.3 ± 2.4 111 ± 2 ~1·104 [60]

AuNPs supported in flow-through reactors

Alumina
membrane 12 180 ~2·102 [58]

HCNM 13.3 ± 2.4 62 ± 4 ~1·104 [60]

* The rate constants are normalized to the surface area of nanoparticles

In the flow-through reactor the rate constant of alumina membrane-supported AuNPs is 3 times
higher than HCNM-supported AuNPs in spite of similar size of AuNPs. This is probably attributed to
small pores of alumina membrane that require a shorter time for diffusion of reagents to the catalytic
sites but the small pores require a higher pressure to push the reaction mixture through small pores.
In case of batch system, the influence of the pore size on the rate constant is negligible. Thus, LbL
deposition of AuNPs is effective tool to fabricate hollow fiber catalytic membrane reactors.

A novel concept for catalyst immobilization into a glass microchannel catalytic reactor, or so
called “convolution-convergent” approach, was introduced by Yamada et al. [62]. The sense of this
invention is that a soluble polymer containing multiple ligand groups is convoluted with solution of
transition metal ions and forms polymer-metal complexes stabilized by coordination or ionic bonds
thus combining both heterogeneity and catalytic activity inside of a microchannel reactor with a
Y-junction (Figure 18).

In this way the polymer-metal catalyst composed of poly[(N-isopropylacrylamide)5-co-
(4-diphenylstyrylphosphine)] and [PdCl4(NH4)2 was prepared in ethyl acetate at 25 ◦C with a
flow rate of 25 µL·min−1 and used as polymer membrane PA-TAP-Pd. The thickness of polymeric
membrane adhered to the glassware of the microchannel was 1.3 µm, height is 40 µm, and length –
140 mm. For fabrication of palladium membrane-installed microchannel devices different polymeric
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ligands such as poly(4-vinylpyridine) (P4VP), poly(viologen) (PV) and PdCl4−2 were used. Three
types of microchannel devices made of PA-TAP-Pd, P4VP-Pd and PV-Pd (µ-devices 1-3) were tested as
catalysts for cross-coupling of aryl halides with aryl-boronic acids as exemplified in Figure 19. Totally
35 Suzuku-Miyaura reactions were studied and the corresponding coupling products quantitatively
obtained within 5 and 1 s of residence time. In the future the function of such catalytic membrane
reactor may diversely be expanded to other catalytic transformations.
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5. Conclusions

The flow-through catalytic reactors fabricated from porous gels and membranes are a new
rapidly developing research area that can revolutionize many catalytic reactions, in particular, in
pharmaceutical industry, where a high conversion and pure final product is required. The minimal
volume of catalyst, high surface to volume ratio, energy saving and “green chemistry” aspects
together with high productivity and low-cost principles are challenging target of flow-through catalytic
reactions and reactors. The porous flow-through catalytic reactors can provide cascade type successive
synthesis of target products by designing a flow set-up consisting of several flow reactors. The major
drawback of cryogel microreactors is weak mechanical properties that can be overcome by forming
interpenetrating networks or embedding clay minerals into the gel network resulting in improvement
of their physico-mechanical characteristics. A serious problem in flow-through catalytic reactors
represents the leaching out of metal nanoparticles from the 3D-network and membrane surfaces that
can cause contamination of final products with metal nanoparticles. In some cases, such drawback can
be overcome by application of hassle-free magnetic catalysts like Fe3O4-coated with polymer-protected
metal nanoparticles as demonstrated in Ref. 58. Moreover, correlation between porosity and flow
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parameters, interconnectivity of pores, surface area, pore volume that are key characteristics for
the design of highly efficient flow-through catalytic reactor is still lacking. Special interest may
represent immobilization (or imprinting) of enzymes within the three-dimensional polymers, as
monoliths, microcapsules and membranes [63]. Such approach can offer new monolith flow-through
reactors that are several orders of magnitude catalytically more efficient and can be used for a long
time in continuous process. A gentle combination of enzymes, mono- and bimetallic nanoparticles
within nano-, micro- and macrosized polymeric gels and membranes can cause synergetic effect in
flow-through catalytic reactions.
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