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Abstract 

Leukemia is a leading cause of cancer deaths in the developed countries. Great efforts have been 
undertaken in search of diagnostic biomarkers of leukemia. However, leukemia is highly complex 
and heterogeneous, involving interaction among multiple molecular components. Individual 
molecules are not necessarily sensitive diagnostic indicators. Network biomarkers are considered 
to outperform individual molecules in disease characterization. We applied an integrative 
approach that identifies active network modules as putative biomarkers for leukemia diagnosis. 
We first reconstructed the leukemia-specific PPI network using protein-protein interactions from 
the Protein Interaction Network Analysis (PINA) and protein annotations from GeneGo. The 
network was further integrated with gene expression profiles to identify active modules with 
leukemia relevance. Finally, the candidate network-based biomarker was evaluated for the 
diagnosing performance. A network of 97 genes and 400 interactions was identified for accurate 
diagnosis of leukemia. Functional enrichment analysis revealed that the network biomarkers were 
enriched in pathways in cancer. The network biomarkers could discriminate leukemia samples 
from the normal controls more effectively than the known biomarkers. The network biomarkers 
provide a useful tool to diagnose leukemia and also aids in further understanding the molecular 
basis of leukemia. 
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Introduction 
Leukemia is a prevalent hematologic malignancy 

and one of the most common causes of cancer deaths 
in the developed countries[1, 2]. The overall incidence 
of leukemia is 14 per 100000 people in the United 
States in 2015 and is projected to continue rising. 
Based on the origin, leukemia can be classified into 
myeloid leukemia or lymphoid leukemia, which can 
be subdivided into acute or chronic according to the 
degree of cellular differentiation[3, 4]. 

Many of the symptoms of leukemia are 
non-specific and vague, which could not be diagnosed 

by conventional blood tests and bone marrow 
examination[5, 6]. Plenty of efforts have been devoted 
to investigate the molecular alterations in 
leukemogenesis. Next generation sequencing of 
human genomes and exomes has revealed somatic 
mutations, aberrantly expressed genes, microRNAs 
and DNA methylations with putative roles in 
leukemia[7-9]. However, most of the individual 
molecules suffer from low reproducibility and high 
false-positive rates. Few of them have been translated 
to the clinic for diagnostic application. 
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It is well recognized that cancer is a complex 
disease caused not by the malfunction of single 
molecules but their collective behavior in the network 
[10-15]. Therefore, network biomarkers are 
considered to better characterize leukemia than 
individual molecules and have recently attracted 
much attention. A number of protein interaction 
sub-networks have been proposed for early diagnosis, 
prognosis and efficacy prediction of cancers[16-19]. 

In this study, we proposed a framework (Figure 
1) that integrates protein-protein interaction (PPI) 
data and microarray-based gene expression profiles to 
construct network biomarkers for accurate prediction 
of leukemia. The network biomarkers prove to be 
effective in distinguishing leukemia from normal 
samples. 

Materials and Methods 
Data collection 

We used two different types of datasets, 
protein-protein interaction data and disease 
annotation of the protein-coding genes to reconstruct 
the leukemia-specific PPI network. PPI data was 
extracted from the Protein Interaction Network 
Analysis (PINA) v2.0 platform [20]. PINA is a unified 
database of protein-protein interaction  

that collects 14454 genes and 108470 interactions 
from six manually curated public databases (listed in 
Table 1). The leukemia-associated genes were 
extracted from the commercial knowledge database 
MetacoreTM, which is developed by GeneGo.  

 

Table 1. Source databases of PINA. 

Original 
database 

Version Ref. Link 

IntAc Oct 4,2012 [21] http://www.ebi.ac.uk/intact/ 
BioGRID 3.1.93 [22] http://thebiogrid.org/ 
MINT Dec 

21,2010 
[23] http://mint.bio.uniroma2.it/mint/Welcome.do 

DIP June 
14,2010 

[24] http://dip.doe-mbi.ucla.edu/dip/Stat.cgi 

HPRD April 
13,2010 

[25] http://www.hprd.org/download 

MIPS/Mpact Oct 1,2008 [26] http://mips.helmholtz-muenchen.de/ 

 
 
The public gene expression data were 

downloaded from the Gene Expression Omnibus 
(GEO) database. All the gene expression data were 
obtained using Affymetrix Human Genome arrays. 
The samples in each GEO datasets are divided into 
three categories: Leukemia (including AML, CLL, 
T-PLL and B-CLL), others and Normal. The others 
samples are filtered out in this study since they are 
not associated with leukemia. Detailed information 
for GEO datasets is summarized in Table 2. The six 

groups of expression datasets were analyzed to get 
statistics values. Additional three sets of expression 
datasets were used for further verification (Table 3). 

 

Table 2. Leukemia-associated gene expression datasets used for 
analysis. 

Series Platform No. 
Samples 

Leukemia Others Normal Ref. 
AML CLL T-PLL B-CLL 

GSE9476 GPL96 64 26     38 [27] 
GSE6691 GPL96 56  11   32 13 [28] 
GSE5788 GPL96 14   6   8 [29] 
GSE22529 GPL96 52  41    11 [30] 
GSE26725 GPL570 17    12  5 [31] 
GSE23293 GPL570 41  7   18 16 [32] 

 

Table 3. Leukemia-associated gene expression datasets used for 
validation. 

Series Platform No. of samples CML CLL Normal Ref. 
GSE8835 GPL96 66  42 24 [33] 
GSE24739 GPL570 24 16  8 [34] 
GSE39411 GPL570 152  104 48 [35] 

 
 

Reconstruction of leukemia-specific PPI 
network 

Human leukemia-specific protein-protein 
interaction network was first downloaded from PINA 
and then refined with the 1495 leukemia-associated 
gene from GeneGo. Only the interactions formed 
between leukemia-associated genes were selected to 
form a leukemia-specific PPI network. 

Integration with gene expressing profiles 
The statistical analysis was invoked through the 

limma (Linear Models for Microarray Data) R package 
[36] and the affy(Methods for Affymetrix 
Oligonucleotide Arrays) R package in R software 
platform [37]. Student t-test was used to identify the 
significant difference level (P-value) of each 
considerable gene in each dataset. To enhance the 
accuracy, we applied the empirical Bayesian statistical 
method to moderate the standard errors and then 
utilized the method proposed by Benjamini et al. to 
adjust the multi-testing [38], and got the adjusted 
P-values simultaneously. 

To integrate the gene expression data and 
leukemia-specific PPI network, the adjusted P-value 
of each gene was mapped onto its corresponding gene 
in the leukemia-specific PPI network to obtain a 
dataset-specific weighted PPI network, with adjusted 
P-value as weight factor. 

Active module subtraction 
In general, the network integration analysis was 

performed in 3 steps. At the first step, we converted 
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the adjusted P-values to Z score through using the 
inverse normal cumulative distribution. Higher Z 
score indicates more important role in 
leukemogenesis. Given the Z score, we performed a 
greedy search to identify the modules with a locally 
maximal Z score. The candidate modules were seeded 
with a single gene and then a neighbor within a 
distanced=3 from the seed were iteratively added. If 
the neighbor added to the Z score, it was incorporated 
into the module. The search terminated when no 
addition increased the Z score over the improvement 
rate r. The parameter r was set as 0.05 to avoid over 
fitting. At last the top 10 modules with the highest 
Z-score identified from each run were merged and 
iteratively searched for 3-5 times, until the module 
reached the optimal size of 70-80 nodes. We used 
jActiveModules [39] to select active modules from the 
weighted PPI network since it is a fashionable method 
for this kind of investigation. jAM is a plug-in of 
Cytoscape which evaluated module activity with Z 
score. 

Network-based biomarkers construction 
At last, as 6 optimized modules include 290 

genes in total, which are too large and loosely 
interconnected for further analysis, we carried out the 
overlapping analysis to find out the number of 
enriched genes shared by each optimized modules. 
We overlapped the six modules and selected the 
genes shared by at least two networks to construct the 
final network-based biomarker. 

Pathway enrichment analysis 
We performed pathway enrichment analysis in 

Ingenuity Pathway Analysis (IPA) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [40]to 
provide functional insight into the identified network 
marker. The statistical significance of the enrichment 
was calculated using hypergeometric test and 
adjusted by FDR method (P-value < 0.05). 

Statistical significance assessment 
Hypergeometric test was used to test whether 

the network biomarkers are significantly enriched 
with leukemia-related genes. Known mutation genes 
related to cancers were obtained from the Catalogue 
of Somatic Mutations in Cancer (COSMIC), which is a 
cancer gene census [41]. 213 of the COSMIC genes are 
found in common with the GeneGO database. An 
empirical P-value was calculated to evaluate the 
statistical significance. P-value was obtained 
according to the following equation: 

P(X ≥ 𝑥𝑥) =  1 −�
�𝑀𝑀𝑘𝑘��

𝑁𝑁−𝑀𝑀
𝑛𝑛−𝑘𝑘 �

�𝑁𝑁𝑛𝑛�

𝑥𝑥−1

𝑘𝑘=0

 

Where, N represents the number of genes in the 
leukemia-specific PPI network; M is the number of 
known leukemia related genes in COSMIC; n denotes 
the number of genes in the final network biomarkers; 
k represents the known leukemia related genes in the 
final network biomarkers. 

Performance evaluation 
We employed the receiver-operating 

characteristic (ROC) analysis to evaluate the 
prediction performance of the network biomarkers in 
distinguishing leukemia samples from the normal 
controls. The epicalc R package (http://CRAN.R- 
project.org/package=epicalc) was used to produce 
the ROC curves. A 5-fold cross validation was 
performed on three gene expression dataset listed in 
Table 3. Normal samples were set as 0 and cancer 
samples were set as 1. The classification performance 
was represented as the area under curve (AUC). We 
also provided sensitivity, specificity and accuracy for 
the network biomarkers. 

Results and Discussion 
Sub-network involved in leukemogenesis 

The leukemia-specific PPI network was 
reconstructed by integrating PPI from PINA and 1495 
leukemia-associated genes from GeneGo. As a result, 
the leukemia-specific PPI network consists of 4136 
interactions among 978 genes. 

As is described in Methods section, gene 
expression profiles of 6 independent GEO datasets 
were overlaid to the reconstructed leukemia-specific 
PPI network and 6 correspondent dataset-specific 
sub-networks were obtained (marked orderly as 
PPI_GSE9476_raw, PPI_GSE6691_raw, PPI_GSE9476_
raw, PPI_GSE22529_raw, PPI_GSE23293_raw and 
PPI_GSE26725_raw in Figure 1). Greedy search was 
performed for 6 sub-networks respectively. After 3 
iterations for GSE5788, GSE9476 and GSE22529, 4 
iterations for GSE23293 and GSE26725, 5 iterations for 
GSE6691, finally we obtained 6 active modules with a 
locally maximal Z score by jActiveModules (marked 
orderly as PPI_GSE9476_TR, PPI_GSE6691_ TR, 
PPI_GSE9476_TR, PPI_GSE22529_TR, PPI_GSE23293
_TR and PPI_GSE26725_TR in Figure 1). The number 
of nodes and edges in each module is summarized in 
Table 4. 

After overlap analysis, a total of 97 genes along 
with their interactions were incorporated into the final 
network-based biomarkers, as illustrated in Figure 2. 
Genes with previous evidence in leukemia are 
marked yellow. 
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Figure 1. The flowchart of network biomarkers identification for leukemia diagnosis. 

 
 

Table 4. Detailed information of the active modules. 

 PPI_GSE5788_TR PPI_GSE6691_ TR PPI_GSE9476_ TR PPI_GSE22529_ TR PPI_GSE23293_ TR PPI_GSE23293_ TR 
Nodes 77 71 75 73 71 75 
Edges 205 186 166 193 126 188 
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Figure 2. The final network-based biomarker for leukemia. The known cancer related genes in final network are marked yellow. 

 

Functional analysis of candidate network 
biomarkers 

The network biomarkers were most enriched for 
molecular mechanisms of cancer (IPA) and pathways 
in cancer (KEGG). Leukemia-specific pathways such 
as Chronic Myeloid Leukemia (KEGG) and Acute 
Myeloid Leukemia Signaling (both IPA and KEGG) 
were also enriched and showed high statistical 
significance. It indicates that genes in the biomarker 
network are closely associated with the development 
of different types of leukemia. Besides, in He’s study, 
P13K/AKT Signaling (IPA) was also proved to be 
involved in chronic myeloid leukemia[42]. Irwin et al. 
found that ErbB inhibitors played important roles in 
Philadelphia chromosome-positive acute 
lymphoblastic leukemia (Ph(+)ALL) and ErbB 
signaling (KEGG) was a complementary molecular 
target in Ph(+)ALL [43]. The top-ranked pathways in 

both IPA and KEGG displayed apparent correlation 
between leukemia and the network biomarkers, 
which implied the potential accuracy of our result. 
Figure 3 shows the top 10 most significantly enriched 
IPA and KEGG pathway respectively. 

We used the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) [44] 
for the Gene ontology (GO) annotation in three 
domains: molecular function, biological process, and 
cellular component. The top 10 most significantly 
enriched items for each domain are shown in Figure 4. 
These results indicate that genes in the network are 
closely associated with the biological processes in the 
development of different types of leukemia, such as 
cell death [45] and apoptosis [46]. This indicated the 
accuracy of the predicted network biomarkers to a 
certain extent. 
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Figure 3. IPA and KEGG pathway enrichment analysis for network biomarkers. The top 10 most significantly enriched IPA and KEGG pathway are shown 
in panel (A) and (B) respectively. 

 

 
Figure 4. Gene ontology annotation for the network biomarkers. The network biomarkers identified by our method were annotated with DAVID tools at 
three levels of gene ontology: Molecular Function, Biological Process, and Cellular Component. The top 10 most significantly enriched items for each level are shown. 
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Network biomarkers are significantly 
associated with leukemia 

We further investigated whether the genes in the 
network biomarkers were randomly obtained. The 
statistical significance was checked using 
hypergeometric test and a significant p-value of 
0.008987933 was obtained. This indicates that the 
candidate network biomarkers are enriched with 
known leukemia-related genes and could not be 
obtained randomly. 

As illustrated in Figure 5(A), the blue circle 
represents the 978 genes in the leukemia-specific PPI 
network; the red circle includes the 522 known 
leukemia-related genes in COSMIC. The 
leukemia-specific PPI contains 195 known 
leukemia-related genes in COSMIC. The purple circle 
represents 97 genes in final network biomarkers, 
among which 29 genes belong to the known 
leukemia-related category. 

Sub-network marker with higher classification 
accuracy 

To evaluate the performance of network 
biomarkers in classifying leukemia and normal gene 
expression profiles, we used three independent gene 
expression datasets listed in Table 3 as tested datasets 
to produce the ROC curves. We compared the 
network biomarker with three reported gene 
biomarkers: CD38[47], BCL2 [48] and IGFBP7 [49]. 
The reasons we chose these three markers for 
comparison are as follows, 1) these biomarkers are all 
well-studied and all of them have been validated by 
clinical experiments. 2) The marker CD38 is a member 
of our network whereas the remaining two are not. 
We included two others for fair evaluating the 
performance of our network biomarker. Figure 5 
shows the ROC curves for network biomarkers and 3 
known biomarkers. Network-based biomarker has 
higher AUC than any of the single markers which 
means network-based biomarker could more 
effectively discriminate the leukemia from the normal 
controls. The sensitivity, specificity and accuracy of 
each dataset are given in Table 5.  

 
Figure 5. Validation of the network biomarkers. (A) Distribution of the leukemia-associated genes in the network. (B-D) ROC curves obtained with the 
network biomarkers tested by three gene expression datasets. Panel (B), (C) and (D) represent respectively the results of the gene expression datasets in series of 
GSE8835, GSE24739 and GSE39411. 
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Table 5. Detailed information of ROC curves. 

Series Biomarker Sensitivity Precision Specificity Accuracy AUC 
GSE8835 CD38 0.913 0.700 0.212 0.658 0.629 

BCL2 0.885 0.650 0.166 0.623 0.604 
IGFBP7 0.965 0.665 0.148 0.668 0.584 
Network biomarkers 0.851 0.686 0.316 0.657 0.698 

GSE24739 CD38 0.893 0.662 0.088 0.625 0.431 
BCL2 0.943 0.654 0.004 0.630 0.237 
IGFBP7 0.938 0.652 0.001 0.625 0.197 
Network biomarkers 0.874 0.986 0.976 0.908 0.966 

GSE39411 CD38 0.999 0.725 0.177 0.740 0.981 
BCL2 0.915 0.931 0.853 0.895 0.966 
IGFBP7 0.886 0.797 0.513 0.768 0.880 
Network biomarkers 0.996 0.999 0.998 0.997 0.999 

 
 
It is worth noting that for network biomarkers 

from GSE8835 has a relatively lower AUC than the 
other two datasets. This may be caused by the 
difference of platform and method between GSE8835 
and the training datasets. Anyhow, the accuracy of 
the network biomarkers is still higher than other three 
single biomarkers. 

The result indicates that the putative network 
biomarkers could diagnose leukemia samples more 
accurately and could be used as putative biomarker to 
aid in early diagnosis of leukemia. 

Conclusions 
In conclusion, we developed a network 

approach for molecular investigation and diagnosis of 
leukemia. The constructed network biomarkers not 
only achieve higher accuracy rate of diagnosis 
compared to known single biomarkers but also 
provide systematic insights into the leukemogenesis 
process. We noticed that we only considered the 
combination of genes (or the nodes) in the network for 
the prediction of leukemia. The interactions among 
genes can also provide valuable biological signatures 
for diagnosis of diseases. We will take the 
edge-variation in the network into the account for the 
further improving of the leukemia prediction. 
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