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Translating neural activity into nucleic acid modifications in a controlled manner harbors 
unique advantages for basic neurobiology and bioengineering. It would allow for a new 
generation of biological computers that store output in ultra-compact and long-lived 
DNA and enable the investigation of animal nervous systems at unprecedented scales. 
Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and 
structure, it could be possible to more effectively create cellular therapy approaches for 
psychiatric diseases that are currently difficult to treat.
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iNTRODUCTiON

In the vertebrate brain, two of nature’s most versatile and powerful information processing systems 
meet—neural membranes and nucleic acids. By interfacing these two systems, evolution has made 
possible the astounding feats of complex animal behavior and higher cognition. In the last three 
decades, neurogenomics has elucidated the many ways in which neural membranes and nucleic 
acids can communicate with and influence each other in the course of nervous system development, 
neuronal survival, circuit function, and synaptic plasticity (Flavell and Greenberg, 2008; Hagenston 
and Bading, 2011). It also implicates a vast potential for biotechnological and biomedical applica-
tions and here I will first briefly review the many ways in which these two systems interface with 
each other under natural conditions to later explore their potential for synthetizing useful tools in 
data processing and medicine. I propose applications in the form of neuron-culture based comput-
ers that write and store output as long-lived and ultra-compact DNA and evaluate the potential of 
custom-writable neuron templates for correcting pathologic brain circuits.

BASiC PRiNCiPLeS OF iNFORMATiON PROCeSSiNG iN NeURAL 
CiRCUiTS AND iN NUCLeiC ACiDS

Neurons typically form complex networks in order to process stimuli from the environment and 
influence an organisms behavior accordingly. Neural computation relies on processes on various 
levels—from network-wide ensemble activity over individual neuronal firing patterns and synaptic 
transmission to the activity of individual molecules (Figure 1). Data is processed on the millisecond 
timescale but can be stored over several decades in the form of long-term memory (Kandel, 2013). 
In the human brain, neural networks are so tightly packed that it allows around 85 billion neurons 
(Herculano-Houzel, 2009) and around 100 trillion synapses (Pakkenberg et  al., 2003) to fit in a 
volume of 1.2 dm3 (Leonard et  al., 2008) while weighing only 1.5 kg (Herculano-Houzel, 2009). 
Considering the vast computational power of even a single neuron (Koch and Segev, 2000) and 
the fact that the energy consumption of the whole human brain [20–25 W as based on metabolic 
activity reported in a previous study (Mink et al., 1981)] is far lower than for most modern table-top 
computers (~100 W), it is evident that biological neural networks hold vast potential for dense and 
energy-efficient information processing and storage.
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FiGURe 1 | Neural computation. Shown are the different levels of information processing in the brain. At the highest level, coactivity of neurons in a network 
ensemble binds together vast amounts of information and is thought to incorporate several perceptional features (i.e., sound and vision) into one coherent mental 
construct. On the single neuron level, cells are able to integrate thousands of inputs in a non-linear fashion and encode information as changes in their membrane 
potential. Synapses between neurons are able to translate electrical membrane potential changes into chemical signals and realize the communication between 
neurons. Lastly, even individual neuronal molecules are able to perform computations, i.e., for N-Methyl-d-aspartate receptors: let calcium pass if and only if (a) 
glutamate is bound and (b) the membrane is depolarized.
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In nucleic acids such as DNA and RNA, information is 
encoded in the specific sequence of bases—Adenine (A), 
Thymine (T) for DNA or Uracil (U) for RNA, Cytosine (C), and  
Guanine (G) (Alberts, 2015). Previous work has outlined the 
vast abilities of natural nucleic acid segments and epigenetic 
mechanisms to write and store information (Shapiro, 2006).  
In eukaryotic cells, these include template-dependent polymerase 
reactions such as RNA transcription (Hahn, 2004) and DNA 
replication (Masai et al., 2010), alternative RNA splicing (Matlin 
et  al., 2005), DNA sequence rearrangements (Bassing et  al., 
2002), covalent modifications such as methylation of cytosine in 
CpG islands (Bird, 2002), A-to-I RNA editing (Nishikura, 2016), 
double-strand breaks (DSBs) (van Gent et  al., 2001), duplica-
tion, jumping of and insertion of complete sequences such as 
L1 retrotransposons (Ostertag and Kazazian, 2001), structural 
changes such as looping of enhancers to other sequences several 
thousand bases away (Marsman and Horsfield, 2012; Mora et al., 
2016), and histone modifications that influence DNA access such 
as methylation or acetylation (Bannister and Kouzarides, 2011) 
(Figure 2A). Several reports have also explored the use of DNA 
computations in non-natural contexts (usually performed in test 
tubes) and found that oligonucleotide-based ligation reactions 
might be useful in tackling NP-complete problems such as the 
Hamiltonian path problem (Adleman, 1994) and that strand 
displacement cascades are able to reliably distinguish between 
different four-bit patterns (Qian et  al., 2011) (Figure  2B). In 
mam malian cells, complete nucleotide sequences are synthesized 
on the millisecond timescale (Maiuri et al., 2011) but can persist 
over millennia with little to no degradation (Paabo et al., 2004) 
[i.e., 80% of the wooly mammoth genome has been sequenced 
even though specimens were preserved for 4,000  years under 
non-laboratory conditions (Miller et al., 2008)]. The amount of 
information that can be stored in DNA per volume is extremely 

high with current experimental evidence for 5.5 × 1015 bits per 
mm3 (Church et  al., 2012) and thus far surpasses all currently 
established technologies. Recent progress has allowed increas-
ingly rapid and cheap de novo synthesis of long DNA fragments 
(Kosuri and Church, 2014) and harnessing the ability of natural 
systems to efficiently modify DNA [i.e., sequence or structural 
changes via Cas9 (Mali et al., 2013)] will help biotechnology and 
medicine to leverage the vast potential of nucleic acids to store 
and compute information.

NATURAL iNTeRFACeS BeTweeN 
NeURAL NeTwORK COMPONeNTS  
AND NUCLeiC ACiDS

From Neural Network Components  
to Genes
With the astounding capabilities that neuronal networks and 
nucleic acids each have on their own, their capacity for infor-
mation processing multiplies when they work in concert. The 
neuron, for instance, is capable of translating an outside signal 
into wide-spread changes in nucleic acid content, structure, and 
function. It receives inputs via neurotransmitters that are then 
translated into intracellular signals and relayed to the nucleus via 
diverse mechanisms such as Ca2+ fluxes (Hagenston and Bading, 
2011) and kinase cascades (Flavell and Greenberg, 2008) (i.e., 
MAPK and CaMK pathways).

As soon as the signal arrives in the nucleus, loops form from 
enhancers to promoters (Gray et  al., 2015), histones are meth-
ylated (Malik et  al., 2014), transcription of messenger RNAs 
for many immediate early genes is initiated by a diverse set of 
transcription factors (Hagenston and Bading, 2011) (i.e., CREB 
or SRF) and previously transcribed RNAs are alternatively spliced 
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FiGURe 2 | Writing and storing data in nucleic acids. (A) Natural computation mechanisms. In eukaryotic cells, information processing and storage in nucleic acids 
are realized in various ways. Template-dependent polymerization synthesizes new nucleic acid strands (i.e., RNA transcription or DNA duplication). Alternative RNA 
splicing generates different versions of a final transcript from a common precursor molecule. Genetic rearrangements lead to a final specific DNA sequence from 
initial precursor sequences (i.e., VDJ-recombination in B-cells). In retrotransposition, a specific genetic element (i.e., LINE-1) is duplicated and inserted into a target 
sequence. In the course of DNA methylation, cytosine residues become methylated by DNA methyl transferases (i.e., DNMT3A). A-to-I-RNA editing leads to 
transformation of an adenosine residue to an inosine and subsequently impacts the transcript function (i.e., miRNA targeting or mRNA translation). DNA double 
strand breaks (DSBs) can be induced at specific locations and can influence gene transcription. Enhancer looping refers to structural DNA changes in which 
sequences that are separated by long DNA segments are brought close together by looping of the DNA molecule (i.e., enhancers bringing transcription factors into 
close vicinity of the RNA polymerase complex). Histone modifications [i.e., acetylation via histone acetyl transferases (HATs)] allow the tuning of DNA accessibility 
and thus transcription. (B) Artificial nucleic acid computations. DNA ligation reactions are able to approximate solutions to various mathematical problems  
(i.e., the NP-complete Hamiltonian path problem). Different data points (here cities) and operations (here linkage of data points via complementary binding of linkers 
to half a city sequence) are represented by specific DNA sequences that are then ligated, isolated, and analyzed. Another method, DNA strand displacement 
cascades, makes use of predictable hybridization kinetics to transform inputs to outputs. These outputs can serve as inputs for downstream reactions and, thus, 
create complex computational networks.
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[i.e., Neurexin-1 (Iijima et al., 2011)] and modified [A-to-I edit-
ing of mRNAs for several immediate early genes (Sanjana et al., 
2012)] (Figure  3A). Apart from activity-dependent transcrip-
tion, recent reports have highlighted the role of synaptic activity 
induced changes in DNA methylation by the de novo DNA 

methyltransferase Dnmt3a (Oliveira et al., 2012; Day et al., 2013) 
and a study has found evidence for activity-induced DNA DSBs 
in which synaptic stimulation leads to DSB formation in the 
promoters of several immediate early genes and thereby facilitates 
their induction (Madabhushi et al., 2015). Every one of the above 
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FiGURe 3 | From neural networks to genes. (A) Translating neuronal activity into nucleic acid modifications. Network activity influences individual neuronal spiking 
which translates to opening of activity-dependent ion-channels. Subsequently, several nucleic acid computations are performed. Example genes are given for the 
mechanisms detailed in Figure 2A and include transcription of the genes Arc, Fos, Egr1, alternative splicing of Neurexin-1, DNA methylation of Fos and Egr1, A-to-I 
editing of Gria2 mRNA, enhancer looping to the Fos core promoter, DSBs in the Npas4 promoter and widespread H3 acetylation in the neuronal genome.  
(B) Integration of multiple neural network inputs by one neuronal molecule determines transcriptional activity. Activation of D1 receptors leads to phosphorylation of 
DARPP-32 at Threonine-(T)-34 and dephosphorylation at T75 whereas stimulation of N-Methyl-d-aspartate (NMDA) receptors leads to dephosphorylation of both 
these residues. Only activation of metabotropic glutamate receptors is able to induce phosphorylation of T75. Together with phosphorylation of Serine(S)-97 by D1 
receptors, the phosphorylation state of these residues determine DARPP-32 interactions with its primary target protein-phosphatase 1 (PP-1) and, thus, regulate 
transcriptional activity. (C) Activation of different receptors leads to induction of distinct promoter elements. Ca2+ influx through NMDA receptors leads to induction of 
the serum response element (SRE) while not, or comparably less, inducing the cAMP responsive element (CRE). Ca2+ influx through voltage-dependent calcium 
channels (VDCCs) in turn leads to induction of the CRE in addition to the SRE. This allows inference of the channel activation (i.e. induction of only the SRE but not 
the CRE means NMDA receptors were activated, while additional CRE activation means VDCCs were activated).
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mechanisms could theoretically be used to convert the spiking 
activity of a neuron into sequence or structural information in 
a nucleic acid and, hence, allows bridging these two systems. 
In section 3, the possibilities and advantages of doing so will be 
discussed.

Importantly, the transcriptional cascades recruited and the 
specific genes transcribed often depend on the details of which 

circuits were activated and in what fashion. One example is the 
physiology of striatal medium spiny neurons. If D1 dopamine 
receptors are activated, the protein DARPP-32 (which is an 
inhibitor of protein phosphatase 1, and thus, able to regulate 
transcription of downstream genes) is specifically phosphoryl-
ated at Threonine-34 (Nishi et al., 1997; Svenningsson et al., 2004) 
and dephosphorylated at Threonine-75 (Svenningsson et  al., 
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FiGURe 4 | From genes to neural networks. (A) Genes affect neural function and structure. The activity-dependent transcription factor Npas4 leads, in excitatory 
neurons, to an increase in inhibitory inputs as measured by miniature inhibitory post-synaptic currents (mIPSCs), whereas the protein product of Arc/Agr3.1 leads to 
a reduction of synaptically evoked excitatory currents through long-term depression (LTD). Vegfd is able to regulate the dendritic structure of neurons and thereby 
influences the information content that can be received. (B) Retrotransposition can alter neuronal genomes. By disrupting functionally important genes in a 
seemingly random manner, LINE-1 elements could alter neuronal activity phenotypes.
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2004) (Figure 3B). Opening of N-Methyl-d-Aspartate (NMDA) 
receptors with subsequent activation of calcineurin dephospho-
rylates DARPP-32 at Thr-34 and Thr-75 (Svenningsson et  al., 
2004), whereas stimulation of metabotropic glutamate receptors 
leads to phosphorylation of Thr-75 (Svenningsson et al., 2004). 
Dephosphorylation at Ser-97 regulating nuclear localization of 
DARPP-32 together with the aforementioned phosphorylation 
at Thr-34 leads to inhibition of protein phosphatase 1 and allows 
this molecule to regulate transcription and neural network plas-
ticity (Stipanovich et al., 2008; Graff et al., 2010). Thus, already 
one protein in neuronal cells can integrate several circuit-
specific inputs and translate them into widespread changes in 
RNA content (Fernandez et  al., 2006). As another example, 
calcium signaling initiated by two distinct channels, NMDA 
receptors and voltage-dependent calcium channels (VDCCs), 
induces discrete transcriptional elements (Bading et al., 1993); 
NMDA receptors induce transcription predominantly via the 
serum response element (SRE), while VDCCs, in addition to the 
SRE, seem to induce the Ca2+- and cAMP-responsive element 
(CRE). Determining the exact parameters that lead to activation 
of NMDARs versus VDCCs together with isolating the genetic 
elements and placing them into appropriate contexts will lead 
to opportunities for creating synthetic genetic modules that are 
able to predictably connect circuit activity to transcriptional 
logic operations (Figure  3C and Section 3). Furthermore, a 
study has shown that different elements within a c-fos enhancer 
(Joo et  al., 2016) react to different neuronal stimuli and thus 
allow discrimination of distinct synaptic inputs (i.e., glutamate 
versus BDNF) at the genome level.

From Genes to Networks
Genes encode about every structural and functional aspect of 
the brain (Boguski and Jones, 2004). During brain development, 
information in DNA directs circuit wiring, establishes the cor-
rect overall architecture of brain regions and determines cell 

fate by differentiation into one particular out of many possible 
cell types (Kandel, 2013). Once the circuit is established in adult 
life, activity-dependent transcription of genes can profoundly 
influence neuronal function by determining synapse formation, 
ion channel composition, dendritic architecture, and metabolic 
state, among others (Flavell and Greenberg, 2008; Hagenston and 
Bading, 2011) (Figure  4A). For example, the acutely induced 
transcription factor Npas4 is able to tune excitatory and inhibi-
tory input formation (Spiegel et al., 2014) and the gene product 
of Arg3.1/Arc is able to acutely decrease excitatory synaptic 
transmission via long-term depression (LTD) (Bramham et al., 
2008). The protein product of Vegfd is able to regulate overall 
neuronal morphology, thereby exerting a deep influence on neu-
ral information processing (Mauceri et al., 2011). Recent studies 
also implied that L1 retrotransposition, which is able to directly 
alter the DNA sequence, has important functions in postnatal 
brain development and in adult brain function (Singer et al., 2010; 
Richardson et  al., 2014) (Figure  4B). These few examples out 
of many show that the sequence information in DNA can exert 
profound influences on neural networks, both acute (i.e., by tem-
porary transcription and incorporation of certain ion channels) 
and chronic (i.e., by changing long-term dendritic architecture 
and synapse formation), which could be exquisitely exploited for 
synthetic biology applications in which neural networks perform 
human-desired computations (see below). Changing the activity 
of circuit-altering genes by targeted modulation with Cas9 (Mali 
et al., 2013) or light-sensitive transcription factors (Konermann 
et al., 2013) could enable real-time modification of computational 
rules inherent in the neural network, and thus allow fine tuning 
of the network operation to achieve specific goals. The nucleic 
acids for many genes can nowadays be cloned or synthesized in a 
straightforward manner and introduced into neurons by various 
methods such as viral delivery, transfection or electroporation, 
making feasible the rapid and efficient neurogenomic program-
ing with standard laboratory equipment.
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FiGURe 5 | Neurogenomic computers. (A) Recording neural activity in nucleic acids. For instance, a stimulus-sensitive DNA polymerase as developed in a previous 
study (Zamft et al., 2012) (shown here is a simplified version to illustrate the principle more clearly) synthesizes from a template and incorporates a wrong base if the 
neuron is active (i.e., by making the polymerase error rate sensitive to intracellular Ca2+ concentrations). For simplicity, the template here is a poly-T string and 
synthesis errors are assumed to result in G incorporation instead of A. In reality, this might not be technically feasible and one might have to rely on statistical 
methods to infer the positions in which the polymerase performed with an increased error rate while synthesizing from a more complex template (i.e. containing A, T, 
C, and G). (B) Pipeline for implementing a neurogenomic recording device. In this biological computer, input is fed into the neuronal network via physical methods 
(i.e., electrical stimulation on a MEA or optogenetic activation). Either all neurons or one specific neuron (recorder neuron) express the activity-sensitive polymerase 
as mentioned in panel A. For information access, three steps would have to be performed. Step 1: a recorder neuron is harvested from the network after a 
computation is performed. To reconstitute network activity, it could be replaced with an immature neuron that then integrates into the circuit. Step 2: the DNA is 
isolated. Step 3: the information in the DNA could be sequenced and transformed into electronic bits, it could be transformed into neural activity or it could be frozen 
and stored and only sequenced when needed.
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NeUROGeNOMiC COMPUTeRS

Basic Principles
A simple model of a biological neuron-based computer is that of 
a dissociated neuron culture connected to a physical recording 
device such as a multi-electrode array (MEA) or a fluorescent 
microscope (although, strictly speaking, this is still a hybrid 
device). Reports have shown that such an in vitro network can 
be maintained over several months (Potter and DeMarse, 2001), 
stimulated in a highly controllable fashion (Wagenaar et  al., 
2004, 2005), used to navigate an airplane in flight-simulations 
(Demarse et  al., 2001) and even steer a real-life robot through 
obstacle-ridden terrain (Novellino et  al., 2007). Inputs into 
these networks are currently realized by electric or optogenetic 
stimulation, whereas the output is usually electric (in the form of 
patch-clamp or MEA recordings) or optical (i.e., by using fluo-
rescent calcium or voltage indicators). One problem is that these 
recording techniques are usually limited to relatively few neurons 
at a time and necessitate extensive expertise, technical sophistica-
tion, and financial expenses. Recording around 200 neurons at 
single-cell resolution currently requires a MEA or a fluorescent 
microscope connected to a computer. It would be more favorable 
to use an output that allows simultaneous single-cell recordings 
of many neurons with inexpensive, fast and easy-to-implement 
methods. Herein lies a crucial advantage of using the natural 
interfaces between neural networks and nucleic acids described 
above. Over the past decades, research in nucleic acid analysis 

has brought forth extremely cost- and time-efficient methods 
to analyze DNA and RNA with high accuracy. These methods, 
such as DNA/RNA sequencing and qPCR analysis can be applied 
with little training and are relatively insensitive to external error 
sources. Translating the results of highly complicated and diffi-
cult-to-analyze neural network computations into nucleic acids 
will therefore be of immense benefit. In theory, any of the mecha-
nisms discussed in Section “From Neural Networks to Genes” 
could be harnessed to convert neural activity into DNA/RNA 
changes, either by hijacking natural synapse-to-nucleus pathways 
such as the MAPK or CaMK cascades or by engineering artificial 
ones (O’Shaughnessy et al., 2011) that act orthogonally and thus 
do not interfere with the host cell physiology. An important point 
to consider is that the synaptic input in these cascades is usually 
amplified in a non-linear manner and integrated over time, which 
could be an advantage if the input signal is weak and extremely 
short-lived and needs to be enhanced or it could be a disadvan-
tage if a more direct conversion of spiking activity and increased 
precision is desired. A line of work that might achieve a direct and 
undistorted conversion of synaptic inputs to nucleic acid modi-
fications suggested and started to explore the use of molecular 
ticker-tapes in the form of DNA to record neural activity (Zamft 
et al., 2012; Marblestone et al., 2013) (Figure 5A). In one study, 
activity-sensitivity of the polymerase was realized by correlating 
the error-rate to cation concentrations so that increasing Mn2+ or 
Mg2+ would lead to a trace of wrongly incorporated bases (Zamft 
et al., 2012). Subsequent statistical analysis would then be used 
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FiGURe 6 | Hypothetical neural activity-dependent DNA-based logic circuit. (A) Neurotransmitter-based logical AND-gate. Tetanus toxin light chain (TeTxLc) is 
constitutively expressed by a constitutively active CAG promoter and silences the neuron under basal conditions. The N-terminal part of the T7 RNA polymerase is 
placed behind a Ca2+-responsive promoter, whereas the C-terminal part is placed behind a cAMP-responsive promoter. When both promoters are activated (i.e. by 
co-stimulation of the neuron with glutamate and dopamine), both halves are expressed and can form a functional holoenzyme. This holoenzyme now transcribes a 
micro-RNA against TeTxLc from its specific promoter (T7pro) that leads to degradation of TeTxLc. By degrading TeTxLc the neuron gets activated and can release 
neurotransmitter onto target neurons. (B) Input–output table. Shown is how the different input combinations affect neural output.
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to infer the time spans during which the cation concentration 
was elevated and allow inference of the activity pattern of the 
neuron (Glaser et al., 2013). A possible variation would be to use 
a CRISPR-Cas9 based molecular memory device by implement-
ing a self-targeting sgt-RNA system and storing the data as DNA 
mutation frequencies, as done in a previous study in mammalian 
cells (Perli et  al., 2016). A recent report has demonstrated the 
use of converting the process of immunological CRISPR spacer 
acquisition in bacteria into a recording mechanism (Shipman 
et al., 2017). The authors wrote a short movie sequence into the 
bacterias’ DNA and read it out afterwards, demonstrating the 
capability of living systems to store complex and human-made 
data types in DNA.

For a neurogenomic computer, one would implement one 
of the above systems which translates neural firing into specific 
nucleotide sequences and then use deep sequencing (Shendure 
and Ji, 2008; Malone and Oliver, 2011) to read the information 
offline (Figure  5B). To keep the neural network more intact, 
one might even harvest single “recorder neurons,” replace them 
with neural stem cells so that the network can reconstitute its 
function and extract the computation results by single-cell DNA 
sequencing. Afterwards, the information could be archived by 
various simple methods such as freezing (stable over millen-
nia) or transformed into digital electrical patterns or translated 
back into neural activity. As information in DNA is generally 
very stable [i.e., thousands of years under the right conditions 
(Paabo et al., 2004)] and extremely compact [i.e. petabits per mm3 
(Church et al., 2012)] this system would represent an enormous 
leap forward in our ability to process and store large amounts of 
data. As mentioned in paragraph 3, it is also possible to use DNA 
to directly influence neural network behavior which might be 
leveraged to acutely change a neuron’s DNA make-up to modify 
computational rules. As DNA is increasingly easily and cheaply 
synthesized (Kosuri and Church, 2014), it will be possible to 

print out custom DNA stretches that change network function 
in a desired way.

A first step in generating a neurogenomic computer would 
be to use in vitro neural networks and DNA-based logic circuits 
in each cell or a subset of cells to perform intertwined network 
and molecular computations, thereby unlocking the combined 
capacity of these two individually already powerful entities. The 
molecular computations within neurons could be realized in 
various ways, three of which will be discussed here.

In the first instance, one can imagine a DNA-based Boolean 
logic circuit as commonly implemented in bacterial cells (Khalil 
and Collins, 2010; Siuti et al., 2013) that is coupled to molecular 
inputs from neurotransmitter-sensitive cascades and that has neu-
romodulating molecules as outputs. In the hypothetical example 
in Figure 6, one calcium responsive promoter element and one 
cAMP-responsive promoter element [i.e., from input-selective 
enhancer elements in the c-Fos promoter (Joo et  al., 2016) or 
from different genes such as Npas4 and Arc, both of which react 
to different input stimuli (Ramamoorthi et al., 2011)] combined 
with a minimal promoter each drive expression of one half of a 
split T7 RNA polymerase (Shis and Bennett, 2013). Glutamate 
will only activate the Ca2+-sensitive promoter while dopamine will 
only activate the cAMP-responsive promoter. The polymerase, if 
both halves are present, then transcribes a micro-RNA against the 
constitutively expressed neuronal silencing protein tetanus toxin 
light-chain (Sweeney et al., 1995) from an orthogonal T7-specific 
promoter. This system functions as a logical AND-gate in which 
a neuron is context-dependently activated only if it receives input 
from both the glutamate and dopamine circuit. As soon as one 
circuit ceases input, the neuron (within the temporal confine-
ments of protein turnover) will stop participating in the circuit 
and enter the resting state. Such a system could be used as an 
oscillator (i.e., if both circuits receive inhibitory input from this 
neuron) or as a switchable control gate for downstream circuits.
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FiGURe 7 | Hypothetical recombinase-dependent neurogenomic computer. (A) Notation and rules for the DNA-based computer. Formal notation scheme adapted 
from (https://www.scottaaronson.com/blog/). (B) Expression system. Cre-recombinase is placed behind a Ca2+-sensitive promoter and, thus, selectively transcribed 
by glutamate application. Flp-recombinase is placed behind a cAMP-responsive promoter and thus transcribed after dopamine stimulation. (C) Computational 
process. The neuron starts with a template strand A(<B[C>D[E). If glutamate is applied, this results in transcription of Cre which in turn acts on () and < >. The 
resulting string reads as E*]D*B[CA* (Pattern 1). In case dopamine is applied afterwards, resulting in transcription of Flp, this sequence is further modified to give 
E*B*DCA*. Application of dopamine results in (A<BE) and if glutamate is applied afterwards the string is further modified to E*B*>A*. (D) Table connecting activity 
patterns to output strings. The recombination system allows for unambiguous inference of neural activity patterns post hoc by sequencing the output strings  
(i.e., E*B*DCA* clearly means that glutamate was transmitted and then dopamine).
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A different hypothetical system makes use of distinct recombi-
nases acting on a constitutively expressed DNA string to produce 
different unique output strings (Figure  7A). In bacterial cells, 
such a system was already realized and it was able to record vari-
ous sequences of outside stimuli into DNA (Roquet et al., 2016). 

Combining this system with neuron-compatible recombinases, 
which are able to perform Boolean logic operations in neurons 
even in vivo (Fenno et al., 2014), and expressing them in neu-
ronal networks, could allow the recording of neuronal activity 
patterns in DNA. In short, Cre and Flp recombinases are placed 
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FiGURe 8 | Hypothetical neural activity-dependent strand replacement cascades implementing a “neural network within a neuron” approach. (1) The basic principle 
of a displacement cascade. A template RNA or DNA strand containing sequences A and B as well as a strand containing a partially complementary sequence B′ 
(output strand) are constitutively expressed. The output strand binds to the template under basal conditions and cannot exert downstream functions. When the 
neuron is activated, a new string consisting of sequences A′ and B′ (input string) is transcribed (RNA) or synthesized (DNA) and displaces the output string. The 
output string can now exert downstream functions (i.e., as an input to another cascade or to be analyzed via PCR). Note that this figure represents a simplified 
system and in order to implement an actual seesaw-gate motif as done in a previous study (Qian et al., 2011), additional components are required (i.e., fuel and 
threshold strings). (2) Different displacement reactions (circles) with different functions (weighing of inputs, summing up weighed inputs, thresholding) are combined 
to create a seesaw gate acting as a linear threshold gate. (3) These seesaw gates can be combined to create a Hopfield network, serving as an associative memory. 
The state of each “neuron” is reported by an output DNA string (i.e., one that replaces a quencher from a fluorophore-tagged string and thereby causes a 
fluorescence increase). If expressed inside a neuronal cell, the above DNA system realizes a “neural network within a neuron” approach and could increase the 
ability to compute information with biological neural networks or implement complex pre-determined plasticity rules (i.e., by creating output strings that incorporate 
DNA/RNA coding for neuronal activity-related proteins). One could also use these circuits in cellular therapeutic approaches, by implementing them as intelligent 
sensors that modify neural activity based on pre-determined rules (i.e., induce burst firing if (1) glutamate is received, (2) cortisol is present, and (3) a pharmacological 
compound is administered).
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behind either a Ca2+- or cAMP-responsive promoter (Figure 7B). 
If glutamate is applied, this leads to Ca2+ influx and, thus, tran-
scription of Cre. In case dopamine is transmitted, the result is Flp 
transcription. Both recombinases act on unique target sequences 
to transform the input string into one of several output strings. 
Importantly, the sequences of the output strings depend on the 
exact temporal order in which the neurotransmitters were applied 
(Figures 7C,D). The DNA string thus holds a memory trace of 
the different inputs over time. Figure 7D shows how each output 
string allows inference of the previous activity pattern.

Another system for multi-layered, parallel information pro-
cessing would use nucleic acid computation techniques such as 
strand displacement cascades within each neuron (Figure 8). In 
short, strand displacement (Qian and Winfree, 2011; Zhang and 
Seelig, 2011) makes use of the predictable kinetics of Watson–
Crick base pairing and realizes inputs and outputs as single 
stranded DNA or RNA molecules that act via double-stranded 
intermediates (see Figure 2B). If an input (single strand A) is 
present at high enough concentrations, it will hybridize with an 
existing partner in a double-stranded DNA helix and replace 
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and thereby release another single-strand, the output B. This 
output can be measured directly or be used as an input in a 
downstream displacement reaction, thereby creating a signaling 
cascade (Qian et  al., 2011; Zhang and Seelig, 2011). A recent 
report has harnessed these computational abilities to build in 
test tubes a DNA-based artificial neural network that was able 
to answer multi-variable questions presented in the form of 4-bit 
patterns in a reliable fashion (Qian et  al., 2011) and another 
study has demonstrated that predictable nucleic acid replace-
ment cascades can indeed be implemented in mammalian cells 
(Groves et al., 2016). Combining this technology with in vitro 
neural networks, in which each neuron performs a molecular 
computation in the form of DNA or RNA strand displacement 
and then reports output and/or translates it back into network 
activity might open up new opportunities for information pro-
cessing in living systems.

Although the prospect of using these technologies is exciting, 
it might prove difficult to predict the precise functions of this type 
of circuit, as nowadays even the most simple synthetic biological 
logic circuits are hard to standardize and predict (Kwok, 2010) 
[although promising efforts are underway (Nielsen et al., 2016)]. 
Due to their extremely complex nature, the suitability of neurog-
enomic modules will most likely have to be determined experi-
mentally with multiplexed approaches (Rogers and Church, 2016) 
and modified by directed evolution and human-guided learning.

Opportunities and Challenges of 
Synthetically Translating Neural Activity 
into DNA/RNA Changes
Opportunities and Advantages
Storing neuronal activity patterns in nucleic acids might have 
several advantages, some of which have been previously reviewed 
(Marblestone et al., 2013). First, for basic neurobiology research, 
it would allow recording a vast amount of neurons in the brain 
simultaneously with single-cell resolution and reading the results 
out offline. Recent studies show the possibility of upscaling 
single-cell genomics and transcriptomics to tens of thousands of 
cells (Macosko et al., 2015). Neural activity patterns from DNA-
barcoded neurons could thus be correlated to transcriptional 
characteristics (i.e., cell marker expression) and answer long-
standing questions about the functions of different cell-types 
and individual cells in neural circuit physiology and organism 
behavior. Another advantage might lay in making neural activity 
recording more cost-efficient and less dependent on biophysical 
expertise, opening up the possibility of conducting large-scale 
neural activity recordings for laboratories that would other-
wise not be equipped to perform them. As DNA represents an 
enormously compact and stable storage medium, computations 
performed by neurons and stored in DNA might circumvent elec-
trical circuits altogether and allow purely biological computers 
with nucleic acids as the primary storage medium. Furthermore, 
DNA opens a window to profound control over various aspects 
of neuronal physiology and thus allows researchers to dictate 
the rules of neuronal computation. It makes possible a situation 
where, analogous to modern silicon-based deep learning appli-
cations, researchers define critical computational parameters of 

neurons by writing them in DNA and then let the network find 
optimal solutions on its own.

Challenges and Disadvantages
A major disadvantage of using neural activity–DNA interfaces 
would be that neurons have limited volumes and can only harbor 
a certain amount of nucleic acids. For molecular ticker-tapes, a 
previous report (Marblestone et al., 2013) estimated the capacity 
for DNA based recording systems with a speed of 1,000 bases/
second and 10,000 templates per cell: in a neuron, according 
to the authors, this would allow 300  s of recording before the 
transcripts equal the length of the human genome. For RNA 
with appropriate modifications, this could allow around 2.75 h of 
recording before an RNA amount equivalent to the physiological 
one would be reached. Apart from the limited storage capacity, 
DNA replication and RNA transcription usually pose a major 
metabolic burden on the cell. They require intense amounts of 
ATP and other metabolic resources and chain elongation might 
thus interfere with neuronal physiology and bias experimental 
results. For recombinase or CRISPR-based recording devices, it 
is possible that these DNA cutting enzymes would have off-target 
effects and start modifying the host-cell DNA in unpredictable 
ways. Another problem for all of the above methods is cellular 
delivery. How would these multi-component systems be intro-
duced to neurons? Most likely, they would have to be delivered 
via viral vectors or by transgenic means, both of which can be 
resource-intensive and interfere with the organism’s physiology. 
A clear bottle-neck for the proposed transcription-dependent 
systems is the temporal lag through mRNA transcription and 
possible subsequent protein turnover. This means that calculation 
results would only be available after some delay, thereby making 
the system less practical for time-efficient use. It is hence pos-
sible that these systems would be more useful in situations where 
the advantage of parallelizing (i.e. by increasing the number of 
neurons or networks that could be used for a given task) would 
outweigh the drawback of low speed. Possible real-life applica-
tions could be the encoding of large datasets for archival purposes 
(i.e. for documentation in blockchains such as Bitcoin) or for 
tasks where a solution would be valid for a certain, prolonged 
amount of time (i.e. travel routes through cities).

Another drawback for all of the above systems is that biological 
processes are still hard to predict and control with high precision. 
Although efforts to create predictable biological modules are 
being developed, many synthetic biological circuits and devices 
fluctuate regarding key functional parameters and might depend 
on unclear environmental parameters within each laboratory.

CReATiNG GeNOMe-CUSTOMiZeD 
NeURONS TO CORReCT NeURAL 
CiRCUiT PATHOLOGieS

A possible next-generation application in which nucleic acid-
controlled neural network behavior might be implemented 
consists of custom cellular prostheses in the form of modified 
minimal neurons (Figure  9). Current methods for the in  situ 
modification of neural networks have several disadvantages 
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FiGURe 9 | Creating a neural network prosthesis by using the minimal neuron approach. Naturally occurring neurons are highly complex and thereby hard to 
engineer. In the first step, termed genome reduction, minimal neurons are generated. Genes that are not essential to basal neuronal function are eliminated while 
others are retained in order to ensure a minimal neuronal phenotype (i.e., maintaining polarity, excitability, and rudimentary synapse formation). In the second step,  
a gene cassette is introduced to create a neuron with a predictable phenotype (designed neuron). This neuron can then be implanted into the network and will 
modify activity in a desired fashion (i.e., correct for neural circuit pathologies, such as altered excitation/inhibition balance in epilepsy or autism).
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such as lack of targeting specificity (pharmacologicals) or 
irreversible disturbance of brain physiology (i.e., rAAVs). To 
cir cumvent these problems, one could create a minimal neuron 
template, derived from a patient’s induced pluripotent stem 
cells, in which all genes that are necessary for the basic neuronal 
phenotype (i.e., for polar structure with dendrites and axons 
and rudimentary synapses) are active and other non-essential 
genes that could lead to unpredictable behavior (i.e., kinase-
phosphatase circuits, non-essential ion channels) are deactivated 
by multiplexed genome deletions [i.e., via Cas9 (Mali et al., 2013) 
or by synthesizing a reduced genome]. Genomic approaches to 
create a minimal cell have already been successfully applied to 
bacteria (Hutchison et  al., 2016) and suggest that it is feasible 
to apply them to mammalian cell types. Based on what the 
concrete pathophysiology for the individual patient requires, 
one could synthesize and express a custom-made gene cassette 
that leads to a neuronal phenotype as required. The cells would 
be transplanted into the network, as has been successfully done 
in animal models for human iPSC-derived neurons (Victor 
et al., 2014), to correct deficiencies in neural computation and 
diseased phenotype. Prime examples would be pathophysiolo-
gies in which the excitatory–inhibitory balance is shifted, such as 
autism (Nelson and Valakh, 2015) and epilepsy (Fritschy, 2008). 
Previous studies were able to correct an epileptic phenotype in 
mice by transplanting inhibitory neuron progenitor cells into the 
hippocampal subregion (Hunt et al., 2013). By using the minimal 
neuron template approach, it could be possible to concretely 
modify any given neuronal circuit in a desired way and thus 

correct major behavioral pathologies without the drawbacks of 
modifying existing neurons by viral-mediated protein expres-
sion or implantation of physical devices. This approach would 
heavily benefit from developments in large scale in situ genome 
modifications and cheap synthesis of long DNA segments, as 
well as from efforts to create human artificial chromosomes. 
Psychiatrists would be able to prescribe expression units (eu) 
of genes instead of milligrams of pharmacological compounds  
(i.e. +1 eu for DNA overexpression of a GABA producing and 
releasing gene complex in epilepsy) and laboratories within the 
clinic would be able to print the required DNA segments and 
transfer them into minimal graft neurons.

CONCLUSiON

In the course of biological history, evolution has brought together 
two of nature’s most powerful information processing systems—
neural membranes and nucleic acids. Each one is able to compute 
and store information over many different timescales from 
sub-second to decades. Recent advances in both genomics and 
neuroscience have made possible the precise and rapid control 
and readout in both systems and bring within reach a next gen-
eration of combined DNA and neuron-based computational and 
medical devices. Synthetic biology will immensely benefit from 
new discoveries in the field of neurogenomics and neurogenomic 
research will be able to use synthetic biology tools to study and 
enhance the brain. The possibility of interfacing neural network 
components and nucleic acids in a controlled and designable 
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