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Abstract

Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant
to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC
patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which
present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division,
maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor;
and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many
studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, differ-
ent approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found
to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1,
OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor micro-
environment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact,
contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been
reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dis-
secting tumor heterogeneity and drug treatment efficiency.
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Introduction

Renal cell carcinoma (RCC), a malignant tumor
affecting the adult kidney, accounts for 2% of all
cancers. It affects 64 000 people every year, with a
mortality of 20%, and is among the 10 most common
cancers worldwide [1]. Arising from renal tubular
epithelial cells, RCC is the most frequent malignancy
affecting the adult kidney (87%) [2].

RCC is a very heterogeneous class of tumors [3].
According to the classification proposed by the World
Health Organization in 2016, which combines histologi-
cal and genetic characteristics and clinical implications,
RCC can be subdivided into three different entities [3,4].
Clear cell renal cell carcinoma (ccRCC) is the most
common subtype of RCC and represents up to 80% of
all RCCs [5,6]. Papillary renal cell carcinoma (pRCC)
accounts for 10–15% of all RCCs [7–9], whereas chro-
mophobe RCC makes up only the remaining 5% [10].

RCC is characterised by being asymptomatic at early
stage and showing a poor response to radiotherapy and

chemotherapy once metastatic, making this tumor type

very difficult to diagnose and treat [11]. Due to the

much higher prevalence of ccRCCs, very few clinical

trials have been carried out considering other histologi-

cal RCC subtypes. Therefore, most of the drugs have

been developed based on ccRCC, but they are currently

applied to all RCC patients. Treatment of advanced or

metastatic RCC patients is achieved primarily by tar-
geted therapies [tyrosine kinase inhibitors (TKIs)] and

5-year survival for these patients is 12% [12]. Despite

all the progress made in the development of novel anti-

cancer compounds, the management and treatment of

RCC patients still remains a crucial aspect in the clinic.
In particular, intra-tumor and inter-tumor heteroge-

neity is one of the major limitations in the treatment

of epithelial tumors [13]. Two different tumor models
were proposed to play a role in tumor development,

progression, and tumor heterogeneity. The clonal evo-

lution model or stochastic model implies the presence

of a tumor cell population carrying different mutations

which have accumulated over time and then selected
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under different selective pressures [14]. Every cell
within a tumor has potentially the same likelihood to
facilitate tumor formation and progression. Selection,
clonal expansion and genetic instability are the key
elements driving the stochastic approach [15]. The
cancer stem cell (CSC) model, or hierarchical model,
instead, proposes that tumor growth and propagation
is driven by a small phenotypically distinct subset of
cells with pluriproliferative features within the total
cancer cell population [16,17]. According to this
model, the tumor bulk is established by a pool of
CSCs that have both stem cell potential and the ability
to give rise to progeny with self-limited proliferative
capacity [18]. As a result of this model, elimination of
the entire CSC population will result in tumor eradica-
tion, whereas leaving even only one cell behind will
lead to tumor recurrence [15,19].

Nevertheless, it is becoming increasingly clear that

genetic and epigenetic factors are not the only two fac-

tors contributing to tumor heterogeneity. The tumor

microenvironment (TME), stromal cells, soluble mole-

cules, and extracellular vesicles (i.e. exosomes) play an

important role in modulating metastatic properties and

sensitivity of tumor cells to therapy [20,21]. Therapy

itself may act as selection mechanism that shapes

tumor evolution. More recently, a unifying model of
clonal evolution applied to CSCs was proposed by
Kreso et al, whereby CSCs can acquire mutations and
generate new stem cell branches and, at the same time,
tumor cells in the non-CSC subpopulation can undergo
epithelial-mesenchymal transition (EMT) and acquire
CSC-like features contributing to tumor heterogeneity
[17] (Figure 1). Processes such as inflammation,
hypoxia, angiogenesis, and EMT occurring in the TME
contribute to the maintenance of CSC fate. Due to cel-
lular plasticity, it is important to note that the cell of
origin – the normal cell that acquires the first genetic
hit(s) that culminate in the initiation of cancer – does
not necessarily refer to the CSC population as the hier-
archical model would suggest. CSCs are the cellular
subset within the tumor that uniquely sustains malig-
nant growth. Cells-of-origin and CSCs refer to tumor-
initiating cells (TICs) and cancer-propagating cells,
respectively [22].

CSCs are a small population of neoplastic cells
within a tumor presenting characteristics reminiscent
of normal stem cells (NSCs). In particular, they are
capable of giving rise to all the cell types present
in the tumor tissue which they derive from (differen-
tiation). They are characterised by unlimited cell

Figure 1. Models of tumourigenesis. This figure illustrates three models of tumourigenesis. The clonal evolution model or stochastic
model (left) implies the presence of a tumor cell population carrying multiple mutations which is transformed over time by selective
pressure, resulting in tumor heterogeneity and progression. The CSC model or hierarchical model (right) proposes that tumor growth
and propagation are driven by a small subpopulation of cells with pluriproliferative features, namely CSCs. More recently, a unifying
model (centre) characterised by high tumor heterogeneity, plasticity, and complexity has been proposed. According to this model, CSCs
can acquire mutations and generate new stem cell branches. Conversely, tumor cells in the non-CSC subpopulation can undergo EMT
and acquire CSC-like features, contributing to tumor heterogeneity. Moreover, TME and therapy add another layer of complexity.
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division and maintenance of the stem cell pool (self-

renewal). They can give rise to tumor and contribute
to metastasis formation in vivo (tumourigenicity).

Moreover, CSCs are recognised to be the major cause

of tumor recurrence and resistance to therapy.
Dick and co-authors performed the first experimen-

tal study on CSCs in 1994. They isolated CD341/

CD38– cells from acute myeloid leukemia (AML)

patients and showed that they could initiate AML in
vivo upon transplantation into NOD/SCID mice
[23,24]. Subsequently, several others have showed

the presence of CSCs in colorectal cancer, breast

cancer, glioblastoma, melanoma, lung cancer, liver,

and prostate cancer [25–33]. Growing evidence sug-
gests that renal cancer, as many other solid tumors,

possesses a rare population of cells capable of self-

renewal that contribute to metastasis and resistance

to therapy [34]. Therefore, the identification of a spe-
cific subpopulation of cells within a tumor that either

initiate or maintain tumourigenesis is of utmost

importance for understanding tumor biology and in

the development of novel therapies. In this review,
we outline potential CSC markers in RCC as well as

advantages and pitfalls in the identification of these

tumor-propagating cells.

Cancer stem cell biomarkers

To date, several markers have been found to be spe-

cifically expressed in CSCs and cancer stem-like

cells derived from RCC. A summary of these puta-

tive CSC markers is given in Table 1.

CD105

CD105 (endoglin) is a transmembrane glycoprotein

encoded by the endoglin gene located on chromosome
9q34. This protein is composed of two constitutively

phosphorylated subunits of 95 kDa each, forming a

180 kDa homodimeric mature protein [54]. CD105 is

an accessory protein of the TGFb complex. Upon acti-
vation of the TGFb complex, the binding of endoglin

results in the activation of Smad proteins leading to

the regulation of various cellular processes such as

cell proliferation, migration, differentiation, and angio-
genesis [55]. Endoglin is predominantly expressed in

endothelial cells where it is activated by hypoxia and

TGFb stimulation, whereas it is decreased by tumor

necrosis factor a (TNFa) [56].
Interestingly, in breast, prostate, and gastric cancer,

CD105 was found in endothelial cells forming imma-

ture tumor vasculature. In ccRCC, a subpopulation of

cells representing <10% of the tumor mass showed
CD105 upregulation. CD1051 cells isolated by mag-
netic sorting displayed potent capability to grow as
spheres and initiate tumors and metastases recapitu-
lating the clear cell histological pattern in mice
[48,57]. These cells also expressed mesenchymal
markers CD44, CD90, CD29, CD73, and Vimentin;
embryonic stem cell markers Oct3/4, Nanog and Nes-
tin, and the embryonic renal marker Pax2 [48]. How-
ever, they did not express CD133, also known as
human tubular progenitor cell marker [58]. CD1051

CSCs were able to differentiate into epithelial and
endothelial cells and generate CD105– cells. Addi-
tionally, immunohistochemical analysis of tumoural
CD105 was found to correlate positively with nuclear
grade and tumor stage, whereas endothelial expres-
sion correlated negatively with clinicopathological
features [59]. Thus, CD105 has been proposed as the
main marker for CSC identification in RCC.

CSCs have been found to secrete higher amount of
exosomes and CSC-derived exosomes have been
found involved in promoting angiogenesis in xenograft
mice with renal cancer [57], metastatic niche forma-
tion in lung carcinoma [60] as well as invasion, migra-
tion and tumor growth in many other tumor types
[61–65]. Interestingly, CD1051 CSCs can release
microvesicles and exosomes containing pro-angiogenic
mRNAs (VEGF, FGF, MMP2, and 9) that trigger
angiogenesis and promote the formation of a premeta-
static niche in vivo [57]. Extracellular vesicles (EVs)
derived from renal CSCs impaired T cell activation
and dendritic cell differentiation by HLA-G promoting
escape from the immune system [66].

Nevertheless, the use of CD105 as a renal CSCs
marker has been questioned in many studies, where
CD105– cells also showed CSC-like features [36].

CD133

Prominin-1 (CD133) is a transmembrane glycoprotein
of 865 amino acids (120 kDa) encoded by the gene
PROM1 on chromosome 4p15 [67]. This protein
exists in different isoforms and its regulation is com-
plex [68,69]. Expressed by almost all cell types,
CD133 localises in the plasma membrane suggesting
its involvement in membrane remodeling and signal
transduction [68]. Phosphorylation of CD133 results
in the activation of PI3K/AKT signalling pathway
[70,71]. Hypoxia, mTOR inhibition and TGFb1
increased CD133 expression in lung cancer, pancre-
atic cancer, and hepatocellular carcinoma (HCC).
Oct4 and Sox2 have been found to bind to the pro-
moter region of CD133 inducing its activation in
lung cancer cell lines. Along with its expression in

Cancer stem cells in renal cell cancer 5

VC 2017 The Authors The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd

J Path: Clin Res January 2018; 4: 3–18



Ta
bl

e
1
.

Su
m

m
ar

y
of

pu
ta

ti
ve

C
SC

m
ar

ke
rs

Sa
m

pl
e

A
ss

ay

Pu
ta

ti
ve

m
ar

ke
r

of
th

e
st

u
dy

Po
si

ti
ve

m
ar

ke
rs

N
eg

at
iv

e

m
ar

ke
rs

C
SC

fe
at

u
re

s
R

ef
er

en
ce

76
9P

Si
de

po
pu

la
ti

on
A

B
C

B
1

A
B

C
C

1
,

A
B

C
G

2
C

lo
no

ge
n
ic

,
tu

m
ou

ri
ge

n
ic

it
y,

re
si

st
an

ce

to
ch

em
o

an
d

ra
di

ot
h
er

ap
y

H
u
an

g
et

al
[3

5
]

78
6O

Sp
h
er

e

fo
rm

at
io

n
as

sa
y

C
D

7
3

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ra
di

ot
he

ra
py

So
n
g

et
al

[3
6]

78
6O

Fl
ow

cy
to

m
et

ry
R

h
1
23

Sp
h
er

oi
ds

in
so

ft
ag

ar
,

pr
ol

if
er

at
io

n
,

di
ff

er
en

ti
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ra
di

ot
h
er

ap
y

Lu
et

al
[3

7
]

78
6O

,
76

9P
,

A
70

4,
C

ak
i1

,
C

ak
i2

Fl
ow

cy
to

m
et

ry
U

SP
2
1

A
LD

H
Sp

h
er

e
fo

rm
at

io
n
,

cl
on

og
en

ic
,

pr
ol

if
er

at
io

n
,

in
va

si
on

Pe
n
g

et
al

[3
8
]

A
C

H
N

Si
de

po
pu

la
ti

on
A

LD
H

1
C

D
1
05

,
C

D
1
33

Sp
h
er

e
fo

rm
at

io
n
,

se
lf

-r
en

ew
al

,

tu
m

ou
ri

ge
n
ic

it
y

U
ed

a
et

al
[3

9
]

A
C

H
N

,
C

ak
i1

Sp
h
er

e

fo
rm

at
io

n
as

sa
y

O
ct

4
,

N
an

og
,

LI
N

2
8
,

K
L4

,

Ze
b1

,
Ze

b2
,

N
-c

ad
h
er

in
,

V
im

en
ti

n
,

C
D

4
4
,

C
D

2
4

m
iR

17
Sp

h
er

e
fo

rm
at

io
n
,

se
lf

-r
en

ew
al

,

di
ff

er
en

ti
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y

Li
ch

n
er

et
al

[4
0]

A
C

H
N

,
C

ak
i1

Fl
ow

cy
to

m
et

ry
C

D
1
05

C
D

1
0
5
,

O
ct

4
,

N
an

og
,

C
D

9
0
,

C
D

7
3

C
D

2
4,

C
D

3
4
,

C
D

1
1
,

C
D

1
9
,

C
D

4
5

Sp
h
er

oi
ds

in
so

ft
ag

ar
,

h
an

gi
n
g

dr
op

s
K
h
an

et
al

[4
1
]

A
C

H
N

,
C

ak
i1

M
A

C
S

C
D

1
3
3

1
/C

D
2
4

1
,

O
ct

4
,

N
ot

ch
1
,

N
ot

ch
2,

Ja
gg

ed
1
,

Ja
gg

ed
2
,

D
LL

1,
D

LL
4

Se
lf

-r
en

ew
al

,
in

va
si

on
an

d
m

ig
ra

ti
on

,

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ch
em

ot
h
er

ap
y

(s
or

af
en

ib
an

d
ci

sp
la

ti
n
)

X
ia

o
et

al
[4

2
]

A
C

H
N

,
C

ak
i1

,
SM

K
TR

2,
SM

K
TR

3,
R

en
C

a
Si

de
po

pu
la

ti
on

D
N

A
JB

8
Tu

m
ou

ri
ge

ni
ci

ty
N

is
h
iz

aw
a

et
al

[4
3]

A
C

H
N

,
C

ak
i2

Fl
ow

cy
to

m
et

ry
A

LD
H

1
O

ct
4
,

N
an

og
,

Pa
x2

Se
lf

-r
en

ew
al

,
cl

on
og

en
ic

,
tu

m
ou

ri
ge

ni
ci

ty

C
ak

i1
,

C
ak

i2
,

78
6O

,
76

9P
Sp

h
er

e

fo
rm

at
io

n
as

sa
y

C
X
C

R
4

Sp
h
er

e
fo

rm
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y

M
ic

u
cc

i
et

al
[4

4
]

H
EK

29
3T

Sp
h
er

e

fo
rm

at
io

n
as

sa
y

A
LD

H
1

,
C

D
4
4
,
b

-c
at

en
in

,

N
ot

ch
1
,

Su
rv

iv
in

,
V
im

en
ti

n
,

N
-c

ad
h
er

in
,

Ze
b1

,
Sn

ai
l,

Sl
u
g

C
D

2
4

Sp
h
er

e
fo

rm
at

io
n
,

re
si

st
an

ce
to

ra
di

ot
he

ra
py

D
eb

eb
et

al
[4

5
]

R
C

C
xe

no
gr

af
t

Sp
h
er

e

fo
rm

at
io

n
as

sa
y

C
D

1
3
3
/C

X
C

R
4

Sp
h
er

e
fo

rm
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ch
em

ot
h
er

ap
y

V
ar

n
a

et
al

[4
6]

R
C

C
26

,
R

C
C

53
Fl

ow
cy

to
m

et
ry

C
X
C

R
4

C
X
C

R
4
,

C
D

2
4,

C
D

2
9
,

C
D

4
4
,

C
D

7
3,

N
an

og
,

O
ct

4
,

So
x2

C
D

9
0,

C
D

1
0
5
,

C
D

1
3
3
,

C
X
C

R
1
,

V
im

en
ti

n
,
b

-c
at

en
in

Sp
h
er

e
fo

rm
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ch
em

ot
h
er

ap
y

G
as

se
n
m

ei
er

et
al

[4
7]

R
C

C
s

Fl
ow

cy
to

m
et

ry
C

D
1
05

C
D

1
0
5
,

C
D

4
4
,

C
D

9
0
,

C
D

7
3,

C
D

2
9,

N
an

og
,

O
ct

4
,

V
im

en
ti

n
,

N
es

ti
n

C
D

1
33

sp
he

re
fo

rm
at

io
n
,

cl
on

og
en

ic
,

di
ff

er
en

ti
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y

B
u
ss

ol
at

i

et
al

[4
8]

R
C

C
s

Fl
ow

cy
to

m
et

ry
C

D
1
33

1
/C

D
3
4-

C
D

7
3
,

C
D

4
4
,

C
D

2
9,

V
im

en
ti

n
N

on
tu

m
ou

ri
ge

n
ic

B
ru

n
o

et
al

[4
9
]

R
C

C
s

Fl
ow

cy
to

m
et

ry
C

D
1
33

1
/C

D
2
41

C
TR

2
,

N
an

og
,

O
ct

4
,

So
x2

C
D

1
05

,
C

D
9
0

R
es

is
ta

n
ce

to
ch

em
ot

h
er

ap
y

G
al

le
gg

ia
n
te

et
al

[5
0]

R
C

C
s

Si
de

po
pu

la
ti

on
C

D
1
3
3

Sp
h
er

oi
ds

in
so

ft
ag

ar
,

di
ff

er
en

ti
at

io
n

A
dd

la
et

al
[5

1]

R
en

C
a

D
N

A
JB

8
Si

de
po

pu
la

ti
on

,
sp

h
er

e
fo

rm
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y

Y
am

as
h
it

a

et
al

[5
2]

SK
-R

C
-4

2
Sp

h
er

e

fo
rm

at
io

n
as

sa
y

O
ct

4
,

N
an

og
,

B
M

I,

b
-c

at
en

in

M
H

C
-I

I,
C

D
8
0

Sp
h
er

e
fo

rm
at

io
n
,

tu
m

ou
ri

ge
n
ic

it
y,

re
si

st
an

ce
to

ra
di

o
an

d
ch

em
ot

h
er

ap
y

Zh
on

g
et

al
[5

3
]

6 C Corr�o and H Moch

VC 2017 The Authors The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd

J Path: Clin Res January 2018; 4: 3–18



stem and progenitor cells within normal tissues,
CD133 has been proposed as a putative CSC marker
across different tumor types [68].

CD1331 cancer cells were able to form spheres,
gave rise to tumors in vivo and exhibited chemore-
sistance properties in colorectal carcinoma (CRC),
HCC, lung cancer, glioblastoma, pancreatic cancer,
and ovarian cancer. On the contrary, sorted CD1331

cells from RCC patients did not show tumourigenic
capability in vivo although they expressed stem cell
markers such as CD44, CD29, Vimentin, and Pax2
[58]. When co-transplanted with renal carcinoma
cells, CD1331 progenitors significantly enhanced
tumor development and growth. The same result was
obtain using CD1331 cells derived from normal kid-
ney tissue [72]. Of note, CD1051 cells did not
express CD133, suggesting that CD1331 cells may
represent renal resident adult progenitor cells rather
than CSCs.

Interestingly, CD1331/CD241 cells derived from
RCC cell lines ACHN and Caki1 displayed sphere for-
mation capability, enhanced invasion and migration
properties, high colony formation efficiency in soft
agar, and resistance to sorafenib and cisplatin [42].

Another interesting publication identified CD133
and CXCR4 co-expressing CSCs in spheres derived
from RCC xenografts and tumor tissues. Increased
expression of these markers was found in RCC
patients after sunitinib treatment [46]. Nevertheless,
whether the CD133 and CXCR4 positive or negative
cells had detectable levels of CD105 was not
assessed. Additionally, the gene expression profile as
well as the tumourigenic potential of the spheres was
not deciphered. Moreover, CD133– cells were also
able to give rise to tumors in immunodeficient mice
in glioblastoma and CRC [73,74].

Last, CD133 expression was found to correlate
strongly with nuclear HIF1a in RCC patients [75,76].
CD133 mRNA levels in blood can be useful for iden-
tifying metastasis, predicting recurrence, and stratify-
ing the patients into different risk groups for possible
adjuvant treatment [77]. However, CD133 expression
analysed by IHC in RCC patients was inconsistent
and varied among different studies [55,78]. Because
of the complex epigenetic and microenvironmental
modulation together with higher protein processing
and post-translation modifications, the applicability
of CD133 as a CSC marker is limited [68].

CD44

CD44 is a transmembrane glycoprotein of 85 kDa
(742 aa) encoded by the CD44 gene located on chro-
mosome 11. CD44 exists in more than 20 isoforms

due to RNA alternative splicing, giving rise to differ-
ent proteins in different cancer tissue subtypes. Due
to the wide variety of isoforms, CD44 is involved in
diverse biological processes such as cell–cell interac-
tion, cell adhesion, migration, proliferation, differen-
tiation, and angiogenesis [79].

Although other extracellular matrix (ECM) compo-
nents such as collagen, growth factors, and metallo-
proteinases can interact with CD44, the extracellular
glycosaminoglycan hyaluronan (HA) represent its pri-
mary ligand [80]. Binding of CD44 to HA promotes
multiple signalling pathways including activation of
receptor tyrosine kinases (RTK), TGFb, MAPK,
PI3K/AKT supporting cell proliferation, survival,
invasion, and ultimately homing of CSCs in many
tumor types [79,81]. In addition, CD44 has been
found to be involved in the regulation of stem cell
features via the Wnt/b-catenin signalling pathway
and protein kinase C (PKC) [82]. Because of its tight
interaction with the ECM, CD44 plays an essential
role in modulation of the CSC niche. CSCs can syn-
thetise HA to attract tumor-associated macrophages
(TAMs) in the CSC niche. On the other hand, stro-
mal cells will produce growth factors that regulate
stem cell activity [79]. Enhanced CD44 expression
was observed in RCC cell lines after co-culture with
macrophages. This effect was the result of activation
of the NFjb pathway by the TNFa derived from
TAMs [83]. TNFa enhanced migration and invasion
of ccRCC cells together with down-regulation of
E-cadherin expression and up-regulation of matrix
metalloproteinase 9 (MMP9) and CD44 expression
[84]. Interestingly, spheres derived from HEK293T,
ACHN, Caki-1, and 786O renal cancer cell lines as
well as CD1051 cells isolated from RCC specimens
showed the presence of a CD441 population with
self-renewal properties, sphere formation capability
and resistance to therapy [37,40,45]. Moreover,
CD44 expression was found to be associated with
Fuhrman grade, primary tumor stage, histological
subtype, and poor prognosis in RCC patients
[55,84,85]. Therefore, CD44 expression may serve as
a prognostic and predictive as well as potential CSC
marker for RCC [78].

In view of the involvement of CD44 in enhancing
stem cell features in cancer cells and mediating
crosstalk with the TME, CD44-based therapeutic
strategies have been developed [82]. Monoclonal
antibodies against CD44 are now in clinical trial for
patients affected by AML, whereas knockdown of
CD44 has been shown to increase sensitivity to
chemotherapy in cell cultures derived from HCC,
lung, breast and pancreatic cancers [80,86].
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CD24

CD24 is a small cell surface protein molecule com-
posed of only 27 amino acids, resulting in a molecular
weight ranging between 20 and 70 kDa depending on
the glycosylation status. It is encoded by the CD24
gene located in the chromosome 6q21. CD24 is
expressed in a wide variety of cell types, including
hematopoietic cells [87]. Nevertheless, it is preferen-
tially expressed in progenitor and stem cells. CD24
was shown to be an important maker for cancer diag-
nosis and prognosis in breast, non-small cell lung,
colon, ovarian, and prostate cancer [87–89]. CD24
upregulation has been also found associated with
CSCs and CSC features in many solid tumors. On the
contrary, breast CSCs showed low CD24 levels, sug-
gesting that the role of CD24 in stem cells may be tis-
sue dependent [90–92]. Interestingly, high CD24
expression was observed in CSCs derived from the
RCC cell line Caki2 [93], although contrasting results
were reported when analysing the expression of CD24
together with the CSC marker CD44. Nevertheless,
CD24 expression was found to correlate with tumor
grade, overall survival, and disease-free survival in
RCCs suggesting its prognostic significance [88].
Lazzeri et al identified a subpopulation of cells exhib-
iting self-renewal properties, expression of stem cell
transcription factors, and the ability to regenerate kid-
ney tissue upon injury. These cells derived from the
human embryonic kidney expressed both CD24 and
CD133 indicating they may represent putative normal
kidney stem cells [94].

Because of the very limited research studies con-
ducted on CD24 in RCC, we can conclude that, to
date, no clear observation that CD24 can be used as
a CSC marker in RCC has been made.

CXCR4

The CXC-chemokine receptor 4 (CXCR4 or CD184) is
a seven transmembrane G protein-coupled receptor
(GPCR) on the cell membrane. It is encoded by the
CXCR4 gene located on chromosome 2q22. CXCR4
selectively binds to the CXC chemokine stromal cell-
derived factor 1 (SDF1 or CXCL12) leading to the
activation of a variety of biological processes such as
proliferation, survival, migration, stemness, and angiogen-
esis [95]. A number of signalling pathways are involved
in the signal transduction. For instance, PLC/MAPK,
PI3K/AKT, JAK/STAT, and the Ras/Raf pathway.

CXCR4 was found expressed in many different
tumor tissues. It has been shown in breast, small cell
lung cancer, neuroblastoma, and renal cancer that
CXCR41 cells migrate towards tissues expressing
high levels of SDF1 to metastasise [42,96,97].

Therefore, CXCR4/SDF1 is involved in cell-stroma
interactions creating a permissive niche for metastasis
[55]. Further, SDF1 stimulates adhesion of bone mar-
row progenitor/stem cells through CD44, demonstrat-
ing again a link between CD44 and CXCR4 signalling
and TME [82].

Recent studies showed that CXCR41 cells derived
from several RCC cell lines (RCC26 and RCC53;
Caki1, Caki2, 786O, and 769P) express high levels
of stem cell-associated genes and exhibit resistance
to therapy (TKIs) and enhanced capability to form
spheres in vitro and tumors in vivo compared to
CXCR4– cells [44,47]. Conversely, inhibition of
CXCR4 by ADM3100 or small interfering RNA
(siRNA) impaired tumor formation [44,47]. Interest-
ingly, loss of pVHL in ccRCCs as well as hypoxia
led to increased CXCR4 and MMPs expression indi-
cating HIF1a may be responsible for expansion of
the CXCR4 population [98]. Supporting evidence
showed that CD1331/CXCR41 cells co-expressed
HIF1a and were located in perinecrotic areas in
RCCs [46]. Moreover, hypoxia promoted CD1331/
CXCR41 cells tumourigenicity whereas HIF2a was
shown to be involved in the expansion of CXCR41

CSCs in four RCC cell lines [44]. The translational
relevance of CXCR4 expression in the clinic was
investigated in 2673 RCC patients by meta-analysis
revealing a negative correlation between CXCR4
expression and overall survival (OS), cancer free sur-
vival, and disease free survival [99]. Taken together,
these results indicate that CXCR4 may be explored
as a potential CSC marker in RCC, perhaps in com-
bination with a second marker. Nevertheless, care
should be taken when choosing the appropriate
marker for CSC isolation since too restrictive a selec-
tion may lead to failure in targeting all the stem-like
cells present in the tumor population.

ALDH1

Aldehyde dehydrogenase 1 (ALDH1) is a cytosolic
enzyme involved in the dehydrogenation of alde-
hydes to their corresponding carboxylic acids [100].
It is encoded by the ALDH1 gene located on chromo-
some 9q21. ALDH1 plays an important role in cellu-
lar differentiation, proliferation, mobility, embryonic
development, and organ homeostasis [39].

ALDH1 has been initially proposed and used as a
marker to isolate stem cells from normal tissues such
as brain and bone marrow with potential applications
in the area of regenerative medicine [101,102]. More
recently, the activity of cytosolic ALDH1 has also
been shown to be a reliable marker of CSCs in sev-
eral types of solid tumor, including breast, colon,
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pancreas, lung, liver, prostate, and bladder [103,104].
Nevertheless, its prognostic significance in RCC is
still unclear [105], although ALDH1 was found to
correlate with tumor grade in RCC by Ozbek and co-
authors [106].

High expression of ALDH1 was found in the side
population (SP) derived from the RCC cell line
ACHN compared to the non-SP. Analysis of the
ALDH11 cells revealed enhanced sphere formation
capability, self-renewal properties, tumourigenicity and
high expression of stemness genes in the ALDH11

cells compared to ALDH1– cells. Moreover, drug
treatment and hypoxic conditions were shown to
increase the ALDH11 cell population in vitro [39].

Interestingly, a recent study investigated ALDH1
expression patterns in 24 types of normal human tis-
sue as well as in primary epithelial tumor specimens
and epithelial cancer cell lines, showing that ALDH1
may not be a suitable CSC marker for all tumor
types especially in tissues where ALDH1 is constitu-
tively highly expressed such as liver and pancreas
[107]. Therefore, growing evidence suggests that
ALDH1 is not only a putative stem cell marker, but
may actually play multiple functional roles in regu-
lating stem cell function [100].

ABCB5

The drug efflux transporter ABCB5 (ATP-binding
cassette, sub-family B, member number 5), is an inte-
gral membrane glycoprotein encoded by the ABCB5
gene located on chromosome 7p21. It is composed of
812 amino acids and has an overall molecular weight
of 90 kDa. This protein is involved in the transport
of small ions, sugar, peptides, and organic molecules
across the plasma membrane against a concentration
gradient by hydrolysis of ATP [108]. Because of its
function, ABCB5 has been considered responsible for
mediating therapeutic resistance [109].

ABCB5 has been found to be overexpressed in CSCs
derived from melanoma, liver, and colorectal cancers.
Moreover, it was found to be associated with tumor
progression, chemotherapy resistance, and recurrence in
many other tumor types [110]. For instance in renal
cell cancer, ABCB1 was found expressed in all cells
and these tumors rarely respond to primary chemother-
apy treatment [111]. Therefore, ABCB5 is exploited for
distinguishing between stem cells (side population) and
non-stem cells using flow cytometry.

Others

DNAJB8 is a member of the heat shock family of
proteins (HSP40) that regulate chaperone activity. It

is encoded by the DNAJB8 gene located on chromo-
some 3q21. DNAJB8 is commonly expressed in the
testis. Recently, Nishizawa et al, showed that
DNAJB8 is expressed in different cancer cells includ-
ing RCCs. In particular, the expression of DNAJB8
correlated with the SP compartment, and overexpres-
sion of the protein increased SP cells. Interestingly,
DNAJB8 immunisation completely abolished tumor
formation in mice, indicating that DNAJB8 can be a
target for immunotherapy [43].

MicroRNAs (miRNAs) are non-coding small RNA
molecules (22 nucleotides) involved in regulation of
gene expression by translational repression, mRNA
cleavage, and deadenylation. The role of miRNAs in
CSCs has been described for different tumor types
[112]. Six miRNAs involved in TGFb and Wnt sig-

nalling pathways showed the most significant varia-
tions in expression by RT-PCR between spheres and
parental cells derived from two metastatic RCC cell
lines, ACHN and Caki1. Among those, miR17 was
significantly downregulated in Caki1 and ACHN
spheres. Inhibition of miR17 resulted in enhanced
sphere formation indicating that TGFb signalling
plays an important role in renal CSCs and that
miR17 impairs the signalling cascade by targeting
the TGFb signalling pathway [40].

Galleggiante et al isolated a subpopulation of can-
cer cells expressing CD133 and CD24 from 40 RCC
samples. This population showed stem cell properties
such as self-renewal, differentiation, tumourigenicity
and expression of stemness-related transcription
factors. CD1331/CD241 cells appeared to be more
undifferentiated compared to the corresponding tubu-
lar adult renal progenitor cells. Interestingly, these
cells also expressed on the cell membrane the amino
acid transporter CTR2 which was found to be

involved in resistance to cisplatin [50].
Rhodamine 123 (Rh123) is a fluorescent dye that

permeates the cell membrane and accumulates in
the mitochondria proportionally to the mitochon-
drial membrane potential [113]. 786O cells were
stained with Rh123 and sorted by flow cytometry

into two population: Rh123high and Rh123low.
Rh123high exhibited high proliferative activity, dif-
ferentiation, resistance to radiation, tumourigenic
potential, and spheroid formation in soft agar, indi-
cating Rh123 as an alternative method to isolate
CSCs [37].

Finally, high CD73 expression was observed
in spheres derived from the 786O RCC cell line.
Moreover, CD731 cells displayed high levels of
stemness-related transcription factors, resistance to
radiotherapy, and tumourigenicity in vivo [36].
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Isolation techniques

Different approaches for CSC isolation have been
developed in recent years (Figure 2).

Antigen-based methods require labelling of the cells
based on the expression of specific markers. These

include magnetic bead-conjugated antibodies (MACS)
[114,115], fluorescence-activated cell sorting (FACS)
[116,117], and SP analysis [118,119]. Antigen selection

often relies on markers which have been found relevant
in developmental biology, embryonic, and hematopoi-

etic stem cell studies. Nevertheless, dissociation of the
tumor tissue into a single cell suspension may damage

surface antigens limiting the efficiency of isolating
CSCs using cellular marker-based methods [118]. Fur-

ther, cells can lose viability upon enzyme treatment and
after sorting procedures [120]. Cell sorting itself has

proven to be imprecise with 1–3% of tumourigenic
cells contaminating the non-tumourigenic population
[19]. In addition, no generally applicable markers are

known to date, and excessively permissive or restrictive
labelling may have implications when developing thera-

peutic strategies targeting CSCs based on marker
expression [19]. The identification and characterisation

of putative CSC markers may also be achieved using
functional assays [58]. In order to recreate the in vivo
CSC niche using in vitro culture conditions, three-
dimensional cell culture models were developed. Two

different methods can be adopted for culturing CSCs in
3D: anchorage-independent and anchorage-dependent.

While the anchorage-independent system takes advant-

age of the ability of CSCs to grow in suspension, the

anchorage-dependent system uses scaffolds in order to

enable cells to mimic their interaction with the ECM

microenvironment and promote features of stemness.

These methods are represented by spheroid [121,122]

and organoid cultures [123–125], and the sphere forma-

tion assay [53,117,122] and hanging drops [126,127],
respectively.

The ECM plays crucial roles in establishing the

CSC niche and in mediating tumor drug resistance. It

is composed of collagens, laminins, fibronectin, pro-

teoglycans, and all the non-cellular components pres-

ent in the tissues [128]. Different scaffolds can be

used in these 3D CSC culture assays in order to

mimic the ECM. Natural scaffolds include collagen,

gelatin, elastin, fibrinogen, agarose, and alginate.

Combinations of materials are also possible. Syn-

thetic scaffolds can overcome the risk of contamina-

tion, degradation and batch-to-batch variations

compared to natural scaffolds. These are mainly

polymeric microparticles (e.g. hydrogels, PLGA, and

PLC) [129].

Antigen-based methods

Magnetic bead-conjugated antibodies

MACS allows the isolation and enrichment of stem

cells without further staining. Cells are labelled using

antibodies conjugated to magnetic nanoparticles.

Figure 2. Identification and isolation of CSCs. Several potential CSC markers are shown. CD105, TbR, CD133, CD44, CD24, CXCR4,
and ABCB5 are some of the most studied membrane CSC markers; whereas miRNAs, DNAJB8, ALDH1 stand out among the intracellu-
lar CSC markers. Based on these markers, FACS and MACS have been adopted as isolation methods for the separation of CSCs from
other tumor cells. More recently, other techniques exploiting CSC properties have been developed with the aim of discovering poten-
tially new biomarkers; these include the sphere assay, spheroid and organoid formation and hanging drops.
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Labelled cells are then transferred into a column
placed in a strong magnetic field. During this step,
cells expressing the antigen will bind to the magnetic
beads and stay in the column, whereas all the other
cells that are negative for the antigen will flow
through [114,115]. The population of interest can be
subsequently eluted from the column.

Fluorescence-activated cell sorting

FACS is an alternative isolation method capable of
sorting cells using fluorescently labelled antibodies
targeting selected surface proteins or intracellular
markers via direct or indirect immune fluorescence
staining. Flow cytometry allows a sample of cells or
particles in suspension to be separated through a nar-
row liquid stream. As the sample passes through a
laser it allows for detection of size, granularity, and
fluorescent properties of individual cells/particles
[130]. Generally, FACS separation uses fluoro-
chromes directly conjugated with either primary or
secondary antibodies with different emission wave-
lengths. Although MACS is simpler and requires less
complicated equipment than FACS, it is monopara-
metric and cannot isolate cells via multiple markers
simultaneously [116,117].

Side population analysis

Hoechst SP analysis is one of several strategies used
in stem cell studies [131]. SP is defined as a small
fraction of cancer cells within a tumor exhibiting
stem-like properties. The ability to discriminate the
SP is based on the differential efflux of Hoechst
33342 by the multi-drug resistance ABC transporters
[132]. CSCs possess higher activity and/or higher
amounts of the ABC pumps, which are also responsi-
ble for the efflux of chemotherapeutic agents result-
ing in chemotherapy resistance of CSCs [109].
Therefore, SP stands out as the portion of cells
able to extrude the dye against a concentration
gradient when compared to cells not having stem cell
features [119].

Identification of CSCs is achieved by specifically
inhibiting ABC pumps using verapamil (100 lM) or
reserpine (5 lM). Hoechst is excited at 405 nm and
the blue signal is collected with a 450/40 nm band-
pass filter, whereas the red fluorescence is collected
with a 610/20 nm filter. Due to the high capability to
extrude Hoechst dye, the side population can be
defined as the population negative for Hoechst blue
and Hoechst red [118]. Nevertheless, analysis of the
SP has raised many concerns due to the dynamic
nature of the dye efflux property as well as toxicity
of the Hoechst dye making this technique highly
variable [120,131].

SP isolation can also be achieved by using rhoda-
mine 123 (Rh123) [37,133,134]. Rh123 is a mito-
chondrial dye that stains mitochondria with
increasing intensity as cells become activated [37].
Rh123 fluorescence intensity is an index of mito-
chondrial mass, number and activation state, and
multi-drug efflux pump activity [135]. Decreased
intra-cellular accumulations of Rh123 results from
the efflux of the dye.

Because non-stem cells may also express some of
the ABC transporters, the isolation of CSCs through
SP analysis is imperfect. While the SP may contain
some non-stem cells, conversely some stem cells
may not be located in the SP fraction [109].

Functional assays

Sphere formation assay

The sphere formation assay exploits the capability of
CSCs to grow in vitro as spheroids in an anchorage-
independent manner due to their mesenchymal phe-
notype. Cells are plated onto ultra-low attachment
plates under serum-free medium conditions. Recent
studies have demonstrated that CSC expansion
requires medium lacking serum, which is believed to
stimulate cellular differentiation [53,117,122]. The
medium composition may vary but it is generally
composed of DMEM/F12 medium supplemented with
stem cell growth factors and/or hormones (i.e. bFGF,
EGF, HGF, insulin, androgen, and progesterone).
Therefore, cancer cells with stem cell-like features
are able to proliferate and form spherical structures,
whereas all the others will die. As a result of asym-
metrical cell division, each CSC is capable of form-
ing a sphere composed of both cells that have stem
cell features as well as more differentiated cells. By
passaging the spheres, CSCs can be enriched
[53,117,122]. This results in an increased sphere
number from one passage to the other. Compared to
MACS and FACS, the sphere formation assay may
retain clonal variations within the CSC pool by
avoiding marker selection. Nevertheless, several criti-
cal parameters can impair CSC isolation and investi-
gation using the sphere formation assay. These are:
inappropriate seeding cell densities which can impact
sphere formation and sphere clonality; the presence
of quiescent CSCs which cannot be expanded using
this method; and finally, possible overestimation of
the stem cell frequency [136].

Hanging drops

In the hanging drop system, droplets of cell suspen-
sion are deposited onto a dish or into special plates
(e.g. the GravityPLUSTM Hanging Drop System,
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InSphero AG, Switzerland and Perfecta3DVR hanging
drop plates, Sigma-Aldrich). Upon inversion of the
tray, cells accumulate and aggregate by gravity on
the surface of the liquid drop. This method is mainly
used in the study of embryonic stem cells [126,127].
The Hanging Drop system allows efficient formation
of uniform-size spheroids in a relative short time,
making it a very useful tool for high-throughput
screening studies.

Tumor spheroids

Incorporation of ECM proteins into serum-free
medium may induce CSC-ECM interactions, nor-
moxic/hypoxic conditions, metabolic gradients, and
cooperation with stromal cell components through
co-culture [129]. In the tumor spheroid model, a
defined number of tumor cells are encapsulated into
macro-beads derived from natural or synthetic scaf-
folds, and allowed to float into the medium until
spheroids are formed. Another interesting version is
based on plating tumor cells into soft agar [121,122].
An initial layer of agar composed of 0.6% agarose is
deposited on the bottom of the plate. Once it has set-
tled, a second layer of 0.3% agarose containing a
tumor single cell suspension is placed onto the 0.6%
agarose. An additional feeder layer of 0.3% agarose
is then added. Agarose concentration may be adapted
depending on the cancer type.

Tumor organoids

Organoids are formed by distributing dissociated
tumor cells into Matrigel drops. Matrigel is a gel-
based natural compound that consists of laminin, col-
lagen IV, and enactin. Matrigel drops containing
tumor cells are dispersed into normal tissue culture
plates, and the cell-matrix mixture is incubated at
37 8C before adding the medium. Different ratios of
cell suspension/Matrigel can be used depending on
tumor type. Organoid medium is composed of adD-
MEM/F12 supplemented with stem cell growth fac-
tors promoting Wnt signalling pathway (B27
supplement, N-acetyl-L-cysteine, EGF, A-83, Noggin,
and R-spondin 1)[123–125].

Transplantation assay

To finally evaluate the tumourigenic potential of a
tumor cell population expressing CSC features, can-
cer cells are serially transplanted into immunocom-
promised mice (serial tumor transplantations) at low
cell density (limiting dilution assay). Cancer cells
capable of developing tumors repeatedly, with reca-
pitulation of the histological features and heterogene-
ity of the parental tumor, are defined as TICs [13].
The terms TIC and CSC are often used

interchangeably, although TIC more specifically

refers to the cell-of-origin. Nevertheless, the capabil-

ity of a cancer cell to form tumors in vivo and to

recapitulate the tumor heterogeneity of the corre-

sponding parental tumor is one of the most known

features of a CSC. Cancer cells capable of growing as

3D cultures but that do not have tumourigenic poten-
tial cannot be considered CSCs. Importantly, immune-

deficient mice are not completely devoid of an

immune system, and reactions involving host cyto-

kines and immune cells may still take place when

CSCs are transplanted into immunocompromised mice

[19,137,138]. Additionally, cells need to adapt to the

mouse milieu shaping CSC survival and properties.

Therefore, optimisation of the transplantation assay as

well as critical interpretation of the results should be

adopted when studying CSC properties in vivo.

Lineage tracing

To determine the cell(s) of origin of cancer, normal

cells are labelled under cell-specific promoters fol-

lowed by induction of genetic modifications. In this

way, a single cell or a population of cells is marked

and their signature is transmitted to all the progeny

[139]. Investigation of the cellular source of a tumor

can be achieved by identifying and tracing over time

these transformed cells responsible for forming the
tumor. In parallel, this technique can be adopted to

resolve the cell fate of tumor subpopulations in estab-

lished tumors or to determine how cells behave in

the context of the intact tissue or organism [13].

More importantly, genetic lineage tracing allows in
vivo visualisation of stem cells [129].

Normal kidney stem cells

At the top of the hierarchy of cellular organisation,

normal adult stem cells maintain tissue homeostasis

and facilitate regeneration [140]. The kidneys carry

out many different functions in the human body,
including secreting hormones, absorbing minerals, fil-

tering blood, and producing urine. Hence, impaired

kidney function can ultimately lead to life threatening

complications [141]. Tissue homeostasis in the

kidney is limited and further diminished by age or

disease [142]. This results in 20 million people

worldwide suffering for chronic kidney disease

(CKD) [143]. Therefore, identifying stem cell popula-

tions in the fetal and adult kidney is important for

developing effective therapeutic applications and

understanding stem cell biology within kidney tissue.
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Here, we briefly describe the application of embry-
onic and adult renal stem cell markers with the aim
to translate this knowledge to CSC biomarker
discovery.

Wilms’ tumor (WT) has proved to be the best
model system for studying embryonic renal stem
cells. These tumors result from differentiation arrest
of embryonic progenitor cells committed to the neph-
ric lineage [144]. Comparative gene expression
profiling of WT and fetal human kidneys showed
high concordance in the expression of the following
markers: Pax2, Six1/2, NCAM, Fzd7, and Fzd2
[145,146]. Nevertheless, embryonic renal stem cells
are entirely exhausted during nephrogenesis and the
expression of these genes is rapidly lost during dif-
ferentiation [147], limiting their utility to uncover
purely embryonic-specific renal stem cell markers.

Adult renal stem cells have been investigated using
BrdU staining [148]. BrdU is incorporated into divid-
ing cells during the pulse phase, but further cell divi-
sions will quickly dilute the stain leaving only cells
that divide infrequently such as stem cells labelled
with BrdU [149]. Nevertheless, some limitations
must be considered such as adult stem cells dividing
infrequently and not being labelled and, on the other
hand, kidney has normally a limited mitotic index
resulting in impaired signal dilution.

Following BrdU staining, a subset of cells express-
ing CD133 and CD24 were isolated from the urinary
pole of Bowman’s capsule and from the proximal
tubules, in particular in the S3 segment. These cells
also expressed stemness markers (i.e. Sox2, CD44,
Oct4, and Vimentin), and could be discriminated by
differential CD106 expression [150,151]. Stem cells
derived from the Bowman’s capsule were shown to
move and differentiate from the urinary pole to the
vascular pole acquiring podocyte traits (PDX marker)
and losing stem cell markers (CD133 and CD24),
whereas stem cells from the distal end of the proxi-
mal tubules were able to migrate within this segment
[150–152]. The renal papilla offers a perfect niche
for stem cells due to its hypoxic and hyperosmotic
microenvironment [153]. Interestingly, Nestin and
CD133 have been found to be expressed in stem cells
derived from papillae [154].

Several studies have demonstrated that resident
adult kidney stem cells are not the major player
involved in tissue repair in the proximal tubule [155].
While differentiated cells undergo EMT and prolifer-
ate to repopulate the damaged area, some investigators
have proposed that other non-resident stem cells such
as bone marrow-derived stem cells or MSCs may be
also involved in the process [147]. Nevertheless, these
cells are defined as renal progenitor cells rather than

renal stem cells due to their limited differentiation

capability and lack of self-renewal properties.

Conclusions

Tumor relapse and metastasis are the primary causes

of poor survival in ccRCC patients. CSCs are thought

to be responsible for tumor propagation, metastasis

formation, and treatment failure in many solid
tumors, including renal cancer [25–34]. According to

the CSC hypothesis, conventional therapies (i.e. radi-

ation and chemotherapy) usually eliminate the major-

ity of cells present in the tumor bulk while sparing

the CSC pool [18]. This results in tumor recurrence.

Therefore, understanding the mechanisms underlying

metastasis and drug-resistance associated with CSCs

may help to identify new therapeutic options.
Various approaches have been developed with

the aim to successfully isolate and characterise

CSCs, leading to the identification of a variety of

CSC markers [156]. However, contrasting results

have been reported in the literature on the use of

these biomarkers [36,73,74,107]. Several studies

have shown that CSC markers are not unique across
tumor types; therefore, knowledge on relevant

markers for NSCs or CSCs from other tumor types

may not be useful in renal cancer. Growing evi-

dence suggests that distinct CSC subpopulations

may coexist within a heterogeneous tumor and new

CSC (sub-)clones can be generated, selected and

compete with each other similarly to the stochastic

model during tumor progression and treatment,

resulting in greater intra- and inter-CSC clone vari-

ability [140]. Therefore, some biomarkers can be

relevant and applicable in certain phases during

tumor development and progression, whereas they

become obsolete in others.
Many scientists have raised concerns about the

stem cell hypothesis. In particular, the fact that CSCs

are considered as a rare slow-cycling subpopulation
of cells questioned the possibility of their involve-

ment in treatment failure, in support of mechanisms

of acquired or intrinsic resistance [19]. Many studies

demonstrate a higher CSC content than would be

expected under the hypothesis of CSCs being a small

subset, which may be explained by inefficient isola-

tion methods affecting functional assays as well as

xenograft rates [120]. Finally, if CSCs are slowly

proliferating one could argue that CSCs are lost dur-

ing in vitro manipulation, whereas these cells remain

a constant fraction of the total population [109]. All
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these concerns finds their explanation in the plastic

nature of CSCs as well as technical issues.
CSC traits are sustained by interaction with the

TME (niche) [21]. The CSC niche is an anatomically

distinct TME present within a tumor that supports

and sustains CSC properties [157,158]. It is com-

posed of ECM, cancer-associated fibroblasts, mesen-

chymal stem cells, endothelial, and immune cells

[137]. Stem cell niches are often localised in hypoxic

regions where low O2 levels induce slow cycle pro-

liferation and minimise DNA damage due to ROS

[44,46]. Processes such as inflammation, hypoxia,

angiogenesis and EMT taking place within the TME

contribute to the maintenance of CSC fate by acting

on the most known pathways regulating CSCs: Wnt,

SHH, Notch, TGFb, and growth factor-receptor

tyrosine kinase (RTK) [118,137,158,159]. Interest-

ingly, tumor cells in the non-CSC compartment can

spontaneously undergo EMT and acquire a CSC-like

phenotype and surface marker expression [160]. At

the same time, CSCs display different stemness fea-

tures depending on the microenvironment, and these

features may be transient [138,157]. The entire pro-
cess has to be considered reversible, plastic, and

dynamic.
Therefore, understanding the mechanisms underly-

ing the properties of CSCs, and the integration of

genomic and functional assays exploiting such fea-

tures, may advance CSC studies as well as promote

the identification of new biomarkers for renal CSCs.

CSC assays should take into consideration the contri-

bution of the niche. Moreover, optimisation of the

transplantation assay using highly immune-deficient

mice humanised with human TME and growth fac-

tors together with complementary lineage tracing

analysis is of outmost importance for advancing CSC

studies [137]. Last, combination of therapies specifi-

cally targeting CSCs by not only acting on CSC sur-

face markers but also inhibiting CSC-related
signalling pathways, delivering CSC-specific thera-

peutics as well as targeting the CSC niche together

with conventional chemotherapy and radiotherapy,

may ultimately lead to improved RCC patient sur-

vival [55,137].
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