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Abstract: Tissue engineering aims to repair, restore, and/or replace tissues in the human body as
an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-
dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold
pore size influences vascularization and extracellular matrix composition both in vivo and in vitro,
to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which
have markedly different tissue properties despite similar multipotent stem cell populations. To
rationally design biomaterials for specific cell and tissue fate specification, it is critical to understand
the molecular processes governed by cell-biomaterial interactions, which guide cell fate specification.
Building on our previous work, in this report we investigated the hypothesis that scaffold pore curva-
ture, the direct consequence of pore size, modulates the differentiation trajectory of mesenchymal
stem cells (MSCs) through alterations in the cytoskeleton. First, we demonstrated that sufficiently
small pores facilitate cell clustering in subcutaneous explants cultured in vivo, which we previously
reported to demonstrate stem tissue phenotype both in vivo and in vitro. Based on this observation,
we cultured cell-scaffold constructs in vitro to assess early time point interactions between cells and
the matrix as a function of pore size. We demonstrate that principle curvature directly influences
nuclear aspect and cell aggregation in vitro. Scaffold pores with a sufficiently low degree of principle
curvature enables cell differentiation; pharmacologic inhibition of actin cytoskeleton polymerization
in these scaffolds decreased differentiation, indicating a critical role of the cytoskeleton in transduc-
ing cues from the scaffold pore microenvironment to the cell nucleus. We fabricated a macropore
model, which allows for three-dimensional confocal imaging and demonstrates that a higher princi-
ple curvature facilitates cell aggregation and the formation of a potentially protective niche within
scaffold macropores which prevents MSC differentiation and retains their stemness. Sufficiently
high principle curvature upregulates yes-associated protein (YAP) phosphorylation while decreased
principle curvature downregulates YAP phosphorylation and increases YAP nuclear translocation
with subsequent transcriptional activation towards an osteogenic differentiation fate. Finally, we
demonstrate that the inhibition of the YAP/TAZ pathway causes a defect in differentiation, while
YAP/TAZ activation causes premature differentiation in a curvature-dependent way when modu-
lated by verteporfin (VP) and 1-oleyl-lysophosphatidic acid (LPA), respectively, confirming the critical
role of biomaterials-mediated YAP/TAZ signaling in cell differentiation and fate specification. Our
data support that the principle curvature of scaffold macropores is a critical design criterion which
guides the differentiation trajectory of mesenchymal stem cells’ scaffolds. Biomaterial-mediated
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regulation of YAP/TAZ may significantly contribute to influencing the regenerative outcomes of
biomaterials-based tissue engineering strategies through their specific pore design.

Keywords: tissue engineering; scaffolds; regenerative medicine; mechanotransduction; mesenchymal
stem cell

1. Introduction

Tissue engineering aims to repair, replace, and restore biologically functional tissues
in the human body through synergistic applications of biomaterials, cell signaling moieties,
and cell sources capable of regeneration [1,2]. Biomaterials serve as an artificial, temporary
extracellular matrix (ECM) to organize regeneration [3]. In recent years, specific criteria
of biomaterials constructs have been identified which contribute to their success as tissue
engineering matrices [4]. Nanofibrous and textured biomaterial implants result in increased
protein adsorption and cell adhesion [5], proliferation [6–9], and differentiation [10–12].
Highly porous implants facilitate mass transfer and host integration [13–16]. Improved
fabrication protocols have facilitated advancements in highly tunable constructs of various
stiffness [17,18], controlled drug delivery [19,20] and stimuli responsive behavior [21,22].
Such findings enable us to elucidate the contribution of each of these factors towards tissue
fate. The grand challenge identified in currently available biomaterials, hindering their
widespread clinical use, is improving the predictability of regenerative outcomes [23]. To
accomplish this, an intimate understanding of the cell-biomaterial interface is critical for
purpose-designed regenerative biomaterials [24].

Mesenchymal stem cells (MSCs), capable of the maintenance, repair and regeneration
of skeletal tissues due to their multipotency and proliferative capacity, represent an ideal
cell source for skeletal regeneration [25–28]. Our group is particularly interested in two
MSC sources: the cranial suture (suture mesenchymal stem cells, SMSC) and long bone
(bone marrow mesenchymal stem cells, BMSC)—each representing a unique regenerative
potential. Craniosynostosis is a debilitating developmental disease of the cranial suture
mesenchyme, characterized by premature depletion of the SMSC population, resulting in
stunted craniofacial growth and increased intracranial pressure that has the potential to
impact both skull and brain growth [29,30]. In a tissue engineering approach to treating
craniosynostosis, the ideal biomaterial construct would maintain the stemness of implanted
MSCs, acting as a stem cell reservoir to normalize craniofacial growth and development
throughout childhood and adolescence [28,31,32]. In contrast, in the case of alveolar bone
regeneration–for example guided tissue regeneration in preparation for dental implant
placement or osseous surgery for periodontal regeneration—the desirable regenerative
outcome is for MSCs to predictably differentiate to form robust bone [33–35].

Our group previously demonstrated unique scaffold microenvironments adequate
for osteogenic differentiation and suture stem cell maintenance, modulated by scaffold
macropore size, as summarized in Scheme 1 [27,28]. Optimized nanofibrous, macroporous
scaffolds of discrete, uniform pores less than 125 µm in diameter recapitulate aspects of
the cranial suture mesenchyme and maintain stemness of SMSCs. On the other hand,
nanofibrous macroporous scaffolds of sufficiently large pore diameter, greater than 250 µm,
facilitate robust osteogenic differentiation and vascularization of a mature extracellular
matrix. We established that porosity is a key consideration in scaffold design using a
well-controlled scaffold fabrication platform; however, the underlying mechanisms by
which cells respond to their macroporous microenvironment have yet to be elucidated.

This schematic illustrates that the same cell type is capable of multiple regenerative
fates, guided by the biomaterial microenvironment, which acts as an exogenous factor to
guide regeneration. Building from these phenotypic observations in vivo and in vitro, we
aimed to determine the molecular mechanism by which scaffold pores modulate cell fate.
In addition to mechanistic insight at the cell-biomaterial interface provided in the present
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study, we also assess potential differences between cranial neural crest-derived (SMSC) and
trunk-derived (BMSC) MSCs of similar function but distinct embryonic origin.

Scheme 1. Scaffold macropore diameter modulates tissue phenotype and gene expression, in vitro
and in vivo (Ref: Swanson et al., Biomaterials 2021 [28]). Upward arrows indicate upregulation,
downward arrows indicate downregulation.

Skeletal organs respond to mechanical stimuli [36,37]. For example: a tennis player’s
dominant arm demonstrates increased cortical thickness and bone mineral density due
to increased repeated loading [38]. Strength training is demonstrated to slow or reverse
the progression of osteoporosis [39], and the cyclic tensile strain of the cranial suture
causes suture maturation and differentiation [40,41]. Traditionally, osteocytes have been
thought to be the mechanosensitive organ of bone [42]. More recently, MSCs have also
been demonstrated to respond to their mechanical microenvironment, and correlation
has been drawn between mechanical stress and cell differentiation fate [43,44]. Cells‘
mechanical environments include stiffness [45], cell adhesion area [46,47], compression [48]
and tension [49,50]. Each of these factors, among others, may be designed in a biomaterial
scaffold to guide MSC fate. The cytoskeletal machinery of MSCs, including integrins,
focal adhesion kinase, paxillin, talin, vinculin and others, transduce cytoskeletal strain to
the nucleus [51]. Critically, the organization of the cytoskeleton mediates the transfer of
microenvironmental strain through the cell and guides its response to loading.

Building on our previous work, we sought to determine the role of scaffold macropore
size to modulate differentiation and stemness of skeletal and craniofacial skeletal MSCs,
given their mechanosensitivity. Specifically, we aim to address the degree to which princi-
ple curvature of macropores regulates differential cell fate and provide evidence to establish
our major hypothesis that YAP/TAZ signaling is an important regulator of MSC fate in
biomaterial tissue engineering scaffolds. The overall goals were to: (1) elucidate the cause-
effect relationship of principle curvature on cellular and nuclear organization; (2) elucidate
the significance of cytoskeletal strain on cell fate using a modulator of actin polymerization;
(3) identify molecular pathways differentially upregulated soon after scaffold seeding
that may transduce curvature-mediated cell fate; and (4) validate these findings with a
pharmacologic modulation of the target pathway. Overall, here we report that steep princi-
ple curvature in sufficiently small diameter pores (<125 µm diameter) inhibits YAP/TAZ
activation and favors cytosolic YAP phosphorylation (inactivation), contributing to mainte-
nance of stemness. On the other hand, sufficiently shallow principle curvature facilitates
YAP/TAZ activation and nuclear translocation as early as 48 h after seeding and is in-part
responsible for curvature-mediated osteogenic differentiation. Together, our work shows
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that we can take advantage of the mechanosensitivity of MSCs to engineer tissue fate using
micro-scale features of a biomaterial by using advanced scaffolding technology–to drive
towards stemness in the case of craniosynostosis treatment, or towards differentiation in
the case of bone augmentation.

2. Results
2.1. Discretely Controlled Macropore Diameters Modulate Principle Curvature in
Nanofibrous Scaffolds

Previously, we reported that pore size modulates tissue phenotype in vitro and
in vivo [27,28]. Sufficiently large pores (>250 µm diameter), with sufficiently low (shallow)
principle curvature, facilitated an osteogenic fate towards differentiated bone. Sufficiently
small pores (<125 µm diameter), with sufficiently steep principle curvature, facilitates the
maintenance of stemness and prevented osteogenic differentiation. In vivo, we demon-
strated that pores >250 µm diameter facilitated robust vascularization in terms of vascu-
lature in-growth, vasculature density, vasculature maturity, and more mature collagen in
the extracellular matrix [27,28]. Based on these findings, we hypothesized that biomaterial
curvature specifically may modulate cell fate. We also sought to investigate in more detail
the parameters of our scaffolds.

Scanning electron micrograph (SEM) images demonstrate the uniform spherical macro-
pores of our scaffolding platform, fabricated from poly (L-lactic acid) (PLLA, Figure 1A),
consistent with our previous work [20,27,28]. The size range of macropores is controlled
by a sugar sphere porogen method, summarized schematically in Scheme 2, where molec-
ular sieves select for porogens of specific diameter ranges: large (250–425 µm) and small
(60–125 µm). Interconnections between macropores allow for nutrient and waste exchange,
as well as cell migration and vascular ingrowth. The relative pore surface area that is
missing due to interconnections between adjacent pores is independent of pore size [28].
In addition, the compressive modulus does not vary significantly by pore size [28] and is
sufficiently stiff so that differential cellular response is attributed to morphology, rather
than stiffness of the constructs [52].

Figure 1. Nanofibrous, macroporous tissue engineering scaffolds visualized by scanning electron
microscopy (SEM) ((A), scale: top = 100 µm; bottom = 10 µm). Image analysis of SEM images is used
to calculate average principle curvature (B) and the average area subtended by a mesenchymal stem
cell (MSC, (C)). ** = p < 0.01; **** = p < 0.0001.
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Scheme 2. Nanofibrous, macroporous tissue engineering scaffolds are prepared by a sugar sphere
porogen method and thermally induced phase separation from poly (L-lactic acid) (PLLA). Created
with Biorender.

We determined the average principle Gaussian curvature to be 0.0157 µm−1 and
0.0058 µm−1 for large and small macropores, respectively, based on image analysis (Figure 1B).
The solid angle subtended by a cell (a measure of the area of the segment of a unit sphere,
centered at the apex, that an object covers) approximates the curvature experienced by a
single cell as a result of pore diameter. The solid angle is defined as:

Solid Angle (K) =
1 sr
r2 .

We approximated the surface area of an MSC as an elipsoid with 10 µm height and
20 µm width, resulting in surface area of 536 µm2. Based on this, the average solid angle
subtended by an MSC is 0.0189 sr and 0.248 sr, for large and small macropores, respectively
(Figure 1C).

2.2. Scaffold Pore Size Facilitates Cell Organization In Vivo and In Vitro

After 4 weeks of subcutaneous implantation in wild type mice, where BMSC and
SMSCs had been seeded to scaffolds of uniformly low or high principle curvature (large
and small pores, respectively; 5 mm diameter × 1.5 mm height), we assessed the spatial
distribution of cells within the scaffold construct for insight as to how pore curvature
may differentially modulate tissue organization (Figure 2A). After four weeks we pre-
viously observed phenotype differences between engineered tissue constructs based on
pore size [28]. Both constructs and cell types demonstrate cells which are well-spread
throughout the macropores.

Spatial point pattern analysis (SPPA) computes the estimated statistical spatial density
of events relative to an arbitrary field of points within the available space [53,54]. In this
case, the events are MSC nuclei as assessed from H&E histology, and available space is
the scaffold macropores. We identified an increased tendency of MSCs to cluster near to
each other in small pore (S, <125 µm diameter) scaffolds compared to large pore scaffolds
(L, >250 µm diameter), consistent between both cell types (Figure 2B) when compared to
a Monte Carlo simulation of randomness (96% envelope, AUCExp − AUCTheo = 0; AUC:
Area Under the Curve; Exp = experimental; Theo = theoretical). While both pore size
scaffolds facilitate some degree of cell clustering compared to complete spatial randomness,
this observation is seen more strongly in pores <125 µm diameter, with a sufficiently
steep principle curvature (Figure 2C). Monolayer (flat) two dimensional cell culture is
an example of zero principle curvature and complete spatial randomness. Calculation of
second-order K-statistic by SPPA also indicates an increased tendency of MSCs to appear
clustered compared to a homogenous poison distribution (complete spatial randomness) in
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the <125 µm diameter pore scaffolds compared to large pore scaffolds (p < 0.05), for both
cell types, Figure 2D).

Figure 2. Schematic overview of the subcutaneous implantation study is shown at the top, leading to
histologic observation. Hematoxylin and eosin-stained histologic sections from cell-laden scaffolds
implanted subcutaneously in mice for 4 weeks ((A), scale = 200 µm) are used as inputs for first
order (B,C) and second order (D) spatial point pattern analysis. Scheme created with Biorender.
AUC = Area under the curve; Theo = theoretical. Fest = F-statistic (first order); Kest = K-statistic
(second order). * = p < 0.05.
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Our in vivo findings suggest that scaffold pore size modulates cell and tissue fate, in
part, by differential cell organization. In cell-scaffold explants, which we previously demon-
strated to facilitate maintenance of stemness and lack of differentiation [28], we observe
increased cell clustering (F-statistic) and the tendency of cells to cluster (K-statistic) within
scaffold macropores. On the other hand, in cell-scaffold explants, which we previously
demonstrated to facilitate robust osteogenic differentiation at this time point [27,28], we
observe less cell clustering and an increased tendency towards spatial randomness. Based
on this proof-of-principle observation, which correlates tissue phenotype with cellular
organization, we next assessed the degree to which scaffold macropore curvature facilitates
cell organization soon after seeding in vitro using the same scaffold platform. In vitro
assessment allows for high throughput investigation without the influence of the host
environment, specifically isolating the modulation of cell fate to variables related to the
biomaterial construct, namely pore size.

Consistent with our hypothesis, pores >250 µm diameter (L) consistently facilitate a
higher nuclear aspect ratio (NAR) and a more elongated nucleus compared to nuclei in
pores <125 µm diameter (S) (Figure 3A,B, L vs. S are significant at each time point and
cell type, p < 0.001), without significantly affecting nuclear cross-sectional area (Figure 3C).
Consistent with our observations in vivo, pores <125 µm diameter facilitate increased
clustering within macropores (Figure 3D, L vs. S) and exhibit a decreased nearest neighbor
distance (Figure 3E, L vs. S are significant at each time point and cell type). Despite these
changes in cell morphology, which are consistent for at least the first week of in vitro
culture, the scaffolds are uniformly cellularized and MSCs are well-distributed throughout
the volume of the scaffold at 1 weeks’ time (Figure S1).

Figure 3. Confocal laser microscopy images of cell nuclei, seeded to large (left) and small (right) pore
scaffolds, cultured for up to 7 days in vitro. Nuclei were measured for their aspect ratio over time
((A,B); dotted line indicates scaffold macropore wall) and area (C) nearest neighbor distance (D), and
number of cells per cluster (E). * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

2.3. Cytoskeletal Disruption in Scaffold Macropores Alters Cell Morphology and Gene Expression

Given our observations that macropore principle curvature alters cell distribution and
nuclear morphology within scaffold constructs, and strong evidence in the literature to
suggest that cytoskeletal morphology affects nuclear activity [43,46,51], we were curious
as to the degree to which cytoskeletal integrity modulates curvature-mediated tissue fate.
Cell-scaffold constructs were treated with cytochalasin D (CytD), an inhibitor of actin
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polymerization. CytD caused a rounder cytoskeletal and nuclear morphology, which
were more pronounced in constructs with pore diameter >250 µm as compared to pore
diameter <125 µm, in a dose-dependent manner (Figure 4A). Gene expression analysis of
cell–scaffold constructs treated with 500 nM CytD for 24 h, following 1 week of in vitro
culture, highlights that brief cytoskeletal disruption during early cell–scaffold culture
affects differentiation (Figure 4B). For both BMSC and SMSCs, large pore constructs treated
with 500 nM CytD demonstrate an increase in stemness marker CD44 and trend suggesting
a decrease in osteogenic markers RUNX2 and SP7. The treatment of small pore constructs
for both cell types demonstrate an unexpected decrease in CD44 expression, indicating that
some degree of curvature-mediated cytoskeletal arrangement is likely critical.

Figure 4. Confocal laser microscopy images of cells seeded to large (left) and small (right) pore
scaffolds, cultured for 7 days in vitro and treated with Cytochalasin D (CytD) for 24 h (green: actin,
blue: DAPI/nucleus; scale = 50 um, (A)). Quantitative real-time polymerase chain reaction gene
expression results for 500 nM CytD treatment compared to vehicle control are shown below (B).
* = p < 0.05, *** = p < 0.001.
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2.4. Curvature-Mediated Cytoskeletal Strain May Differentially Regulate YAP/TAZ Signaling in
Cell–Scaffold Constructs

The actin cytoskeleton and stress fibers resulting from mechanical strain on cells are
important mediators between a cell’s mechanical external environment and intracellular
signaling processes, specifically via Hippo-YAP signaling (Scheme 3). CytD treatment
has been described to indirectly inactivate YAP/TAZ signaling and decrease mechano-
induced transcription [55–57]. Given the gene expression pattern observed in Figure 4
resulting from 24 h of pharmacologic cytoskeletal disruption, we hypothesized the potential
involvement of YAP/TAZ signaling in curvature-mediated tissue fate, particularly at early
time points following cell seeding. Indeed, we confirmed that CytD treatment induces
YAP phosphorylation (inactivation) and cytosolic retention in large pore scaffolds in a dose
dependent manner, the combination of which contributes to impaired YAP/TAZ signaling
(Figure 5).

Scheme 3. Overview of YAP/TAZ signaling. CytD = cytochalasin D; NPC = nuclear pore channel.
Created with Biorender.
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Figure 5. Immunofluorescence demonstrates the effect of CytD administration to increase YAP
phosphorylation (left) and decrease nuclear YAP translocation (right) in a dose-dependent manner,
consistent with the literature after 7 days culture and 24 h CytD administration.

We next assessed gene expression related to mechanotransduction to further probe
our hypothesis that YAP/TAZ may be a driver of curvature-induced cell fate. Three macro-
porous scaffold constructs were fabricated: small (S, 60–125 µm diameter), medium (M,
125–250 µm diameter) and large (L, 250–425 µm). Unrestricted hierarchical clustering by
Pearson correlation identified constructs with pore size >250 µm as having a distinct differ-
entiation trajectory from other cell–scaffold constructs beginning at 24 h post-seeding, most
distinct by 48 h (Figure 6A). We observe curvature-mediated induction of genes directly
targeted by and involved in YAP/TAZ signaling (CTGF, YAP, RHOA), and genes involved
in focal adhesion kinase signaling (VCL, ZYX, TLN1, TLN2, RHOA) and nuclear proteins
(LMNA). Most notably, we observe the upregulation of CTGF expression, a direct target
of YAP, as well as increased YAP1 expression in scaffolds with sufficiently low principle
curvature (Figure 6B). Western blot analysis of cell–scaffold constructs corroborated with
CTGF gene expression, demonstrating increased YAP/TAZ phosphorylation in constructs
with pore size <125 µm diameter (S) by day 3 of in vitro culture, compared to >250 µm
diameter pore constructs (L) and monolayer (F) control (Figure 6C,D). Monolayer con-
trol (F) is considered as infinitesimally low principle curvature. Pore diameters greater
than 250 µm showed a distinct trajectory of YAP/TAZ activation, while the difference
between 125–250 µm and 60–125 µm is less dramatic, but still distinct with time, facilitating
YAP/TAZ inactivation.



Int. J. Mol. Sci. 2022, 23, 4499 11 of 27

Figure 6. Gene expression analysis of cell–scaffold constructs demonstrate upregulation of
mechanosensation and mechanotransduction related genes by 48 h in vitro (A). CTGF and YAP
expression increase significantly in large pore constructs at 48 h (B). Western blot for YAP phospho-
rylation (top, (C)) and total YAP (middle, (C)), compared to GAPDH (bottom, (C)) from cell lysate
of cells cultured on scaffolds for up to 1 week corroborate to suggest differential YAP regulation
(S: small pore, L: large pore, F: flat/2D monolayer control; red = day 1, blue = day 3, green = day 5,
pink = day 7), quantified in (D). * = p < 0.05, *** = p < 0.001, **** = p < 0.0001. n.s. = non-significant.

2.5. Reproducing Curvature-Mediated Cell Organization with a Macropore-Mimetic Hemisphere
Platform to Assess Differential YAP Regulation

We sought to recapitulate the three-dimensional macropore microenvironment with a
well-controlled platform that lent itself to confocal laser microscopy imaging. We fabricated
a macropore-mimetic hemisphere (MMH) from polydimethylsiloxane (PDMS), an optically
clear silicon-based polymer, by soft lithography techniques (Figure S3). Master molds
were designed with pore hemispheres to match the average pore diameters observed in
our scaffolds by SEM (Figure S2A–D). PDMS was cast (Figure S2E), and constructs were
seeded with MSCs for up to one week of in vitro culture (Figure S2F,G). No cytotoxicity
was observed. To ensure that the PDMS MMH platform accurately reproduced biologic
phenomena we observe in scaffold constructs, the stiffness of PDMS was matched to our
PLLA scaffolds by optimizing its synthesis (Figure S2H). Confocal laser microscopy and
SEM imaging of PDMS constructs cultured with MSCs for 1 week in vitro serve as a proof
of concept that these hemispheres regulate cell organization and recapitulate macropore
curvature-induced organization (Figure 7).
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Figure 7. Cells cultured in macropore-mimetic hemispheres cast from PDMS, visualized by confocal
laser microscopy (green: actin, blue: DAPI/nucleus, (A)) and scanning electron microscopy (SEM,
(B)) Circular dashed line represents macropore perimeter.

We assessed the regulation of YAP/TAZ signaling in BMSCs cultured in MMH con-
structs for up to 1 week in vitro by immunofluorescence staining of YAP phosphorylation
(Figure 8). At 24 h, no significant differences in YAP phosphorylation are observed. By
48 h, pYAP expression is increased in small MMH pores and nearly depleted in large pore
constructs. This differential YAP/TAZ regulation is maintained at 1 week and is consistent
for both BMSC and SMSC (Figure S3), corroborating the Western blot evidence shown in
Figure 6.

CD146 expression, a skeletal progenitor cell marker, follows a similar pattern to pYAP
at 48 h, correlating stemness to YAP activity (Figure 9). Sufficiently steep principle curvature
facilitates cell clustering, as observed in vivo and in vitro, and is recapitulated in the MMH
model. When observed by cross-section from three-dimensional confocal laser microscopy,
the most intense CD146 expression originates from the epicenter of the cell cluster and
dissipates towards the periphery, suggesting a potential progenitor/stem cell-protective
niche facilitated by curvature-induced clustering in sufficiently small diameter macropores.
The same is observed for pYAP expression at 48 h and 1 week in vitro (data not shown).

2.6. Curvature Differentially Regulates YAP Nuclear Translocation and Its Cytosolic
Phosphorylation In Vitro in Cell-Scaffold Constructs

Given our promising results suggesting curvature-mediated YAP inactivation in con-
structs with sufficiently steep principle curvature in the MMH model, we next sought to
quantitatively assess YAP nuclear accumulation (indicates YAP/TAZ activation) and YAP
phosphorylation (indicates YAP/TAZ inactivation) directly in PLLA macroporous scaffolds.
Constructs were cultured in vitro for up to three weeks and assessed for total YAP protein
(tYAP, Figure 10A) and YAP phosphorylation (pYAP, Figure 10B) in histologic sections.
Based on nuclear colocalization analysis of tYAP, we demonstrate that pores >250 µm facil-
itate YAP nuclear localization by 48 h, which is maintained at peak levels for up to 1 week
(Figure 10C). Nuclear localization of YAP remains higher in sufficiently low principle cur-
vature constructs compared to pores <125 µm in diameter where YAP nuclear translocation
remains at basal levels, for at least three weeks. Consistent with observations from the
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MMH model and Western blot, YAP phosphorylation dramatically decreases in sufficiently
low principle curvature constructs at 48 h in vitro (Figure 10D). Low levels of pYAP are
maintained for up to three weeks. On the other hand, sufficiently steep principle curvature
facilitates the upregulation of pYAP in the first week of culture and is maintained for up to
3 weeks.

Figure 8. Bone marrow mesenchymal stem cells (BMSCs) are cultured on PDMS macropore-mimetic
hemispheres for up to 1 week in vitro; changes in YAP phosphorylation (red) are observed by confocal
laser microscopy and immunofluorescence. Hemisphere perimeters are outlined in white. Circular
dotted lines indicate macropore perimeter.
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Figure 9. Concurrent with decreases in YAP phosphorylation in large pores at 48 h, CD146 expression
is significantly decreased in large pores compared to small in both BMSC and SMSC. A cross section
of CD146 immunofluorescence for BMSCs cultured in small pore constructs for 48 h is shown at the
bottom. Circular dotted lines indicate macropore perimeter.
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Figure 10. Cell–scaffold constructs are cultured for up to 3 weeks in vitro and expression of total YAP
(tYAP, (A)) and YAP phosphorylation (pYAP, (B)) are observed in histologic sections by immunoflu-
orescence and confocal laser microscopy. YAP nuclear localization (C) and YAP phosphorylation
intensity per cell (D) are quantified by image analysis. *** = p < 0.001, **** = p < 0.0001.

2.7. Pharmacologic Intervention Highlights the Role of YAP/TAZ Signaling to Regulate Gene
Expression Where Curvature-Mediated Cytoskeletal Strain Is the Major Driver of
Regenerative Fate

To confirm the role of YAP/TAZ signaling in curvature-mediated engineered tissue fate
determination, we tested the ability of a pharmacologic inhibitor and agonist to manipulate
curvature-directed tissue fate. Constructs were treated for 5 days with either verteporfin
(VP) or lysophosphatidic acid (LPA). VP is a small molecule inhibitor that physically blocks
YAP/TAZ from binding its transcriptional co-factors, namely transcriptional enhancer
associated domain (TEAD) transcription factors (Scheme 3), therefore reducing YAP/TAZ-
mediated transcriptional activity (Figure S4). We demonstrate that VP administration
abrogates YAP transcriptional activity by showing diminished expression of target gene
CTGF and YAP1 in pore size >250 µm. VP simultaneously causes decreased osteogenic
RUNX2 expression and the upregulation of stem progenitor cell marker GLI1 (Figure 11A).
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Interestingly, the expression of CD44, a stem cell marker, was decreased modestly by
VP treatment.

The ROCK agonist LPA (lysophosphatidic acid) was used to directly interfere with
YAP phosphorylation and increase YAP/TAZ activation in a cytoskeleton-independent
manner (Figure S4). LPA is also shown to increase stress fiber density without altering
nuclear area [51]. We demonstrate that pharmacologic activation of YAP/TAZ by LPA
overcomes inactivation facilitated by a sufficiently steep principle curvature to increase
CTGF and YAP transcription in scaffolds with pores <125 µm in diameter. Consistent with
our overall hypothesis, LPA administration causes a modest increase in early osteogenic
gene expression (RUNX2) and a decrease in stem cell markers CD44 and GLI1 (Figure 11B).

Figure 11. Quantitative real time polymerase chain reaction assessment of gene expression in scaffold-
constructs after 5 days culture with pharmacologic modulators of YAP by verteporfin (VP, 5 µM, (A))
or lysophosphatidic acid (LPA, 25 µM, (B)), compared to vehicle control. * = p < 0.05, ** = p < 0.01,
*** = p < 0.001, **** = p < 0.0001.

3. Discussion

Skeletal tissues, including alveolar bone and the cranial suture, are composed of a rich
extracellular matrix (ECM) and are exposed to significant mechanical loads which are trans-
mitted to cells and nuclei [58–60]. In their physiologic roles, MSCs of these tissues undergo
marked differentiation in response to mechanical stress to form differentiated bone [61],
in nearly all physiologic systems [62]. In order to maintain MSC stemness, studies of the
cranial suture indicate a mechanoprotective ECM environment, which may function to
maintain SMSC stemness and prevent osteogenic differentiation [63]. The means by which
biomaterial scaffolds serving as an artificial ECM could modulate this cellular response
remains underexplored in the field of tissue engineering. A few recent reports [40,64]
describe the roles of mechanotransduction in various biomaterial cell culture platforms
such as gelatin methacrylate (GelMA), polyacrylamide (PA) or poly ethyleneglycol (PEG)
gels, as well as two-dimensional cell sheets, namely focused on substrate stiffness. Here, we
focused on the degree to which geometric macropore curvature in a highly porous scaffold
construct regulates YAP/TAZ activity and osteogenic differentiation, in a platform which
minimizes stiffness as a confounding variable.
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In this study, we have identified the role of YAP/TAZ signaling and modulation of its
nuclear translocation in response to fundamental differences in MSC microenvironment in
synthetic biomaterial constructs. Macroporous, nanofibrous tissue engineering scaffolds
from PLLA have been well-demonstrated in their application to a variety of skeletal tissue
engineering applications [3,10,19,20,27,28,65]. Based on our previous data which suggests
that pore size mediates engineered tissue fate, we aimed to determine the molecular means
by which scaffold principle curvature contributes towards either maintenance of MSC
stemness or commitment to a differentiated tissue fate. Our scaffolds are fabricated with
well-controlled size of their internal macropores (Figure 1) [65]. Considering the curvature
subtended by an individual MSC at the macropore surface, we show that increasing
pore size dramatically decreases the solid angle subtended by a cell—a 13-fold difference
between our large (250–425 µm diameter macropore) and small pore (60–125 µm diameter
macropore) constructs. Using a systematic approach we identified significant alterations in
tissue organization, and cell and nuclear morphology resulting from differences in principle
curvature (Figures 2 and 3).

Recent evidence suggests MSCs as being highly mechanosensitive [44,50,52]. In ad-
dition to force sensation mechanisms, the cytoskeleton is responsible for transmitting
extracellular strain to the nuclear envelope [51]. Driscoll et al. demonstrate that cytoskeletal
tension regulates nuclear shape and force transmission in MSCs, and cytoskeletal strain
transfer is essential for YAP/TAZ pathway activation. YAP/TAZ is a master regulator of
mechanotransduction, reliant on the nuclear translocation of YAP for its activation [66].
YAP phosphorylation maintains YAP in the cytosol and is a marker for its proteolytic
destruction (Scheme 3). Consistent with previous studies, we demonstrate that the in-
hibition of cytoskeletal machinery by CytD alters cell morphology, abrogates curvature-
induced osteogenic differentiation in sufficiently large diameter scaffolds by alleviating
cytoskeletal strain, and alters intracellular YAP/TAZ dynamics (Figures 4 and 5) within
scaffold macropores.

In our macroporous scaffolds, we provide direct evidence of YAP/TAZ activation
at the gene and protein expression levels, which supports our overarching hypothesis
that curvature mediates YAP activity and is a driver in determining engineered tissue
fate (Figure 6). We designed a three-dimensional macropore mimetic hemisphere (MMH)
model allowing for direct visualization of differential YAP inactivation that simultaneously
provides mechanistic correlation to the role of cell clustering and its effect on YAP activity
in pores with sufficiently steep principle macropore curvature (Figures 7–9). These findings
and our previous work suggest that SMSC, a craniofacial skeletal progenitor cell population,
and BMSC, a long bone skeletal hematopoietic progenitor cell population, respond similarly
to curvature by YAP/TAZ modulation. In histologic sections of cell–scaffold constructs
we confirm these findings and demonstrate that sufficiently low principle curvature in
macropore sizes greater than 250 µm diameter facilitate robust nuclear YAP trafficking and
significantly reduce YAP phosphorylation as early as 48 h that is maintained throughout
in vitro culture (Figure 10). On the other hand, sufficiently steep principle curvature in
macropore sizes less than 125 µm diameter facilitated YAP phosphorylation and cytosolic
maintenance to largely inactivate YAP/TAZ signaling (Figure 10). Finally, to confirm these
findings, we demonstrate that pharmacologic inhibition of YAP signaling in large pore
scaffolds leads to a defect in established curvature-mediated osteogenic differentiation, and
pharmacologic YAP activation in small pore scaffolds stimulates premature differentiation
and loss of stemness (Figure 11).

The role of the YAP/TAZ signaling axis is established in the context of skeletal pro-
genitor cells and mineralized tissue biology. Kegelman et al. demonstrated that YAP and
TAZ deletion in an Osterix-Cre mouse model causes a defect in bone formation resulting in
deficient mechanical properties, concluding that YAP/TAZ signaling is a critical media-
tor of osteoprogenitor function and bone formation [66]. Pharmacologic inhibition with
verteporfin in our studies likewise resulted in defective osteogenic function in vivo and
in vitro. YAP and TAZ combinatorically promote bone formation in the contexts of devel-
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opment and repair, an area of ongoing investigation [61]. Tang et al. describe Slug/Snail
proteins as an intracellular means of stabilizing the YAP/TAZ complex and preventing
its proteasomal degradation, enhancing osteogenic differentiation of skeletal progenitor
cells and enhancing YAP/TAZ-related gene expression [67]. Mechanical stimulation specif-
ically enhances osteogenic differentiation with no apparent effects on proliferation [68],
also promoting YAP dephosphorylation, enabling its nuclear transport and transcriptional
activation [69]. To further support similar behaviors between BMSC and SMSCs, Li et al.
demonstrate that mechanical tension similarly modulates YAP/TAZ nuclear relocation
and loss of stemness concomitant with osteogenic differentiation in SMSCs. The inhibition
of YAP signaling suppressed the mechanical tension-induced osteogenesis of SMSCs [70].
In addition to binding to TEAD, YAP/TAZ also binds to RUNX2 (among others) in both
BMSC [71] and SMSC [70], a well-established transcription factor involved in early os-
teogenic differentiation [72]. Finally, TAZ is reported to regulate vitamin D3 receptor
expression through the p53/CYP24A1 pathway [73]; vitamin D3 aids in calcium absorption
and bone mineralization [74].

The present study focuses on characterizing the response of BMSC and SMSCs to
scaffold curvature through mechanistic insight in vitro. An important consideration in
tissue regeneration in vivo is the complex milieu of cell types which participate in regener-
ation. In the context of alveolar bone regeneration, robust vascularization is prerequisite
to mineralized bone formation [75]. YAP/TAZ activation in a variety of cancers promotes
metastasis and increased angiogenesis; endothelial cell YAP/TAZ activation specifically is
attributed to the formation of new blood and lymphatic vessels during development [76].

YAP/TAZ has also been implicated in vasculature sprouting, where deletion of
YAP/TAZ leads to a hyper-pruned vascular network in vivo and may be partially re-
sponsible for decreased organ and bone mass in Yap/Tazi∆EC mice compared to wild type
controls [76]. On the other hand, upregulation of YAP/TAZ may synergistically enhance an-
giogenesis and vasculature sprouting in engineered tissue constructs, along with inducing
osteogenic differentiation. Future investigation in this area is needed to provide additional
insight to the response of endothelial cells and others involved with in vivo regeneration in
response to the scaffold microenvironment.

Considering the next generation of advanced bioscaffolds, which are rationally de-
signed to guide predictable regeneration, mathematical models that can account for MSC
response to various mechanical inputs and their interactions may represent future oppor-
tunities for high throughput, advanced scaffolding optimization. As an example, Scott
et al. have developed a spatial model of YAP/TAZ signaling which combines multiple
mechanical inputs [77]. This type of work, combined with studies like ours which correlate
YAP/TAZ activity to transcriptional activity and tissue phenotype, represent an exciting
convergence of molecular biology, data science and tissue engineering. It is likely that
other mechanotransduction circuits, such as MRTF-SRF [78] and Piezo1/2 [79], may also
be at play in the scaffold microenvironment and warrant future investigation. Increasingly,
predictable biomaterials-based regenerative outcomes, based on mechanistic studies of the
cell–biomaterial interface will facilitate the next generation of tissue engineering matrices.

4. Materials and Methods
4.1. Materials

Poly (L-lactic acid) (PLLA, Resomer L207S) with an inherent viscosity of 1.6 dL/g was
purchased from Boehringer Ingelheim (Ingelheim, Germany); Span80 and sterile-filtered
dimethyl sulfoxide (DMSO) were purchased from Sigma (St Louis, MO, USA); tetrahydro-
furan (THF) and hexane solvents were purchased from Fisher Scientific (Hampton, NH,
USA); D-fructose was purchased from Oakwood Chemical (Estill, SC, USA); mineral oil
was purchased from Alfa Aesar (Haverhill, MA, USA). All reagents were used as received
unless otherwise noted.
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4.1.1. Pharmacologic Reagents

Cytochalasin D (Cayman Chemical, No. 11330, Ann Arbor, MI USA), Verteporfin
(Fisher, No. 50-202-9387) and Oleoyl-L-α-lysophosphatidic acid (Fisher, No. J66836LB0,
Hampton, NH, USA) were used as received and stored according to the manufacturer’s
recommendation.

4.1.2. Antibodies and Immunofluorescence Reagents

The following antibodies were used: YAP (D8H1X) XP Rabbit mAb (Cell Signaling
Technologies, No. 14074, Danvers, MA, USA), phosphor-YAP (Ser127, D9W2I) Rabbit
mAb (Cell Signaling Technologies, No. 13008, Danvers, MA, USA), CD146/MCAM Rabbit
polyclonal antibody (Fisher, 17564-1-AP, Hampton, NH, USA). Additionally, AlexaFluor
Phalloidin 488 (Invitrogen, No. A12379, Waltham, MA, USA) was used to visualize the
actin cytoskeleton, ProLong Gold Antifade Mountant with DAPI (Invitrogen, No. P36935,
Waltham, MA, USA) to visualize nuclei.

4.1.3. Cell Culture Reagents

Bone marrow mesenchymal stem cells (BMSCs) were cultured in DMEM (Invitrogen,
11885-084, Waltham, MA, USA) supplemented with 10% v/v fetal bovine serum (FBS,
Gibco 10438-026, Waltham, MA, USA) and 1% v/v penicillin/streptomycin (P/S, Gibco
15140-122, Waltham, MA, USA). Suture mesenchymal stem cells (SMSCs) were cultured in
αMEM (Invitrogen, 12571-063, Waltham, MA, USA) supplemented with 10% v/v FBS and
1% v/v P/S.

4.1.4. Gene Expression Analysis Primer Sequences

All gene expression primer sequences originate from the Harvard-Mass General Primer
Bank (MGH-PGA, https://pga.mgh.harvard.edu/primerbank/ (accessed on 25 February 2022)).

4.2. Fabrication of Nanofibrous, Macroporous Tissue Engineering Scaffolds

Nanofibrous, macroporous tissue engineering scaffolds of various pore sizes were
fabricated from poly (L-lactic acid), PLLA, as previously described [28,65]. In short, D-
fructose sugar was melted and emulsified in hot mineral oil containing Span80 surfactant,
with a magnetic stir bar. The fructose-mineral oil emulsion was cooled rapidly in an ice bath
and solid sugar spheres were washed with hexane to remove residual oil and surfactant.
The heterogeneous mixture of sugar spheres was purified by size using molecular sieves
(Newark Wire Cloth Co, Newark, NJ, USA) to select for sugar spheres in the desired size
ranges (Small: 60–125 µm, Medium: 125–250 µm, and Large: 250–425 µm). Meanwhile,
PLLA was dissolved in THF at 10% w/v at 63 ◦C.

Sugar spheres of the desired size range were loaded into a Teflon mold, in hexane, and
annealed at 37◦C to cause partial adhesion to neighboring spheres (Small: 7 min, Medium:
9 min, Large: 12 min). Hexane was removed and the sugar template was dried under
vacuum at room temperature. The PLLA/THF solution was cast and immediately stored at
−80 ◦C to induce thermally induced phase separation (TIPS) for 48 h. After this time, the
Teflon vials were submerged in hexane for 24 h, then in distilled water for 24 h to leach the
sugar spheres. Resulting scaffolds were cut with a biopsy punch (5 mm diameter × 1.5 mm
height for all cell and animal experiments reported herein) and were stored at −80 ◦C.

Prior to use, scaffolds were lyophilized to remove water and residual solvent for at least
24 h and were sterilized with ethylene oxide gas (Anpro, Haw River, NC, USA). Secondary
sterilization was performed immediately prior to cell seeding by washing scaffolds in 70%
ethanol (30 min), followed by washing three times with sterile phosphate buffered saline
(PBS) and once with cell culture media containing FBS and antibiotics.

4.3. Scanning Electron Microscopy (SEM)

Scaffold samples were fixed to sample holders using two-sided electron microscopy-
grade carbon tape, and were gold coated for 120 s (DeskII, Denton Vacuum, Morestown,
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NJ, USA). Observation was carried out at 5 kV with a working distance of 10–15 mm (JEOL
JSM-7800 FLV). Note: Figure 7B shows an artificially colorized SEM image to highlight the
location and distribution of MSCs cultured on the MMH tool surface.

4.4. Cell Isolation

All animal procedures were carried out under an approved protocol by the University
of Michigan Institutional Animal Care and Use Committee (PRO00009613). We previously
characterized their character as MSCs by gene expression and protein analysis [28].

4.4.1. Bone Marrow Mesenchymal Stem Cells

Bone marrow mesenchymal stem cells (BMSCs) were isolated from wild type mice
with no transgenic mutations on a C57BL/6J background, age 3–4 weeks old, based on
a published protocol [28,80]. Mice were euthanized by CO2 asphyxiation and bilateral
pneumothorax puncture. Tibiae and femur bones were dissected and harvested, cleaned
from muscle and soft tissue, and kept in sterile PBS on ice. The ends of tibiae and femur
bones were cut using a scalpel or surgical scissors, and the bone marrow was removed by
centrifugation (5000 rpm, 5 min) using a 0.5 mL microcentrifuge tube and 1.5 mL micro-
centrifuge tube as described by Amend et al. [81]. Bone marrow aspirate was resuspended
in cold, sterile PBS, filtered using a 40-µm cell strainer and washed with PBS three times.
Primary BMSCs were cultured in DMEM containing 10% FBS and 1% P/S. All experiments
used cells before passage 3.

4.4.2. Suture Mesenchymal Stem Cells

Suture mesenchymal stem cells (SMSCs) were isolated from wild type mice with
no transgenic mutations on a C57BL/6J background, age 3–5 days old, adapted from a
published protocol [82]. The sagittal suture was dissected and removed from underlying
tissues, then digested with 0.2% collagenase in sterile PBS at 37 ◦C for 1 h. Dissociated cells
were filtered through a 40-µm cell strainer and washed with PBS. Primary SMSCs were
cultured in αMEM containing 10% FBS and 1% P/S and were used before passage 4.

4.5. Cell Culture on Scaffolds
4.5.1. Cell Seeding

Scaffold constructs (5 mm diameter × 1.5 mm height) were sterilized in 70% ethanol
as described above. Primary cells cultured to confluence were trypsinized (0.05% trypsin,
37 ◦C, 3–5 min), washed, and concentrated to 16.6 million per mL in culture media. Ad-
ditionally, 2.0 × 105 cells were seeded to each scaffold in aliquots of 6 uL per side, in a
non-treated polystyrene 24-well plate (CellPro, ASI No. TPN1024-NT, Orange, CA, USA).
Cell–scaffold constructs were left for one hour at 37 ◦C to facilitate cell adhesion, then
sufficient media was added to cover the constructs.

4.5.2. Cell Culture

All cell–scaffold constructs were cultured in growth media; the composition was
dependent on cell type, according to our previous work and established protocols [28].
BMSCs were cultured in DMEM containing 10% FBS and 1% P/S. SMSCs were cultured in
αMEM containing 10% FBS and 1% P/S. Media was changed every two days.

4.5.3. Administration of Cytochalasin D

Cytochalasin D (Cayman Chemical, No. 11330, Ann Arbor, MI, USA) was reconstituted
in DMSO at a concentration of 100 mg/mL and stored in aliquots at −20 ◦C. Cytochalasin
D was added to growth media (Gibco DMEM, 10% FBS, 1% P/S).
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4.5.4. Administration of Verteporfin

Verteporfin (Fisher, No. 50-202-9387, Waltham, MA, USA) was constituted in DMSO at
2 mg/mL and stored in aliquots at −20 ◦C. Verteporfin was added to growth media (Gibco
DMEM, 10% FBS, 1% P/S), prepared fresh daily (VP, 5 µM).

4.5.5. Administration of Lysophosphatidic Acid

Oleoyl-L-α-lysophosphatidic acid (Fisher, No. J66836LB0, Waltham, MA, USA) was
constituted in sterile water (5 mg/mL) and stored in aliquots at −20 ◦C. Lysophosphatidic
acid was added to growth media (Gibco DMEM, 10% FBS, 1% P/S), prepared fresh daily
(LPA, 25 µM).

4.6. Subcutaneous Implantation in Mice

Cell–scaffold constructs, described in Section 4.5.1 (2 × 105 cells/scaffold, 5 mm diam-
eter scaffold × 1.5 mm height), were cultured for 24 h in vitro prior to their subcutaneous
implantation into wild type mice, aged 8–10 weeks old. All animal procedures were carried
out under an approved protocol by the University of Michigan Institutional Animal Care
and Use Committee (PRO00009613). Mice were anesthetized with isoflurane via inhalation;
a midsagittal incision was made on the dorsa, approximately 2 inches long. Four subcuta-
neous pockets were created in each quadrant of the dorsa by blunt dissection with surgical
scissors, and one scaffold was implanted in each pocket. Incisions were closed with surgical
stables and postoperative carprofen was given for pain management. Mice were closely
monitored for postsurgical complications. After four weeks, mice were euthanized, and
samples were explanted and fixed in 4% paraformaldehyde.

4.7. Histologic Preparation

Tissue samples from in vivo and in vitro experiments were fixed in 4% paraformalde-
hyde and dehydrated in 70% ethanol, then embedded in paraffin wax. Serial sections were
cut at 5 µm thickness. Standard protocols were followed for hematoxylin and eosin (H&E)
staining. Immunofluorescence staining is described below.

4.8. Quantitative Real Time Polymerase Chain Reaction (Gene Expression Assay)

cDNA was synthesized from RNA using SuperScript II cDNA Synthesis Kit (In-
vitrogen, Waltham, MA, USA) according to the manufacturer’s protocol. Quantitative
real time polymerase chain reaction (rt-qPCR) was performed using Power SYBR Green
PCR Master Mix (Applied Biosystems, Waltham, MA, USA), with Applied Biosystems
ViiA7 platform. Gene expression was normalized to endogenous GAPDH expression.
Primers are shown in Table S1. Additional was performed with Morpheus (Broad Insti-
tute, https://software.broadinstitute.org/morpheus/, accessed on 15 December 2021) to
generate heat maps and perform hierarchical clustering analysis.

4.9. Pore-Mimetic Imaging Platform for Three-Dimensional Visualization

Macropore-mimetic hemispheres (MMH) were designed in Tinker CAD (https://
www.tinkercad.com/, accessed on 15 December 2021) with pore sizes that matched the
average pore sizes determined by SEM image analysis (Figure 1B) and were exported as an
STL file (Figure S3A–C). MMH tools were 3D printed at the Duderstadt Center Fabrication
Studio at the University of Michigan using a Stratasys J750 Polyjet 3D Printer (Rehovot,
Israel) with 27 µm laser resolution and rigid opaque photopolymer.

Commercially available polydimethylsiloxane (PDMS), Sylgard 527 gel and Sylgard
184 elastomer (Dow Corning, Midland, MI, USA) were blended to match the mechanical
properties of our PLLA scaffold materials. The ratio of Sylgard 184 to Sylgard 527 was 1:8,
by weight [83]. The mixture was degassed in a desiccator and cast at room temperature,
then cured for 24 h at 65 ◦C.

Prior to cell seeding, constructs were sterilized with ethylene oxide and 70% ethanol
solution. Normal cell culture protocols were followed otherwise.

https://software.broadinstitute.org/morpheus/
https://www.tinkercad.com/
https://www.tinkercad.com/
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4.10. Immunohistochemistry
4.10.1. Immunohistochemistry for Fluorescence Microscopy

Histologic sections prepared from paraffin were treated with xylene and an ethanol
gradient to de-paraffinize. Antigen retrieval was performed by incubation in 10 mM citrate
buffer (pH 6.0). Sections were sequentially incubated in 5% BSA for 60 min and with
primary antibodies (tYAP, pYAP: 1:100; CD146: 1:200) overnight at 4 ◦C. Alexa Fluor 598
anti-rabbit IgG (1:200, Invitrogen, Waltham, MA, USA) was used as a secondary antibody.
Slides were treated with 1:200 AlexaFluor 488 Phalloidin (Invitrogen, Waltham, MA, USA)
and ProLong Gold antifade with DAPI (Invitrogen, Waltham, MA, USA). The same protocol
was followed for immunohistochemistry in MMH constructs, without deparaffinization
and antigen retrieval. Sections were observed by confocal laser microscopy.

4.10.2. Western Blot

Whole cell lysates were separated on 4–20% Tris-Glycine polyacrylamide gel, then
transferred to PVDF membranes which were incubated with 5% bovine milk and one hour,
then primary antibodies overnight at 4 ◦C, listed above (tYAP, pYAP: 1:1000). Blots were
incubated with peroxidase-coupled anti-rabbit IgG (1:2000, Cell Signaling Technologies, No.
7074) for one hour and protein expression was detected by Super Signal West Pico Chemi-
luminescent Substrate (Thermo Scientific, No. 34577, Waltham, MA, USA). Membranes
were re-stained with anti-GAPDH (1:2000) to control for equal loading.

4.11. Confocal Laser Microscopy

Confocal laser microscopy was performed using a Nikon Eclipse C1 at the University
of Michigan School of Dentistry Microscopy Core Facility.

4.12. Image Analysis

All image analysis was performed using Fiji (Image J, V 1.0.0-rc-69/1.52p). Statistical
analysis and data visualization was performed in Prism.

4.12.1. Analysis of Macropores from SEM Images

Images of scaffold morphology were acquired by scanning electron microscopy (SEM).
The scale of images was calibrated to the magnification of the microscope to convert
pixel distances to microns. Distances were measured across the longest cord spanning a
macropore, for each pore in the field of view. Measurements were made across a minimum
of n = 15 images per group.

4.12.2. Spatial Point Pattern Analysis

Spatial point pattern analysis was performed in R (version 4.1.2), by a method de-
scribed in the literature [54] and the spatstat package [53], taking examples of spatial point
pattern analysis for ecological application. Histologic images from sections prepared from
subcutaneous explants were stained with hematoxylin and eosin staining and imaged. Im-
ages were imported to Fiji (Image J, see above), converted to a binary image and a threshold
was applied to identify nuclei based on H&E stain; each nucleus was converted to a point
and the (x, y) coordinate locations of each event were exported and converted to a pattern
of points in R (>plot(mypattern)), for statistical analysis. A minimum of n = 15 images
were analyzed for each group from n = 4 explants per group. A data frame boundary
was implemented to control for space occupied by the polymer matrix (appears white in
histology) and unavailable for cells to occupy.

The F-function (>plot (Fest(mypattern)) measures the distribution of all distances from
an arbitrary point in the plane to the nearest observed event:

F(r) = 1 − e−λπr2
.
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Ripley’s K function (>plot (Kest(mypattern)); <plot (envelope (mypattern, Kest))) was
computed to calculate the probability of points to appear clustered, independently, or
regularly spaced:

K(s) = λ−1E[N0(s)].

4.12.3. Nuclear Morphology in Scaffold Sections

Immunofluorescence images from confocal laser microscopy were imported to Fiji
and converted to an RGB Stack. The “blue” layer corresponds to DAPI+ staining of cell
nuclei. The “blue” layer was converted to binary, and the height and width of each nuclei
was measured. Nuclear aspect ratio (NAR) was calculated as:

NAR =
dshort axis
dlong axis

.

Nuclear cross-sectional area was calculated from binary images of DAPI staining
by measuring the DAPI+ area by threshold, and the number of nuclei by cell count-
ing, calculated:

Cross − Sectional Area =
DAPI + signal

# cells
.

4.12.4. Quantification of Cell Clustering in Scaffold Sections

Immunofluorescence images from confocal laser microscopy were imported to Fiji
and converted to an RGB Stack. The “blue” layer corresponds to DAPI+ staining of cell
nuclei. The “blue” layer was converted to binary, and the number of cells per discrete cell
cluster was counted and recorded. Then the distance between each nuclei and its nearest
neighbor was measured.

4.12.5. Quantification of YAP-Nuclear Colocalization

Immunofluorescence images from confocal laser microscopy were imported to Fiji and
converted to an RGB Stack. The “red” layer represents the tYAP+ signal; the “blue” layer
represents the DAPI+ signal. The boundary of each object in the blue channel (each nucleus)
was traced using the freehand drawing tool, and the red+ signal in the DAPI+ boundary
region as measured, and its intensity was recorded for each nucleus. Then, the total red+
signal per cell was measured. The tYAP nuclear colocalization ratio was calculated as:

Coloc =
Ared+within blue+boundary

Atotal red+
.

4.12.6. Quantification of YAP Phosphorylation

Immunofluorescence images from confocal laser microscopy were imported to Fiji
and converted to an RGB Stack. The “red” layer represents the pYAP+ signal; the “blue”
layer represents the DAPI+ signal. A threshold was applied to the “red” layer and the area
of red+ signal was recorded; the number of nuclei in the “blue” layer (DAPI+ points) was
assessed by cell counting. The normalized intensity of pYAP+ signal was calculated by:

IpYAP+ =
Ared+

# nucle in f ield
.

4.13. Statistical Analysis

All data are reported as mean ± standard deviation and represent a minimum sample
size of n ≤ 4. Statistical analysis was carried out in GraphPad Prism v9. Student’s t-test
was used to determine the statistical significance of observed values between experimental
groups where p < 0.05 was considered significant. Statistical analyses were carried out under
the guidance of the University of Michigan Consulting for Statistics, Computational and
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Analytical Research Center. In all graphics, significance is noted as: * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

5. Conclusions

Mesenchymal stem cells are sensitive to their mechanical environment. Like growth
factor treatment, the mechanical microenvironment may be similarly exploited as a fate-
guiding cue in vitro and in vivo. We demonstrate that the principle curvature of spherical
scaffold macropores is a critical biomaterial design criteria; sufficiently steep principle
curvature in sufficiently small diameter pores <125 µm inhibits YAP/TAZ activation and
favors cytosolic YAP phosphorylation (inactivation) responsible for the maintenance of
stemness, while sufficiently shallow principle curvature facilitates YAP/TAZ activation
and nuclear translocation as early as 48 h after seeding and is, in part, responsible for
curvature-mediated osteogenic differentiation trajectories. Highly controlled scaffolding
technologies for biomaterials-mediated regeneration can be designed to modulate MSC
differentiation fate through an intimate understanding of the cell–biomaterial interface and
may be useful for increasing the predictability of tissue-specific regenerative interventions
in future developments of scaffolding technology.
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