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Abstract 

Background: Fetal macrosomia is associated with an increased risk of several maternal and newborn complica-
tions. Antenatal predication of fetal macrosomia remains challenging. We aimed to develop a nomogram model for 
the prediction of macrosomia using real-world clinical data to improve the sensitivity and specificity of macrosomia 
prediction.

Methods: In the present study, we performed a retrospective, observational study based on 13,403 medical records 
of pregnant women who delivered singleton infants at a tertiary hospital in Shanghai from 1 January 2018 through 
31 December 2019. We split the original dataset into a training set (n = 9382) and a validation set (n = 4021) at a 7:3 
ratio to generate and validate our model. The candidate variables, including maternal characteristics, laboratory tests, 
and sonographic parameters were compared between the two groups. A univariate and multivariate logistic regres-
sion was carried out to explore the independent risk factors for macrosomia in pregnant women. Thus, the regression 
model was adopted to establish a nomogram to predict the risk of macrosomia. Nomogram performance was deter-
mined by discrimination and calibration metrics. All the statistical analysis was analyzed using R software.

Results: We compared the differences between the macrosomic and non-macrosomic groups within the training set 
and found 16 independent risk factors for macrosomia (P < 0.05), including biparietal diameter (BPD), head circumfer-
ence (HC), femur length (FL), amniotic fluid index (AFI) at the last prenatal examination, pre-pregnancy body mass 
index (BMI), and triglycerides (TG). Values for the areas under the curve (AUC) for the nomogram model were 0.917 
(95% CI, 0.908–0.927) and 0.910 (95% CI, 0.894–0.927) in the training set and validation set, respectively. The internal 
and external validation of the nomogram demonstrated favorable calibration as well as discriminatory capability of 
the model.

Conclusions: Our model has precise discrimination and calibration capabilities, which can help clinical healthcare 
staff accurately predict macrosomia in pregnant women.
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Background
Macrosomia refers to a birth weight that reaches 
4000 g. It affects approximately 3–15% of pregnancies 
and frequently leads to adverse pregnancy outcomes 
such as shoulder dystocia, postpartum hemorrhage, 
and birth fractures [1]. A reliable prenatal predictor of 
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macrosomia would therefore be of great significance 
for the optimization of clinical management and for 
improving maternal and infant outcomes.

Fetal weight is traditionally estimated by abdominal 
examination or ultrasonographic evaluation in obstetric 
practice [2]. The accuracy of abdominal examination is 
influenced by obesity, uterine fibroids, the amount of amni-
otic fluid, and clinical experience, and as ultrasonography is 
a practical method used to estimate the fetal weight (EFW), 
the post-test probability of identifying macrosomia varies 
from 15 to 79% with sonographic EFW [3]. This accuracy is 
significantly diminished with macrosomic infants, and low 
accuracy limits the predictive value of ultrasonograms.

Various predictive models based upon traditional sta-
tistical formulas or machine learning algorithms have 
been applied to the prediction of macrosomia in recent 
years. Daisuke et  al. [4] developed an integer scoring 
system for excluding macrosomia using only maternal 
physical examination without sonographic informa-
tion, and Wang et  al. [5] constructed a random forest 
model that involved extra-pelvic measurement informa-
tion and achieved improved sensitivity, specificity, and 
area under the receiver operating characteristic (ROC) 
curve (at 91.7, 91.7, and 95.3%, respectively). While the 
current predictive models obtained a higher degree 
of accuracy than the ultrasonographic and maternal 
abdominal evaluative methods, the models did not 
address comprehensive variables relevant to risk factors 
of macrosomia, and this might have weakened the over-
all accuracy of these models. Unusual indicators (e.g., 
carnitine metabolism or fetal soft tissue) were selected 
in some of the previous models, but these indicators are 
not always available, which is troubling to clinicians. 
Some models are exclusive in their predictions within a 
population of women with gestational diabetes mellitus 
(GDM) but neglect predictions in individuals without 
GDM [6]. Based on the aforementioned data, the use of 
comprehensive and readily available predictors—as well 
as the expansion of the study population—may augment 
the application and precision of the model.

In this study, we aimed to develop a more accurate, 
applicable, and stable model to predict the risk of mac-
rosomia and employed a retrospective analysis of common 
clinical data that encompassed maternal characteristics, 
laboratory tests, and sonographic parameters in a large 
cohort of pregnant women. We believe that our study will 
provide a reference for the development of macrosomia 
prevention and appropriate intervention strategies.

Methods
Study population
In this retrospective study, we extracted data from the 
digital medical records system of the International Peace 

Maternity and Child Health Hospital between 1 January 
2018 and 31 December 2019. The inclusion criteria were 
as follows: (1) singleton pregnancy; (2) gestational weeks 
≥28; (3) a normal pregnancy outcome (no stillbirths, 
neonatal deaths, or severe fetal malformations). After 
data screening, a total of 13,403 subjects were included in 
our study (Fig. 1).

Data collection and variables included for analysis
We searched for variables of macrosomia that were 
reported in studies or systematic reviews, can be eas-
ily ascertained in different setting with various clinical 
experience, and are part of the routine examination dur-
ing pregnancy. In this retrospective study, we collected 
maternal data that included demographics, clinical char-
acteristics, laboratory tests, and fetal B-ultrasonographic 
examination. The extreme and error values of the meas-
urement data were cleaned and the categorical data were 
normalized and coded.

At the first antenatal visit between 9 and 13 weeks of 
gestation, we collected data on the mother’s and hus-
band’s demographic characteristics, medical history, and 
reproductive history. Maternal height, weight, gravity, 
parity, educational level, and basal blood pressure (sys-
tolic blood pressure, SBP; diastolic blood pressure, DBP) 
were recorded via face-to-face interviews. The pre-preg-
nancy body mass index (pre-pregnancy BMI) was calcu-
lated by dividing the pre-pregnancy weight (kg) by the 
pre-pregnancy height  (m2), and numbers were divided 
into four levels: < 18.5 kg/m2 for underweight, 18.5–
24.9 kg/m2 for normal weight, 25.0–29.9 kg/m2 for over-
weight, and 30 kg/m2 for obesity. Gestational weight gain 
(GWG) during pregnancy was determined by subtracting 
pre-pregnancy weight from the woman’s weight at her 
last prenatal examination. Appropriate gestational weight 
gain was stated as 12.5 kg to 18 kg for underweight, 
11.5 kg to 16.0 kg for normal weight, 7 kg to 11.5 kg for 
overweight, and 5 kg to 9 kg for obesity according to 
the recommendations of the 2009 Institute of Medicine 
(IOM) guidelines categorized by pre-pregnancy BMI for 
each woman, and below or above the interval range was 
defined as insufficient or excessive weight gain [7].

We computed gestational age from the first day of the 
last menstrual period or the dating ultrasonographic 
scan performed prior to 20 weeks of pregnancy. Mater-
nal fasting lipid serum samples were obtained in the 
first trimester (between nine and 14 weeks), collected 
in 10-mL vacutainer tubes, and centrifuged. Laboratory 
indices included triglycerides (TG), total cholesterol 
(TC), high-density lipoprotein (HDL), and low-density 
lipoprotein (LDL). The glucose index was obtained from 
a 75-g oral glucose tolerance test (OGTT) between 
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gestational weeks 24 and 28—including fasting plasma 
glucose (FPG), one-hour glucose (GLU-1H), and two-
hour glucose (GLU-2H), and hemoglobin (HbA1c). 
Routine sonographic evaluations performed by experi-
enced doctors included fetal abdominal circumference 
(AC), biparietal diameter (BPD), head circumference 
(HC), humerus length (HL), femur length (FL), trans-
verse trunk diameter (TTD), anteroposterior trunk 
diameter (APTD), and amniotic fluid index (AFI) at the 
last prenatal examination. The occurrence of macroso-
mia was the primary outcome used in this study. Shortly 
after birth, the newborns were weighed, their weights 
were recorded by medical staff, and those neonates 
with birth weights ≥4000 g were defined as manifesting 
macrosomia.

Statistical analysis
We performed data analysis using R software ver-
sion 4.1.2 (2021-11-01). Preliminary statistical analyzes 
including the Kolmogorov-Smirnov test [8] and Q-Q 
plots were performed to assess whether the data followed 
a normal distribution. Medians (and interquartile ranges, 
IQR) were used for continuous variables and counts 
and percentages for categorical variables. The Wilcoxon 
rank-sum test was employed for comparisons of continu-
ous variables between groups, and the Chi-squared and 

Fisher’s exact probability tests were used for categorical 
variables, as appropriate. Differences were considered 
significant when they showed a p-value < 0.05.

The original dataset was randomly allocated to train-
ing and validation sets at a 7:3 ratio. A univariate logis-
tic regression analysis was first performed to assess each 
variable’s significance separately. Any variables having a 
significant univariate test at a 0.05 level were selected as 
candidates for the following multivariate analysis. After 
the initial variable selection in the univariate analysis, 
multivariate logistic regression with a backward stepwise 
method was exploited within the training set to deter-
mine the risk factors associated with macrosomia. All 
variables screened by the backward stepwise algorithm 
would be included in the final model. Odds ratios and 
their corresponding 95% confidence intervals were then 
calculated for each independent variable. In addition, we 
employed ROC_AUC, sensitivity and specificity as our 
model evaluation metrics. To appraise the prediction 
capability of the logistic model and its fitness, we used 
the Hosmer and Lemeshow test and calculated the areas 
under the receiver operating characteristic curve (AUC). 
Multicollinearity was also tested on the final model by 
accessing the value of variance inflation factor (VIF). A 
nomogram model was then created based upon the final 
logistic regression model, and the nomogram model 

Fig. 1 Chart illustrating patient flow in the present study
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was validated by measuring discrimination and calibra-
tion curves both internally (training set) and externally 
(validation set). We assessed discrimination between 
observed and predicted outcomes using the metrics of 
ROC_AUC.

Results
Demographic and medical characteristics
The data from a total of 13,403 pregnant women were 
entered into our analysis. The original dataset was 
split into a training set (n = 9382) and a validation 
set (n = 4021), and we then compared the differences 
between the macrosomic and non-macrosomic groups 
within the training set. The mean birth weight of new-
borns in this study was 3345.9 g; 6893 (51%) of the neo-
nates were male, and 6510 (49%) were female, with a 
macrosomia prevalence of 5.7%.

The demographic information is summarized in Table 1 
and indicates that the BMI, gestational age (GA), SBP, 
and DBP were significantly higher in the macrosomic 
group than in the non-macrosomic group. Compared 
with the non-macrosomic group, the macrosomic group 
exhibited a significantly elevated percentage of exces-
sive gestational weight gain (62% vs. 34%, p < 0.05) and 
showed a significantly reduced proportion of individuals 
with an educational level above a bachelor’s degree for 
both women (17% vs. 23%, p < 0.05) and their partners 
(22% vs. 25%, p < 0.05).

Table 2 depicts the medical characteristics, including 
ultrasonographic and clinical laboratory test results. 
BPD, HC, FL, HL, TTD, APTD, AC, and AFI showed 
significantly higher median values in the macrosomic 
group compared to the non-macrosomic group. In 
terms of clinical laboratory findings, FPG, GLU-1H, 
GLU-2H, and TG in the macrosomic group were sig-
nificantly augmented relative to the non-macrosomic 
group, while HDL was lower than in the non-mac-
rosomic group. TC (p = 0.6) and LDL (p = 0.4) did not 
differ between groups.

Regression analysis and risk factors for macrosomia
Our multivariate regression analysis of factors associ-
ated with macrosomia is shown in Table 3. The model 
was established with macrosomia as the outcome vari-
able and twenty-four significant indices in the univari-
ate analysis as independent variables using backward 
stepwise regression. Sixteen predictors were included 
in the final model: E educational level, GWG, fetal sex, 
gravidity (GNUM), BMI, GA, AC, BPD, HC, FL, HL, 
TTD, AFI, FPG, GLU-1H, and TG. The results of the 
Hosmer and Lemeshow test provide a p-value of 0.15, 
that is greater than 0.05, indicating no evidence of 

poor fit and our model is correctly specified. We also 
analyzed multicollinearity, with all indices showing 
a VIF of less than 3, and thus, we had no issue with 
collinearity.

Table 1 Baseline characteristics of the study groups

a  Median (IQR); n (%)
* Wilcoxon rank-sum test; Pearson’s Chi-squared test; Fisher’s exact probability 
test

Characteristic Macrosomiaa

n = 551
Non-macrosomiaa

n = 8831
p-value*

BMI 22.2 (20.2, 24.2) 20.7 (19.2, 22.6) < 0.001

Gestational age (GA) 39.5 (39.0, 40.3) 39.1 (38.4, 39.6) < 0.001

Gravidity 2.0 (1.0, 3.0) 2.0 (1.0, 2.0) < 0.001

Parity 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.074

SBP 112 (104, 121) 110 (102, 119) < 0.001

DBP 69 (63, 76) 68 (62, 75) 0.029

Age 0.087

  ≥ 35 418 (76%) 6971 (79%)

  < 35 133 (24%) 1860 (21%)

Husband age 0.021

  ≥ 35 354 (64%) 6089 (69%)

  < 35 197 (36%) 2742 (31%)

Educational level < 0.001

 Bachelor’s degree 293 (53%) 4728 (54%)

 Above bachelor’s 93 (17%) ,2020 (23%)

 Below bachelor’s 165 (30%) 2083 (24%)

Husband’s educational 
level

0.017

 Bachelor’s degree 286 (52%) 4762 (54%)

 Above bachelor’s 121 (22%) 2198 (25%)

 Below bachelor’s 144 (26%) 1871 (21%)

Conception 0.12

 Natural conception 498 (90%) 8144 (92%)

 Assisted reproduc-
tion

53 (9.6%) 687 (7.8%)

GWG < 0.001

 Optimal 165 (30%) 3754 (43%)

 Inadequate 44 (8.0%) 2064 (23%)

 Excessive 342 (62%) 3013 (34%)

Smoking-tobacco use 0.8

 No 547 (99%) 8771 (99%)

 Yes 4 (0.7%) 60 (0.7%)

Alcohol use 0.2

 No 530 (96%) 8571 (97%)

 Yes 21 (3.8%) 260 (2.9%)

Family history of diabetes or hyperten-
sion

0.6

 No 422 (77%) 6693 (76%)

 Yes 123 (22%) 1996 (23%)

 Unknown (1.1%) 142 (1.6%)
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Nomogram construction and validation
We constructed a nomogram model based upon the 16 
predictors noted above to predict the risk of macrosomia 
(Fig. 2), with each predictor given a point according to the 
characteristics of each woman; the total number of points 
was then calculated to obtain the risk of macrosomia. 
The model achieved satisfactory performance, obtaining 
a sensitivity of 0.898 and a specificity of 0.781 with the 
optimal probability threshold chosen. Additionally, the 
values for the AUCs of the nomogram model were 0.917 
(95% CI, 0.908–0.927) and 0.910 (95% CI, 0.894–0.927) in 
the training set and validation set, respectively, indicat-
ing that the model was robust in its discriminative abil-
ity (Fig. 3). Both internal and external calibration curves 
also confirmed that there was a favorable concordance 
between the observed and predicted probabilities (Fig. 4).

Discussion
In this single-center retrospective study, we developed 
and validated a nomogram model for the prediction of 
macrosomia among newborns and achieved satisfactory 
predictive effects based upon the clinical data from a 
large cohort of pregnant women.

Pregnancy is a complex process accompanied by 
substantial changes in sugar and lipid metabolism [9]. 
Considering that these indicators may be key factors 
that contribute to fetal weight changes, we combined 
the key indicators (including blood glucose and lipid 

parameters) with the general indicators (for example, 
demographic characteristics and fetal intuitive sonog-
raphy image measurements) as variables in our model.

It has been proposed that maternal hyperglycemia 
leads to fetal hyperglycemia, stimulating maturation 
and hypertrophy of the fetal pancreas [9], and various 
studies have indicated that GDM constitutes one of the 
important factors affecting the onset and development 
of macrosomia [8, 10]. The results of our study revealed 
that the incidence of macrosomia was 6.38% (115/1802) 
for women with GDM and 5.65% (649/11,482) for 
women with non-GDM, numbers consistent with the 
previous studies [11]. Several authors have supported 
pregnant women’s blood glucose levels as strongly asso-
ciated with the incidence of macrosomia, regardless of 
a diagnosis of GDM [12, 13]. We usually perform an 
OGTT on pregnant women between their 24th and 
28th gestational weeks to diagnose GDM, as OGTT, 
FPG, GLU-1H, GLU-2H, and HBA1C are important 
indicators in the assessment of maternal blood glucose 
levels. Through multivariate analysis, fasting glucose 

Table 2 Medical characteristics of the study groups

a  Median (IQR)
*  Wilcoxon rank-sum test

Characteristic Macrosomiaa

n = 551
Non-macrosomiaa

n = 8831
p-value*

BPD 97.0 (95.0, 99.0) 94.0 (92.0, 96.0) < 0.001

HC 332 (324, 338) 320 (313, 328) < 0.001

FL 72.0 (70.0, 73.0) 69.0 (67.0, 71.0) < 0.001

HL 63.0 (62.0, 64.0) 60.0 (59.0, 62.0) < 0.001

TTD 108 (105, 112) 101 (97, 105) < 0.001

APTD 110 (106, 114) 103 (99, 107) < 0.001

AC 342 (334, 351) 320 (309, 331) < 0.001

AFI 131 (108, 157) 120 (102, 142) < 0.001

FPG 4.30 (4.04, 4.60) 4.20 (3.96, 4.46) < 0.001

GLU-1H 7.92 (6.93, 9.01) 7.61 (6.67, 8.74) < 0.001

GLU-2H 6.69 (5.86, 7.61) 6.41 (5.62, 7.35) < 0.001

HbA1c 5.00 (4.80, 5.20) 5.00 (4.80, 5.10) < 0.001

TG 1.39 (1.09, 1.74) 1.28 (1.02, 1.62) < 0.001

TC 4.44 (3.97, 4.89) 4.44 (4.00, 4.92) 0.6

HDL 1.85 (1.59, 2.15) 1.94 (1.68, 2.21) < 0.001

LDL 2.51 (2.12, 2.97) 2.50 (2.12, 2.94) 0.4

Table 3 Factors associated with macrosomia among women 
at the international peace maternity and child health hospital 
(n = 9382)

a  OR Odds ratio
b  CI Confidence interval

Characteristic ORa 95%  CIb p-value

Educational level

 Bachelor’s degree – –

 Above bachelor’s 0.75 (0.56, 0.98) 0.037

 Below bachelor’s 1.19 (0.93, 1.51) 0.2

GWG 

 Optimal – –

 Inadequate 0.51 (0.34, 0.74) < 0.001

 Excessive 1.59 (1.27, 2.00) < 0.001

Fetal Sex

 Female – –

 Male 1.67 (1.34, 2.08) < 0.001

GNUM 1.14 (1.04, 1.24) 0.005

BMI 1.07 (1.03, 1.11) < 0.001

GA 1.22 (1.08, 1.37) 0.001

AC 1.08 (1.06, 1.09) < 0.001

BPD 1.08 (1.03, 1.14) 0.003

HC 1.03 (1.01, 1.04) < 0.001

FL 1.08 (1.01, 1.15) 0.023

HL 1.19 (1.12, 1.26) < 0.001

TTD 1.02 (0.99, 1.05) 0.12

AFI 1.01 (1.00, 1.01) < 0.001

FPG 1.44 (1.11, 1.87) 0.006

GLU-1H 1.09 (1.01, 1.18) 0.030

TG 1.17 (0.97, 1.40) 0.093
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Fig. 2 Nomogram model for predicting the risk of macrosomia. Nomogram model for predicting the risk of macrosomia using 16 predictors: 
Gravida, gravidity; Edu, educational level; GWG, gestational weight gain; fetal sex; BMI, body mass index; GA, number of gestational weeks; AC, 
abdominal circumference; BPD, biparietal diameter; HC, head circumference; FL, femur length; HL, humerus length; TTD, transverse trunk diameter; 
AFI, amniotic fluid index; FPG, fasting plasma glucose; GLU-1H, glucose at one-hour post-OGTT; TG, triglycerides
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and OGTT-1H were then utilized as indicators in our 
model.

Maternal serum lipids may comprise an important fuel 
in fetal overgrowth during the entire pregnancy [14]. 
Since Xue et  al. hypothesized that elevated TG levels 

in early pregnancy but not in late pregnancy were cru-
cial risk factors associated with the incidence of fetal 
macrosomia [15], we then chose the lipid index in early 
pregnancy as the variable we used for the prediction of 
macrosomia. When we herein collected four maternal 

Fig. 3 ROC curve of macrosomia. The ROC curve of macrosomia concerning its internal validation is shown in the left panel, and that for external 
validation is shown in the right panel

Fig. 4 Calibration curve. The calibration curve for the internal validation of the nomogram model is shown in the left panel, and the calibration 
curve for external validation is shown in the right panel
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lipid parameters (TC, TG, HDL, and LDL) in the first 
trimester (9th and 13th gestational weeks) of pregnancy, 
our results revealed that TGs showed high specificity in 
the prediction of macrosomia, and we, therefore, chose 
TGs as the predictive indicator in our model.

The most objective method currently employed to esti-
mate fetal body weight is ultrasonographic (US) meas-
urement, which encompasses over 30 different formulas 
for the US estimates to predict newborn birth weight 
[16–18], with the most widely used being the Hadlock 
formula [19]. To generate sonographic fetal weight esti-
mations with a lower error margin, many formulas have 
reflected disparate parameters of the fetus (fetal abdomi-
nal fat layer [20], shoulder soft-tissue thickness [21], 
biacromial diameter [22]), and some have even entailed 
3D sonographic measurements [23]. Although such for-
mulas and novel predictors may improve the accuracy of 
US evaluation, they nevertheless increase technical diffi-
culty and sonication time. Considering the availability of 
predictors, we used B-ultrasonography 2 weeks prior to 
delivery to assess the predictive capability of our model.

The nomogram model can transform the cumber-
some regression equation into a visually legible graph 
that is both convenient and rapid in its practical appli-
cation [24]. Each predictor is given a point according to 
the woman’s characteristics, and the point total is then 
calculated to obtain the risk of macrosomia. Mazouni 
et  al. developed a nomogram to predict macrosomia 
based on maternal demographic characteristics and 
US variables, with the model achieving moderate pre-
dictive ability at an AUC of 0.850 [25]. These authors’ 
sample size was, however, quite small and dismissed 
the influence of maternal metabolism. Although Sun 
et  al. established a nomogram model combined with 
carnitine-related metabolic variables for predicting 
macrosomia in pregnant women with GDM [26], car-
nitine metabolism is not routinely used in the clinical 
setting, restricting its application. Shigemi et al. created 
a scoring system based upon the significant predic-
tors of macrosomia without sonographic information 
[4], and their system exhibited a high negative predic-
tive value of 0.996–1.000, while the positive predictive 
value for screening macrosomia was extremely low 
(0.003). Zou et  al. [27] and Kang et  al. [28] published 
models that could only be applied to women with 
GDM rather than to all pregnant women, and Ye et al. 
used ensemble methods (one comprising a machine-
learning algorithm) to improve the prediction of fetal 
macrosomia [18]. Unfortunately, ensemble methods 
are cumbersome and limited in their practicability. In 
contrast, our model was applied to the entire popula-
tion of pregnant women and displayed many advan-
tages. First, the precision of our model met or exceeded 

the optimal predictive levels recorded in the literature 
[25, 27]. The areas under the ROC curves (AUCs) for 
the internal and external validation of our model were 
91.7 and 91.0, respectively. In addition, using our 
model, we selected alternative but still routine clinical 
data that were easily accessible and relatively compre-
hensive. Macrosomia risk factors can be classified into 
three components: maternal characteristics, metabolic 
parameters, and US measurements. However, as most 
models only incorporate some of these three risk fac-
tors to predict the incidence of macrosomia, we posit 
that our predictive model is more generalizable, pre-
cise, and clinically suitable.

Our nomogram model could be a practical tool for 
clinical work. Once the model shows the possibility of 
macrosomia, suggesting that pregnant women might 
be in an over-nutrition condition and need strictly con-
trolled weight gain by lifestyle, diet, exercise. Meanwhile, 
doctors enhance close monitoring and supervision on 
them. Nowadays, over-estimated fetal weight could 
result in over-classification of fetuses as macrosomic 
with unnecessary cesarean deliveries, under-estimated 
fetal weight could also pose a risk of dystocia or even 
stillbirth. Our model fits with the current strategy for 
precision medicine can guide the mode of delivery and 
provide assistance at birth. For example, if the model 
shows a high probability of macrosomia, we can arrange 
medical personnel, drugs and medical supplies ahead of 
time in order to prevent postpartum hemorrhage, shoul-
der dystocia, severe perineal lacerations etal actively. All 
in all, our model judges the macrosomia accurately and 
covers the clinical pregnancy management during the 
antenatal, intrapartum and postpartum periods. Sig-
nificantly, our model will be a strong aidarm to enhance 
doctors and midwives’ decision confidence, as well as 
bring lower anxiety of pregnant women due to the uncer-
tainty of their fetal weight. There were some limitations 
to the present study. First, we are a single obstetric hos-
pital that principally covers low-to-moderate-risk preg-
nant women, and this cohort may not fully represent all 
obstetric practices in the community. Second, this was a 
retrospective study that lacked the validation of relevant 
variables, thus slightly reducing its overall credibility; 
in the next phase, we will include the relevant variables 
and appropriate influencing factors and initiate a pro-
spective study. Finally, the occurrence of macrosomia is 
affected by many factors, including the environment. For 
example, some evidence suggests that exposure of preg-
nant women to air pollutants [29], such as  PM2.5,  NO2, 
and  O3, and passive smoking may also increase the fetal 
risk for macrosomia. We herein ignored the influences 
of environmental effects, lifestyle, work stress, and social 
relationships.
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Conclusions
In summary, our proposed predictive nomogram model 
can be used effectively to prognosticate the incidence of 
macrosomia. The highly predictive sensitivity and speci-
ficity of our model can thus aid clinicians in reducing 
adverse pregnancy outcomes. In the future, we will con-
vert the nomogram model into an electronic medical 
records system or mobile application for every pregnant 
woman to expand the potential value of this predictive 
model.
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